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a b s t r a c t 

L-DOPA, also known as Levodopa or L-3,4- 

dihydroxyphenylalanine, is synthesised in plants from 

the amino acid tyrosine, through oxidation. Conversion of 

tyrosine to L-DOPA constitues the first step of betalain 

biosynthesis in plants. Recently, the gene responsible for 

this step was identified in beetroot, BvCYP76AD6 , that is 

the source of yellow and purple betalain pigments. Over- 

expression of this gene, specifically in tomato fruit, led to 

accumulation of L-DOPA that otherwise is not detectable 

[1] . Co-expression of the Arabidopsis transcription factor, At- 

MYB12 , in fruit, increased L-DOPA levels further. To study the 

metabolic changes in these fruit, we performed untargeted 

metabolite analysis of ripe fruit: GC-MS was performed to 

identify changes in primary metabolites, LC-MS analysis was 

used to identify alterations in specialised metabolites. These 

data can be used to study the impact of diversion of tyrosine 

in fruit, accompanied by the accumulation of L-DOPA in 

planta and to identify new biological roles associated with 

the accumulation of these metabolites. 
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Subject Omics: Metabolomics 

Specific subject area Metabolic analysis of tomato fruit accumulating L-DOPA 

Type of data Table 

How data were 

acquired 

Metabolite analyses of tomato fruit accumulating L-DOPA was carried out by 

GC-MS and UPLC-MS. 

For the GC-MS analysis we used of a DB-35 column and Leco Pegasus HT 

TOF-MS. Chromatograms were analysed by using Chroma TOF 4.5 (Leco) and 

TagFinder 4.2 software. For the UPLC-MS analysis we used an HSS T3 C18 

reversed phase column (100 × 2.1 mm i.d., 1.8-μm particle size; Waters), and a 

Q-Exactive Orbitrap mass detector. Molecular masses, retention times, and 

associated peak intensities were extracted from the raw files using RefinerMS 

(version 5.3; GeneData), and Xcalibur software (Thermo Fisher Scientific). 

Data format Raw 

Parameters for data 

collection 

Fruit was harvested 7 days post breaker. 

For GC-MS analysis mass spectra were recorded at 20 scans s −1 with m/z 

70-600 scanning range. 

For LC analysis, the spectra were recorded using full scan mode with negative 

ion detection, covering a mass range from m/z 100 to 1500. The resolution was 

set to 25,0 0 0, and the maximum scan time was set to 250 ms. 

Description of data 

collection 

For GC-MS analysis, chromatograms and mass spectra were evaluated by using 

Chroma TOF 4.5 (Leco) and TagFinder 4.2 software. 

For LC-MS analysis, molecular masses, retention times, and associated peak 

intensities were extracted from the raw files using RefinerMS (version 5.3; 

GeneData), and Xcalibur software (Thermo Fisher Scientific) 

Data source location Max-Planck-Institut fur Molekulare Pflanzenphysiologie 

Potsdam-Golm 

Germany 

Samples grown and collected at: 

John Innes Centre 

Norwich 

United Kingdom 

Data accessibility With the article 

Related research article [1] 

alue of the Data 

• These data are useful as defining total metabolite changes in fruit engineered to divert tyro-

sine into alternative products 

• People investigating the control of metabolic flux in ripening tomato fruit will find these data

interesting. 

• These data could be useful for researchers investigating the central role of tyrosine and reg-

ulation of tyrosine levels in plants on both primary and secondary metabolism. 

. Data Description 

To investigate the metabolic effect of accumulation of L-DOPA in tomato, GC-MS (Table 1)

nd LC-MS (Table 2) analyses were undertaken on fruit, seven days post breaker. An untargeted

pproach was adopted to identify as many compounds as possible. 

For GC-MS analysis, three lines of tomato producing L-DOPA (CYP76AD6) were analysed-

YP76AD6#1, with 3 independent, biological replicates (a-c), and CYP76AD6#2 and

YP76AD6#3, with four independent, biological replicates each (a-d). In addition, fruit from

http://creativecommons.org/licenses/by/4.0/
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lines crossed with plants overexpressing AtMYB12 (CYP76AD6XMYB12) and accumulating higher

levels of L-DOPA were analysed [1] . CYP76AD6#1XMYB12 consisted of four independent,

biological replicates (a-d), and CYP76AD6#2XMYB12 consisted three independent, biological 

replicates (a-c). As controls, four independent, biological replicates of wild type (wt) fruit seven

days post-breaker were analysed (a-d), and three biological repeats of AtMYB12 - overexpressing

fruit (MYB12-a, MYB12-b and MYB12-c). The GC-MS analysis identified predominantly primary

metabolites and a total of 77 compound-associated m/z signals were quantified. 

