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In this paper, a simultaneous localization and mapping algorithm based on the weighted

asynchronous fusion of laser and vision sensors is proposed for an assistant robot.

When compared to the synchronous fusion algorithm, this method can effectively use the

redundant data in the vision sensor and improve the tracking accuracy of the algorithm.

At the same time, the attitude estimation of the visual sensor is taken as a prior of the

attitude estimation of the laser sensor to reduce the number of iterations and improve

the efficiency of the algorithm. Further, according to the running state of the robot, a

weighting coefficient based on angle is introduced to improve the confidence of the

measurement. Experimental results show that the algorithm is robust and can work

in a degraded environment. When compared to the synchronous fusion method, the

asynchronous fusion algorithm has a more accurate prior, faster operation speed, higher

pose estimation frequency, and more accurate positioning accuracy.

Keywords: laser, vision, SLAM, data fusion, multi-rate

INTRODUCTION

Population aging is a global problem. In 2020, there were 727 million people worldwide aged 65
years and above, and the number of elderly people is expected to more than double over the
next 30 years, reaching more than 1.5 billion people by 2050 (Shushpanov et al., 2021). Walking
impairments caused by functional decline, cardiovascular disease, or stroke significantly affect the
quality of life of several older adults (Owen et al., 2010).

Among medical robots, mobility robots have performed a significant role. For example, the
smart wheelchair developed by Karlstad University in Sweden can control movements based on the
direction of eye movement and exhibits a navigational ability (Wästlund et al., 2015). The Walking
Assistant Robot (Shim et al., 2005) developed by Hyeon-Min et al. of Korea Institute of Technology
is equipped with global positioning system sensors and light detection and ranging (LiDAR);
therefore, it provides outdoor navigation and obstacle avoidance functions. The autonomous
mobile service robot used in nursing homes, which was independently developed by the University
of Lincoln in the United Kingdom (Li et al., 2018), uses 3D LiDAR to perceive the surrounding
environment and movement of pedestrians, and performs the subsequent movements of the
patient based on the perceived data. Sami et al. designed a medical robot (Ramadhan et al., 2021)
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that is used to perform navigational tasks and basic health tests
such as monitoring of the heart rate, oxygen saturation levels,
and temperature. In fact the cane type walking-aid robot can
be regarded as a typical inverted pendulum system. In order
to estimate the disturbance and realize the control stability of
the mobile wheeled inverted pendulum systems, a novel sliding
mode control based on high-order disturbance observer was
developed (Huang et al., 2020). Further a cane type walking-
aid robot is proposed (Yan et al., 2021), which follow a human
user for the safety and supervision of independent walking
during rehabilitation training. The autonomous positioning and
navigational capabilities of mobile robots are critical in walking
robots, and an accurate map is the basis of these capabilities in
walking robots.

In the past few decades, mobile robots based on simultaneous
localization and mapping (SLAM) algorithm have been rapidly
developed. Laser and vision sensors are the two mainstream
sensors used in SLAM applications. Among them, the SLAM
algorithms represented by laser sensors primarily include
Gmapping (Grisetti et al., 2007), Hector (Kohlbrecher et al.,
2011), and cartographer algorithms (Hess et al., 2016). The
earliest 3D laser SLAM method is the LiDAR odometry and
mapping algorithm proposed by Zhang (Zhang et al., 2016;
Zhang and Singh, 2017) of Carnegie Mellon University, which
can be used to obtain a laser odometer with higher accuracy and
real-time performance and to build an environment map.

With the development of 3D laser sensors, 3D laser sensor
schemes have been gradually adopted by automatic driving and
outdoor low-speed unmanned vehicles. However, owing to the
high cost of 3D laser sensors, 2D lasers are still predominantly
used to achieve SLAM in indoor scenes. Karto SLAM (Konoli
et al., 2010) is a graph optimisation method in which the map is
represented using a graph, and each node represents an anchor
point in the trajectory of the robot and a dataset of sensor
measurements. Hwang and Song proposed an extended Kalman
filter-based SLAMmethod, which uses the nearest neighbor data
association method to obtain data association results, and then
uses an extended Kalman filter to estimate the attitude and
environment map of a mobile robot (Hwang and Song, 2011).
CoreSLAM (Turnage, 2016) uses a Monte Carlo algorithm for
scan matching, which outputs low-quality recognizable maps
by fusing incoming laser data with the data collected from a
laser rangefinder. It was observed from the above study that
CoreSLAM performs better on slow robots. Although mapping
can be achieved using 2D laser sensors, these sensors have
certain drawbacks. Because the 2D laser sensor only has depth
information and scans a plane, the algorithm applied in it fails
when the depth information returned by the sensor does not
change with time during the movement of the robot in the
corridor. The camera, another inexpensive sensor, has obvious
advantages in this case. On the one hand, it can obtain significant
corner or edge information in stereo space. On the other hand,
cameras are widely used because of their higher sampling rates.
MonoSLAM (Davison et al., 2007) is the first SLAM system for
the real-time recovery of monocular vision; it uses an extended
Kalman filter as a back-end to track sparse features in the front-
end, thus updating the current state of the camera and all feature

