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Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability
to spread or metastasize throughout the body. In recent years, remarkable progress has
been made toward the understanding of proposed hallmarks of cancer development, care,
and treatment modalities. Radiation therapy or radiotherapy is an important and integral
component of cancer management, mostly conferring a survival benefit. Radiation therapy
destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years,
radiation therapy has been driven by constant technological advances and approximately
50% of all patients with localized malignant tumors are treated with radiation at some point
in the course of their disease. In radiation oncology, research and development in the last
three decades has led to considerable improvement in our understanding of the differential
responses of normal and cancer cells. The biological effectiveness of radiation depends
on the linear energy transfer (LET), total dose, number of fractions and radiosensitivity of
the targeted cells or tissues. Radiation can either directly or indirectly (by producing free
radicals) damages the genome of the cell. This has been challenged in recent years by
a newly identified phenomenon known as radiation induced bystander effect (RIBE). In
RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues
demonstrate similar responses to that of the directly irradiated cells. Understanding the
cancer cell responses during the fractions or after the course of irradiation will lead to
improvements in therapeutic efficacy and potentially, benefitting a significant proportion
of cancer patients. In this review, the clinical implications of radiation induced direct and
bystander effects on the cancer cell are discussed.
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INTRODUCTION
Cancer is a complex disease, which grow locally and also pos-
sesses the capacity to metastasize to different organs in the body.
Cancer continues to be a major disease and the numbers of can-
cer cases are projected to be more than double worldwide in the
next 20–40 years and surpass heart disease as the leading cause
of death (Jemal et al., 2010; Thun et al., 2010). Moreover, man-
agement of cancer is a rising concern in an aging population
and is increasingly important in the developing countries (Siegel
et al., 2012). International Agency for Research on Cancer (IARC)
has predicted that by 2030, ∼26 million new cancer cases and
17 million cancer deaths will occur each year worldwide (IARC,
2010). That compares to 12.7 million new cancers and 7.6 mil-
lion cancer death reported by GLOBOCAN 2008. Despite initial
high response rates to the various treatment modalities and inter-
ventions, a large proportion of cancer patients suffered relapse in
years or decades later (Karrison et al., 1999; Weckermann et al.,
2001; Pfitzenmaier et al., 2006; Aguirre-Ghiso, 2007), resulting
a therapeutic challenge. Radiation therapy aims to deliver the
optimal isodose to the tumor volume while sparing the nor-
mal tissues. For years, radiation biologists have thought that the
biological effects induced by ionizing radiation are the direct
consequence of a radiation induced DNA damage and thereafter
death of cancer cell. In a recent seminal study Martin et al. (2014)
reported that the rapid breakdown of a tumor could cause a flood

of cancerous material, including intact cells to enter the lymphatic
flow and form tumors in the distanced organs, a possible mecha-
nism of the formation of therapy related metastasis. Therefore,
past 20 years have seen a major paradigm shift in radiation
biology and enormous progress has been made to understand
the biological and molecular determinants of cellular radiation
responses.

In recent years, many treatment and management options for
cancer exist with the primary ones including: surgery, chemother-
apy, radiation therapy and palliative care. Radiation therapy or
radiotherapy is a highly effective tool for the cancer treatment and
also an important component of cancer management, conferring
a survival and palliative benefits (Prise, 2006; Guadagnolo et al.,
2013; Liauw et al., 2013). In patients with inoperable tumors,
radiation therapy is the only option (Durante and Loeffler, 2010).
Furthermore, patients who are incompletely resected or recurrent
of tumors after surgery are mostly treated by radiation therapy
(Durante and Loeffler, 2010). Approximately 50% of all cancer
patients receive radiation therapy during their course of illness
(Delaney et al., 2005; Begg et al., 2011) either for cure or as a
palliative treatment to relieve the patients from symptoms such
as pain caused by the cancer (Delaney et al., 2005), majority of
patients are treated with the intent to cure (Barnett et al., 2009).
Although tremendous progress has been made toward under-
standing the hallmarks of cancer development and treatment
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response, a need remains to improve the curative rate by target-
ing multiple molecular pathways that mediate the DNA damage
response.