For the LC-MS analysis, three lines of tomato producing L-DOPA were analysed- CYP76AD6#1,

CYP76AD6#2, and CYP76AD6#3, with five independent, biological replicates each (a-e). In addi-

tion, fruit were sampled from lines crossed with plants overexpressing AtMYB12 . Six indepen-

dent, biological replicates of CYP76AD6#1XMYB12 fruit were analysed (a-f) and three indepen-

dent biological replicates from CYP76AD6#2XMYB12 plants (a-c). As controls, five independent,

biological replicates of wild type (wt) fruit were analysed (a-e), together with five independent,

biological replicates of AtMYB12 - overexpressing fruit (MYB12-a-e). The LC-MS analysis identified

mostly specialised, secondary metabolites and a total of 91 compound-associated m/z signals

were extracted. 

2. Experimental Design, Materials and Methods 

2.1. Plant material 

Plant material was obtained as described in [1] . Briefly, transgenic tomato plants (cv. Money

Maker), overexpressing the beetroot BvCYP76AD6 coding DNA sequence (CDS; CYP76AD6), under

the control of the fruit-specific E8 promoter were grown in greenhouses at the John Innes Cen-

tre (UK). In addition, BvCYP76AD6 -overexpressing lines, were crossed with plants overexpressing

AtMYB12 [2] to generate F1 plants from the different parental lines (CYP76AD6XMYB12). Fruit

were harvested seven days post breaker. Placenta and seeds were removed, prior to being im-

mersed in liquid nitrogen and stored at -80 °C. 

Samples were ground in liquid nitrogen, freeze-dried overnight and extracted (30mg ml −1 )

in 80% methanol with ribitol 1.5mg l −1 . Samples were shaken at room temperature for 30 min,

followed by 10 min sonication and 10 min centrifugation in 4 °C. 

2.2. GC-MS analysis 

The ribitol-methanol fruit extract was derivatised for 90 min at 37 °C (in 50 μl of 20 mg ml −1 

methoxyamine hydrochloride in pyridine) followed by a 30 min treatment at 37 °C with 120 μl

of MSTFA ( N -Methyl- N -(trimethylsilyl)trifluoroacetamide, N -Trimethylsilyl- N -methyl trifluoroac-

etamide). The GC-MS system used included a gas chromatograph coupled to a time-of-flight

mass spectrometer (Leco Pegasus HT TOF-MS). For sample injection, a Gerstel Multi Purpose au-

tosampler was used. Helium was used as carrier gas at a constant flow rate of 2 ml s −1 and

gas chromatography was performed on a 30 m DB-35 column. The injection temperature was

230 °C and the transfer line and ion source were set to 250 °C. The initial temperature of the

oven (85 °C) increased at a rate of 15 °C min 

−1 up to a final temperature of 360 °C. After a solvent

delay of 180 sec, mass spectra were recorded at 20 scans s −1 with m/z 70-600 scanning range.

Chromatograms and mass spectra were evaluated by using Chroma TOF 4.5 (Leco) and TagFinder

4.2 software. 

2.3. LC-MS analysis 

The ribitol-methanol fruit extract was analysed using a Waters Acquity UPLC system coupled

to a Q-Exactive Orbitrap mass detector according to a previously published protocol [3] . The
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PLC system included a HSS T3 C18 reversed phase column (100 × 2.1 mm i.d., 1.8-μm particle

ize; Waters) that was set to a temperature of 40 °C. The mobile phases consisted of 0.1% formic

cid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B). The flow rate of the

obile phase was 400 μL min 

−1 , and 3 μl of sample was loaded per injection. The UPLC was

onnected to an Exactive Orbitrap (Thermo Fisher Scientific) via a heated electrospray source

Thermo Fisher Scientific). The spectra were recorded using full scan mode of negative ion de-

ection, covering a mass range from m/z 100 to 1500. The resolution was set to 25,0 0 0, and the

aximum scan time was set to 250 ms. The sheath gas was set to a value of 60, while the aux-

liary gas was set to 35. The transfer capillary temperature was set to 150 °C, while the heater

emperature was adjusted to 300 °C. The spray voltage was fixed at 3 kV, with a capillary voltage

nd a skimmer voltage of 25 and 15 V, respectively. MS spectra were recorded from minute 0

o 19 of the UPLC gradient. Molecular masses, retention time, and associated peak intensities

ere extracted from the raw files using RefinerMS (version 5.3; GeneData), and Xcalibur soft-

are (Thermo Fisher Scientific)[4]. 

.4. Metabolite identification 

Metabolite identification and annotation were performed using standard compound analysis,

iterature, and tomato metabolomics databases [4–7] . Values were obtained as relative to the

nternal standards, ribitol and isovitexin for GC-MS and UPLC-MS, respectively. 
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