points of state variables. Klein and Murray (2007) proposed a
parallel tracking and mapping (PTAM) algorithm that operates
in real time, where camera pose tracking and feature point map
creation are performed in parallel. Systems designed with this
algorithm can generate detailed maps containing thousands of
road signs that can be tracked at faster frame rates with accuracy
and robustness when compared to state-of-the-art model-based
systems. De Croce et al. (2019) proposed distributed stereo
PTAM (DS-PTAM), a distributed architecture for stereo PTAM,
which is a stereo SLAM system, in which the input information
is acquired by two cameras, and the tracking and mapping
processes are performed in a distributed system. The DS-PTAM
system allows positioning and mapping modules to be run on
remote base stations, thereby reducing the load on the vehicle
processor. However, the camera also has its own shortcomings,
and it is easy to lose features and cause greater drift when
rotating over a large range. In this case, the laser exhibits
superior properties.

In recent years, because each sensor has its own limitations,
researchers have developed many SLAM mapping algorithms
based on multi-sensor fusion. Shamwell et al. (2020) adopted
an unsupervised neural network approach to fuse RGB-depth
(RGB-D) images with absolute trajectory estimation from
inertial measurements. The network learns to integrate the
measurements of an inertial measurement unit (IMU) and
generates hypothetical trajectories, which are corrected online
based on a Jacobian matrix of the scaled image projection
error relative to the pixel coordinate space grid. Westfechtel
et al. (2019) used the synchronous LiDAR odometry and
mapping algorithm (Zhang and Singh, 2014) to synchronize the
LiDAR scanning and camera data, and used a neural network
algorithm to project 3D laser data onto 2D image data to
collect semantic information of the image and constructed
3D RGB-SLAM. Oriented features from accelerated segment
test and rotated binary robust independent elementary features
(ORB)-SLAM (Mur-Artal et al., 2015) computations revolve
around fast orientation and rotational brevity, including an
ORB dictionary for visual velocimetry and loop detection;
moreover, it innovatively utilizes three threads to achieve SLAM.
In another study (Zhang and Singh, 2018), the LiDAR visual-
inertial odometry algorithm was proposed, which fused multi-
line LiDAR, camera, and IMU sensors. This algorithm used
the constraints of camera images and IMU measurements to
achieve high-frequency attitude output; then, it used feature
matching among laser point clouds to achieve low-frequency
attitude output and output mapping to achieve a higher-
frequency attitude output; finally, a 3D point cloud map
was constructed. Shan et al. (2020) proposed LiDAR inertial
odometry via smoothing and mapping, a tightly coupled
laser radar inertial odometer framework that enables highly
accurate, real-time mobile robot trajectory estimation and map
construction through smoothing and mapping. LiDAR inertial
odometry via smoothing and mapping can effectively improve
the real-time performance of a system in the local range. In
another study (Qiu et al., 2008), a modular 3D tracking system for
six-degrees-of-freedom pose estimation of dynamic objects with
metric scale recovery capability using monocular visual-inertial
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sensing was proposed. The tracking system could deal with
a general rigid object based on motion correlation analysis
without scale prior processing of the tracked object. Liu and
Shen (2017) proposed a spline-based monocular visual-inertial
navigation system-based altitude estimator initialization method.
This method can explicitly reduce the number of parameter
estimates required to achieve earlier convergence. Qin et al.
(2018) proposed a monocular vision-inertial SLAM system that
can reposition the camera and obtain the absolute pose of the
camera from the existing map. Then, a four-degrees-of-freedom
pose graph is optimized to correct the drift and achieve global
consistency. However, there are very few algorithms for the
fusion of vision and lasers. The identification of a method that
can fuse the two sensors with strong complementary advantages
to achieve efficient and accurate mapping and navigation is
important. Zuo et al. (2019) used EKF to fuse the information
of laser, IMU and visual odometer, but the different speed
and characteristics for different sensors are not considered.
Mu (2020) used Kalman filter (UKF) to designed the related
strategy of the 2D LiDAR point cloud and RGB-D camera
point cloud. the experiment shows that the multi-sensor SLAM
framework designed has a good effect. Geneva et al. (2018)
designed a factor graph-based optimization framework to realize
the asynchronous fusion of laser and vision. The proposed
sensor-fusion system got an improved performance on a real-
world experimental dataset. But these methods do not consider
the difference degree of confidence between laser and vision
in different scenes. For example, the laser and the vision have
different sensitiveness during turning and straight-line walking.
Our work will also consider the confidence difference caused
by characteristics of sensors expect the asynchronous fusion. It
not only promises the sensors can operate at different sampling
rates, but also effectively avoids performance loss caused by a
specific scene.