Radiation therapy destroys cancer by depositing high physi-
cal energy of radiations on the cancer cells. The first clinical use
of radiation for the cancer treatment was recorded in late 19th
century (Connell and Hellman, 2009), soon after Roentgen dis-
covered X-rays in 1895 and the effectiveness of radiation that has
been developed over the years showed a drastic beneficial effects
(Bernier et al., 2004; Giap and Giap, 2012). Over the years, radi-
ation therapy has been driven by constant technological advances
(Thariat et al., 2013) with the understanding of various molecular
mechanisms involved in the treatment sensitivity and resistance
(Jacinto and Hall, 2003; Camphausen and Tofilon, 2004; Sabatini,
2006; Kuwahara et al., 2014). In radiation oncology, research and
development in the last three decades has led to a considerable
improvement in our understanding of radiation dose and the
dose-volume responses. Ionizing radiation has been harnessed for
over a century to treat patients with cancer largely based on the
rationale that the rapidly proliferating cancer cells are more sen-
sitive than normal cells for the DNA damage response. Recently,
our understanding of radiation effects has been expanded widely
in terms of the consequences of radiation-induced tumor cell
death and various signaling pathways involved in sensitivity,
resistance and further molecular sensors that modify the tumor
response to radiation. Though high-energy photons (X-rays and
gamma rays) are the most common radiation modalities used in
the external beam treatment, protons provide dosimetric advan-
tages compared with photons. In this review, we discuss about
the biological response of rapidly proliferating cancer cells to the
radiation treatment.

RADIATION AND BIOLOGICAL IMPLICATIONS
Radiation remains as most widely utilized treatment modalities in
the clinical management of cancer (Burnette and Weichselbaum,
2013; McGale et al., 2014). Patients with localized malignant
tumors are treated with radiation at some point in the course of
their disease (Bentzen, 2006; Durante and Loeffler, 2010; Baskar
et al., 2012; Moding et al., 2013). Radiation therapy is applied in a
course of multiple fractions over several weeks to reduce the nor-
mal cell toxicity (Bentzen, 2006), with an estimation of about 40%
toward the curative treatment (Barnett et al., 2009). Furthermore,
radiation therapy is a highly cost effective with a single modality
treatment accounting about only 5% of the total cost of cancer
care (Ringborg et al., 2003). Therefore, any improvement in the
efficacy of radiation therapy will therefore benefit a large number
of patients. Recent advances in radiation therapy have enabled
the use of different types of radiation sources like photons and
protons for a better cancer treatment efficacy. Radiation ther-
apy uses low and high linear energy transfer (LET) radiations
to efficiently kill the tumor cells while minimizing dose (bio-
logical effective) to normal tissues to prevent toxicity (Lawrence
et al., 2008; Niemantsverdriet et al., 2012). LET is defined as mea-
surement of the number of ionizations which radiation causes
per unit distance as it traverses the living cells or tissue. X-rays,
gamma rays and charged particles are the most types of radia-
tion used for cancer treatment. In radiation oncology, radiations

can be delivered by a machine outside the body (external beam
radiation therapy) or irradiated through the radioactive material
placed in the body near to cancer cells/tissue (internal radiation
therapy, also called brachytherapy). On the other hand, systemic
radiation therapy uses radioactive substances, such as radioactive
iodine, that travel in the blood to kill the cancer cells.

A better understanding of biological effects of radiation will
lead to efficient use and better protection. Biological effective-
ness of radiation depends on the linear energy transfer (LET),
total dose, fractionation rate and radiosensitivity of the targeted
cells or tissues (Hall, 2007). Low LET radiations (X-rays, gamma
rays and beta particles) deposit a relatively small quantity of
energy. On the other hand, radiation particles either negatively
charged (electrons), positively charged (protons, alpha rays, and
other heavy ions) deposits more energy on the targeted areas
called the Bragg peak and causes more biological effects than the
low LET radiations. However, tumors have developed multiple
strategies to resist radiation damage. The following (1) Tumor
burden (2) Tumor microenvironment/hypoxia (3) Inherent or
acquired treatment resistance and (4) Repopulations during the
treatment are the major mechanisms involved in the treatment
resistance (Seiwert et al., 2007). Ionizing radiation effectively kills
human cells; over a period sufficiently high doses of radiation
can sterilize any tumor and achieve nearly 100% of tumor con-
trol probability (TCP) (Thariat et al., 2013), either alone or in
combination with surgery and chemotherapy. However, when
using external-beam radiation healthy tissues are unavoidably
exposed to radiation, which increases the normal tissue compli-
cation probability. Over the years, technological improvements in
radiation therapy delivery have aimed to widen the therapeutic
window while reducing the normal tissue impact and increase in
target tissue (tumor) control (Durante and Loeffler, 2010; Loeffler
and Durante, 2013), and the benefits will be three-fold: patient
cure, organ preservation and cost-efficiency.

The overall outcome of radiation treatment is cell or tissue
damage; if it is not repairable eventually kill the cells. Effectiveness
of radiation therapy that have been developed over years showed
an increase in the number of cancer survivors, but prevent-
ing or reducing late effects are a significant public health issue.
Furthermore, increase in the number of cancer survivors has
stimulated interest in the quality of life of cancer survivors. The
situation is important among non-elderly adults. In particu-
lar, children are inherently more radiosensitive and have more
remaining years of life during which radiation induced late effect
in normal cells could manifest in their hyperproliferation (Allan
and Travis, 2005). However, understanding the tumor biology
and considerable technical advancement (e.g., proton therapy)
over the last three decades provides the opportunity for better
cancer treatment.

DIRECT EFFECTS
Ionizing radiation has been used for more than a century to
treat the cancer based on the rationale that the rapidly prolif-
erating cancer cells are sensitive to the radiation treatment than
normal cells (Bernier et al., 2004). Under the target-cell dam-
age, the major effect of ionizing radiation on tissues are the
direct cell killing mostly by damaging the DNA, resulting in the
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depopulation of cell populations and subsequent functional defi-
ciency. Radiation induced ionizations can act directly on the
cellular molecules and cause damage (Figure 1). Also can act
indirectly, producing free radicals which are derived from the ion-
ization or excitation of the water component (80% of a cell is
composed of water) of the cells (Figure 1). For ionizing radia-
tions such as low LET X-rays and gamma-rays, 60% of cellular
damage is caused by the indirect effects (Barcellos-Hoff et al.,
2005). Radiation induced double strand breaks (DSBs) represent
the most lethal types of DNA damage, leading to cell death, if
unrepaired. However, DNA damage response mechanisms rep-
resent a vital line of defense against exogenous and endogenous
damage caused by radiation and promote two distinct outcomes:
survival and the maintenance of genomic stability.

Multiple pathways are involved in the genome maintenance of
a cell after its exposure to ionizing radiation. Radiation therapy
like the most anticancer treatments achieves its therapeutic effect
by inducing DNA damage and thereafter cell death (Baskar et al.,
2008). Several experiments were performed indicating that the
DNA of cancer cells repair more slowly and also produce more
DNA breaks (single strand break and double strand breaks) than
the normal cells (Parshad et al., 1993; Shahidi et al., 2007, 2010;
Mohseni-Meybodi et al., 2009). Furthermore, various proteins
involved in cell death and DNA damage mechanisms (Jorgensen,
2009) decrease the radioresistance of the fast doubling cancer
cells, while increase in radioresistance of slow doubling normal
cells (Figure 2). Therefore, ionizing radiation as applied in the
cancer treatment induces a complex response in the cells. Some
processes aim to repair the radiation induced damage of the
normal cells, whereas others counteract the damage or induce
cancer cell death. Growing evidence suggests that various signal-
ing pathways including the DNA repair response pathways shows
redundancy in normal cells (Moding et al., 2013). Since cancer
cells have various mutations that cause the loss of this redundancy
and therefore targeting the DNA damage response pathways in the

FIGURE 1 | Radiation mainly acts in two ways. (1) Induces ionizations
directly on the cellular molecules and cause damage. (2) Also acts
indirectly, producing free radicals which are derived from the ionization or
excitation of the water component of the cells.

cancer cells can induce cell death. Hence DNA is the main target
for radiation-induced cell killing (Jorgensen, 2009) and there is
considerable redundancy in the ability of normal cells to repair
DNA damage (Núñez et al., 1996), therefore targeting DNA dam-
age response pathways is a promising approach for the selective
radiosensitization of cancer cells (Helleday et al., 2008).

p53 is a transcription factor and also one of the most
commonly mutated genes in cancer (Brosh and Rotter, 2009)
responds to ionizing radiation by initiating cell cycle arrest,
senescence, apoptosis and DNA damage repair (Stiewe, 2007).
However, whether p53 induces apoptosis or cell cycle arrest
for the DNA damage repair is a complex process and partly
depends on the abundance of the p53 protein (low protein levels
lead to cell cycle arrest and high protein levels lead to apop-
tosis) (Lai et al., 2007). However, various DNA repair mecha-
nisms within the tumor cells interfere with the radiation induced
damage and further increase the radioresistance of cancer cells
(Jorgensen, 2009). Furthermore, inhibition of DNA repair pro-
teins such as ATM or DNA-dependent protein kinase (DNA-PK)
have been shown to sensitize the cancer cells to radiation treat-
ment (Veuger et al., 2003; Hickson et al., 2004; Rainey et al.,
2008).