The primary contributions of this paper are as follows. Based
on 2D laser and binocular cameras, a weighted asynchronous
fusion algorithm is proposed. The algorithm considers the
acquisition frequency characteristics of different sensors and
ensures that different sensors have different confidence levels
in different operating states. Finally, the effectiveness of the
algorithm is proven based on the results of simulations
and experiments. The experiments showed that the proposed
algorithm has good accuracy and robustness.

The rest of this paper is organized as follows. Section
Algorithm presents the modeling of asynchronous multi-rate
multi-sensor system. Section Experimental Results presents the
detailed simulation and experimental results. Section Conclusion
concludes the study.

ALGORITHM

Modeling of Asynchronous Multi-Rate
Multi-Sensor System
For the pose increment obtained based on the feedback from
the vision sensor, according to the pinhole imaging principle
of the camera and the rigid body transformation formula, it is

assumed that the homogeneous coordinate of a space point P in
the world coordinate system is P = (XW ,YW ,ZW , 1)T . Then,
its coordinates in the pixel coordinate system of the camera are
obtained as follows:
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where (u, v) is the coordinate of point P with respect to the
pixel coordinate system, s is the depth of point P with respect
to the camera coordinate system, K is the internal parameter
matrix of the camera, R is the rotation matrix, and t is the
translation matrix.

The feature points of the image in the current frame can
be obtained through the ORB feature extraction algorithm
(Turnage, 2016), and the descriptor of the feature points in
the current frame obtained by the binary robust independent
elementary feature descriptor is matched with the feature points
in the image at the previous moment; then, the corresponding
matching relationship is established. The matching point at the
previous moment is projected into the current frame of the image
through the internal parameter matrix of the camera and the
initial pose. Because the pose of the camera usually exhibits a
certain deviation, there is usually a certain deviation between
the projected point and the matching point on the current map.
Assuming that the coordinates of the feature point P in the
current frame image are P = (u1, v1)

T , the coordinates of
the matching point in the current frame corresponding to the
matching point in the previous frame is P′ = (u2, v2)

T . Because
the deviation of the camera pose usually causes the coordinates
of these two points to be different, the error function is defined
as follows:
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where e is the error, (u, v) is the pixel coordinate of the
feature point in the current frame, and P is the matching point
corresponding to the feature point in the current frame. Equation
(2) can be rewritten into the Lie algebra form as follows:

e =

[

u
v

]

−
1

s
Kexp (δ) P, (3)

where exp (δ) is the Lie algebra expression of the camera
coordinate system and e is the projection error between the space
point P projected onto the current image and the matching point.
There are usually several matching points in a frame of the image,
and according to all the matching points, the projection error
function can be obtained as follows:
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i=1

∣
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2

, (4)

where ui represents the i-th feature point in the current frame, Pi
represents the world coordinate of its corresponding matching
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point, si represents the depth of the point, K represents the
internal parameter matrix of the camera, exp (δ) represents the
Lie algebra expression of the camera coordinate system.

Using the Gauss–Newton or Levenberg–Marquardtmethod to
solve the optimisation equation, the pose estimate is obtained as

z1
(

k1
)

=

[

R t
0 1

]

+ v1
(

k1
)

, (5)

where z1
(

k1
)

is the optimal estimation of the visual sensor at time
k1, R is the rotation matrix, and t is the translation matrix. v1

(

k1
)

is the estimated noise of the camera and is assumed to follow a
Gaussian distribution.