Besides the DNA repair pathways, ionizing radiation also trig-
gers cancer cells adaptive cellular responses. Various treatment
resistant signal transduction pathways are activated and the resis-
tance can be either intrinsic or an acquired resistance during the
fractionated radiation treatment (Toulany and Rodemann, 2013).
Signaling pathways that provide cancer cells with a proliferative
advantage or allow them to evade the cell death remains a major
clinical problem. One of the molecular events by which tumors
can become radioresistant is through the ligand-independent
activation of signal transduction pathways such as those reg-
ulated by membrane-bound receptor tyrosine kinases (RTKs).
In this context, epidermal growth factor receptor (EGFR) plays
a major role in regulating various downstream signaling path-
ways, such as the phosphatidylinositol 3-kinase (PI3K) and its
downstream kinases such as AKT and mammalian target of
rapamycin (mTOR), signal transducer and activator of transcrip-
tion (STAT) pathway and Ras-mitogen-activated protein kinase
(MAPK) pathway (Rodemann et al., 2007; Rodemann and Blaese,
2007). These pathways control the most hallmarks of cancer,
including cell cycle, survival, metabolism, invasion, angiogenesis,
and genomic instability (Datta et al., 1997; Huang and Harari,
2000; Nyati et al., 2006). Among the prosurvival pathways acti-
vated by RTKs, PI3K-AKT-mTOR signaling pathway is frequently
upregulated in human tumors and regarded as one of the most
challenging prosurvival pathways involved in the resistance to
cancer treatment (Engelman, 2009; Liu et al., 2010; Castellano
and Downward, 2011).

Recent advances in cancer biology have demonstrated that
PI3K-AKT-mTOR signaling pathway controls Fanconi anemia
group D2 protein (FANCD2) and ribonucleotide reductase
(RNR) and further prolongation of radiation-induced gamma
H2AX foci formation (Choi et al., 2010; Shen et al., 2013;
Wang et al., 2014). Regulation of DNA repair genes (FANCD2
and RNR) suggests that the PI3K-AKT-mTOR signaling pro-
motes cancer cell survival and resistance to radiation treatment
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FIGURE 2 | Radiation damages the genetic material (DNA) causing

single strand breaks (SSB) or double strand breaks (DSB) in the cells,

thus blocking their ability to divide and proliferate further. Mechanisms

involved in the decrease of radiosensitivity of the fast doubling cancer cells,
while increasing radioresistant of the slow doubling normal cells benefits the
cancer patients.

by enhancing the DNA damage repair of the cancer cells. In
addition, PI3K-AKT-mTOR signaling pathway also may play a
role in the integral functions for non-cancerous (normal) cells
repopulation along with the proteins involved in DNA repair
mechanisms (Wullschleger et al., 2006). Ionizing radiation also
activates NF-κB transcriptional pathway, through the activation
of IκB kinase-α as a protective response to damage and inhibition
of this kinase can lead to increased radiosensitvity for the cancer
treatment (Brach et al., 1991; Criswell et al., 2003). However, how
these pathways inhibition may improve the radiation therapy effi-
cacy in patients remains elusive and the mechanisms underlying
the initiation/manifestation of radiation-induced genomic insta-
bility in normal and cancer cells are far understood (Bensimon
et al., 2013). Furthermore, improvement in preclinical methods
for the biological mechanisms involved in signaling pathway(s)
for the treatment resistance, cell cycle checkpoints, DNA dam-
age and repair, anti-angiogenesis could increase the therapeutic
response of tumor microenvironment, while sparing the sur-
rounding normal tissues. As a result, inhibition of the cancer cells
prosurvival pathways has the potential to increase the radiosensi-
tivity of cancer cells through activating/inhibiting multiple mech-
anisms. Furthermore, inhibition of the cancer cell survival could
also affect the radiosensitivity of normal tissues as well, thus
decreasing the overall therapeutic index of radiation. Therefore,
strategies to improve radiation therapy to increase the effect on
tumor while less toxicity on the normal tissues should be achieved
without sensitizing the normal tissues and also without protecting
the tumors to the radiation treatment.

BYSTANDER EFFECTS
Cancer therapy usually involves exposing the body to agents that
kill cancer cells more efficiently than the normal cells. Recent
advances in radiation biology and oncology have demonstrated
that the radiation is an effective tool to control the localized
tumors. However, in recent years mounting evidence indicates
that the radiation also can damage not only the cells adja-
cent to the tumor, but also far from the radiation track by the
generation of gap-junction or cytokine-mediated cellular toxic-
ity and also various cellular and microenvironmental signaling
cascades are involved (Figure 3) (Shao et al., 2004; Barcellos-
Hoff et al., 2005; Baskar, 2010; Butterworth et al., 2013; Suzuki
and Yamashita, 2014). In the past two decades, evidence has
been mounted for a novel biological phenomenon termed as
“bystander effect” (BE). Ionizing radiation induces DNA dam-
age in the form chromosomal aberrations were first reported
not only in the directly exposed cells but also in their neighbor-
ing non-irradiated cells, termed as radiation-induced bystander
effect (RIBE) (Nagasawa and Little, 1992). Therefore, the discov-
ery of non-targeted responses to radiation, such as the bystander
response, has called the direct radiation effect paradigm into
question. Various biological effects of ionizing radiation are not
restricted to only the directly irradiated cells (targeted effects),
but are also observed in the progeny of non-irradiated cells
(non-targeted effects) (Bensimon et al., 2013). RIBE has been
demonstrated in numerous in vitro and in vivo studies using
a variety of biological endpoints. These effects include various
molecular and genomic instabilities as seen in the targeted cells.
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FIGURE 3 | Schematic representation of bystander effects induced by radiation to the adjacent cells and distanced organs.

Bystander effects has been extensively studied in the past two
decades and reported cell death (Seymour and Mothersill, 1997),
induction of sister chromatid exchanges (Nagasawa and Little,
1992; Deshpande et al., 1996), formation of micronuclei (Shao
et al., 2003; Balajee et al., 2004; Ponnaiya et al., 2004), muta-
tions (Zhou et al., 2000), delay in cell cycle (Ponnaiya et al., 2004)
and transformation (Sawant et al., 2001) of non-irradiated cells
along with the proteins involved in the cell cycle and DNA damage
response (Hickman et al., 1994; Azzam et al., 1998, 2001; Sokolov
et al., 2007; Baskar et al., 2008).

Radiation can cause chromosomal aberrations arising de novo
in the cell progeny, several generations after irradiation. Delayed
genomic instability has been observed in many types of mam-
malian cells (Ponnaiya et al., 1997; Suzuki et al., 2003; Mothersill
et al., 2006; Sudo et al., 2008). Therefore, communication
between cells and their microenvironment is critical for both nor-
mal tissue homeostasis and tumor growth. RIBE has important
implication in tumor control and in radiation therapy, wherein
the targeted (directly irradiated) cells transmit the damaging
signals to the non-irradiated normal cells, thereby inducing a
response similar to that of directly irradiated cells (Mothersill
and Seymour, 1998; Shao et al., 2002; Baskar et al., 2007; Baskar,
2010; He et al., 2012). Two major mechanisms mediate RIBE.
In the normal and certain cancer cells, mechanisms between
cell to cell communications are through the direct gap junction-
mediated intercellular communication (adjacent cells/confluent
cells) (Azzam et al., 1998; Zhou et al., 2000). Secondly, a range
of soluble signaling molecules such as cytokines are involved
in the communications between the targeted to distanced non-
targeted organs/sub-confluent cells were reported (Ivanov et al.,
2010; Hei et al., 2011; Klammer et al., 2013). Among cytokines,

tumor growth factor-beta-1 (TGF-β1) has been found to be
an important mediator in the bystander effects (Gow et al.,
2010; Temme and Bauer, 2013). Recently, Jiang et al. (2014)
showed in the lung cancer cells, that the RIBE is mediated by
the TGF-β1–miR-21–ROS pathway. In recent years, number of
candidate mediators in bystander effects were identified, among
them transforming growth factor-b (TGF-β) (Iyer et al., 2000),
tumor necrosis factor-alpha (a) (TNF-α) (Shareef et al., 2007),
interleukin-6 (IL-6) (Chou et al., 2007), interleukin-8 (IL-8)
(Facoetti et al., 2006) and increase in reactive oxygen species
(ROS) (Lyng et al., 2002). RIBE has an important implication in
radiation therapy and its impact in radiation oncology is grad-
ually beginning (Munro, 2009). In cancer cells multiple RIBEs,
including cell growth stimulation, DNA damage, and cell death
have been observed (Sokolov and Neumann, 2010; Veldwijk et al.,
2014). However, RIBE is not seen in the human embryonic stem
cells (hESC) (Sokolov and Neumann, 2010), indicating stem cells
are less susceptible to RIBE than the somatic differentiated cells.

RIBE is also reported using mouse model, the bystander
responses of internal tumor cells or tissues were also con-
firmed in vivo, further cancer-associated events such as p53 alter-
ation, MMPs (Matrix metalloproteinases) activity and epigenetic
changes were reported in the RIBE (Camphausen et al., 2003;
Koturbash et al., 2007). BE can be mediated through an increase
in genomic instability, cell cycle delay, cell death (apoptosis), for-
mation of micronucleus, mutations, changes in proteins (gene)
expression, and further by malignant transformation (Nagasawa
and Little, 1992; Hickman et al., 1994; Shao et al., 2003; Ponnaiya
et al., 2004; Baskar et al., 2008). However, the components
released from the irradiated cells and further the communica-
tion signals involved between the irradiated and non-irradiated
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cells are still not well known. Recently, Bensimon et al. (2013)
showed for the first time in breast cancer cells, a cancer stem
cell (CSC) marker CD24 is associated with the transmission of
genomic instability of the bystander cells. Recently Aravindan
et al. (2014) reported that the clinical doses of abdominal irra-
diation (2Gy) in mice showed an increase in the onset of NF-kB
signal transduction and subsequent NF-kB activation in the non-
targeted distant organ (heart). However, little is known about the
type of DNA damage of the bystander cells, its radiation resistance
and further damage of non-targeted normal cells contributing to
tumorigenesis and how this damage can be repaired by designing
novel therapeutic approaches to cancer treatment paves a way for
an effective strategy to compact the disease.

FUTURE PERSPECTIVE
Though tremendous progress has been made toward understand-
ing the hallmarks of cancer, cancer is responsible for one in
eight deaths worldwide (Garcia et al., 2007; Center et al., 2011).
Despite the use of chemotherapy, radiation therapy and surgery,
the overall outcome for cancer cure continues to be disappoint-
ing. Radiation therapy offers an effective treatment for advanced
cancer and the prime goal of radiation treatment is to inhibit the
cancer cells multiplication potential and eventually kill the cells.
However, radioresistance and repopulation (relapse or recur-
rence) at the primary site and/or at the malignant areas remain
a significant clinical challenge in cancer control. Certain tumors
are intrinsically radioresistant, while others acquire radioresis-
tance during the treatment (Seiwert et al., 2007). To overcome the
tumor cell radioresistance, it will be a challenging one to iden-
tify tumor specific pathways and inhibitors. In the past few years,
enormous progress has been made in radiation therapy leading to
the possibility of depositing more radiation energy (proton beam
radiation therapy, e.g., Bragg Peak) on the tumors while spar-
ing the surrounding normal tissues (Bhide and Nutting, 2010).
We do not have a comprehensive answer about the molecular
mechanisms involved in the initiation of cancer, developing resis-
tance to treatment and further individual variations in treatment
susceptibility, especially of therapy-related beneficial or detrimen-
tal effects. In a microenvironment, cancer cells are influenced by
various growth signaling pathways to resist the radiation effects
and further modify the adjacent normal tissues to impede tumor
recurrence or metastasis. Overall, small increase in radioresis-
tance will lead to a large number of cancer cell survivals and
further the proliferation forms cancer mass and with a loga-
rithmic decrease in cancer cell death after radiation treatment.
Therefore, in the coming years more thrust should be given on
the cancer cells radioresistance, e.g., cancer stem cell’s radiosen-
sitivity will focus on several different areas along with molecular
targeted drugs to control this rapidly growing disease worldwide.
Furthermore, with a greater understanding of the tumor biology,
evolution of radiation therapy will continue with the improve-
ments in imaging, computing and engineering advancements,
and potentially decimate the cancer cells with fewer side effects.
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