Let us assume that the laser sensor data obtained at time k
is Si

(

xi, yi
)k
; let Si(δ2) be the laser sensor data corresponding to

the coordinates δ2. δ2 is the coordinate of the robot in the world
coordinate system at the last cycle. M (Si (δ2)) is the occupancy
probability of point Si (δ2) and ∇M (Si (δ2)) is the derivative
of M (Si (δ2)). The values of M (Si (δ2)) and ∇M (Si (δ2)) can
be obtained by performing bilinear interpolation on the world
coordinate Si(δ2). Then, the pose increment of the robot from
the previous moment to the current moment can be given by the
following formula:

δ2 = H−1
n

∑

i=1

[

∇M (Si (δ2))
∂Si (δ2)

∂δ2

]T

(1−M (Si (δ2))) . (6)

According to the pose increment, the coordinates of the robot
under the pose estimation performed by the laser sensor can be
obtained as
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, (7)

where z2
(

k2
)

is the optimal pose estimation of the laser sensor
at time k2 and z2

(

k2 − 1
)

is the optimal pose estimation at
the previous moment, v2

(

k2
)

is the observation noise, which is
assumed to obey the Gaussian distribution; therefore, it satisfies
the following relationship:
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The traditional fusion method involves the fusion of the two
sensors after obtaining the optimal estimate of the two sensors;
however, the rates of the two sensors are usually not the same.
For example, the frequency of the simulated camera used in the
subsequently described experiments was approximately 15Hz,
and the frequency of the simulated radar was approximately 6Hz.
If timestamp alignment is used, a large amount of data obtained
from the faster sensor will not be utilized effectively. Therefore,
this study adopts an asynchronous fusion method to fuse data
from two sensors.

First, the sensor data were divided into m sampling intervals
according to the sampling frequency of the faster sensor. There
are two situations in each sampling interval:

(1) Only the pose estimation of the camera is included

(2) The pose estimation from both the laser and vision sensors
are included.

By combining the Kalman filter and multi-sensor asynchronous
fusion method, the improved pose estimation algorithm based
on asynchronous fusion of laser and vision data is obtained
as follows:
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(9)

where x̂0
(

k|k
)

is the predicted pose obtained from the optimal
estimation of the robot pose at the previous moment, P0

(

k|k
)

is the covariance matrix of the predicted pose, zi
(

ki
)

is the
optimal pose estimation from the laser or vision sensor at
time k.

When there is only camera data in the sampling interval, then
I= 1, and Equation (9) is rewritten as follows:
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(10)

At this time, the estimation model is transformed into a Kalman
filter that performs pose estimation for the data from a single
sensor at a faster sampling rate.

When both the camera data and the pose estimation result
of the laser sensor exist in the sampling interval, Equation (9) is
modified as follows.
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At this time, the estimation model is transformed into the
Kalman filter algorithm that fuses and performs pose estimation
of the data from the laser and vision sensors at a slower
sampling rate. The algorithm uses the optimal estimation
of the previous moment as the prediction quantity. First,
the pose estimated by sensor 1 (camera) at the current
moment is fused; then, the pose results estimated by sensor
2 (laser sensor) are fused; finally, the sensor estimation
value after two fusions is used as the final pose estimation
result. The schematic diagram of sensor fusion is shown in
the Figure 1. The arrow indicates the update order of the
observation value when obtaining the optimal estimation of
the state.

Modeling of Weighted Asynchronous
Multi-Rate Multi-Sensor System
In the previous fusion algorithms, the characteristics of different
sensors were usually not considered. For example, in the process
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FIGURE 1 | Schematic diagram of sensor fusion.

Algorithm 1 | Weighted asynchronous fusion SLAM algorithm.

Input

1. Determine the situation in the sampling space

2. If there is only camera data in the sampling interval, i=1, then

the estimation model is transformed into a Kalman filter for pose

estimation from a single sensor data at the camera sampling

rate [Eq.(10)], otherwise the sampling interval has pose estimates

from both the laser sensor and the vision sensor, then

3. (1) Take the frequency of the laser sensor as the sampling rate

and as the pre-measure

(2) Fusion of the pose estimated by the camera at the current

moment

(3) Refuse the pose result estimated by the laser sensor, and

finally use the sensor estimation value after two fusions as the final

pose estimation result [Eq.(11) – (12)]

4. According to the operating state of the robot, an angle-based

weighting factor is introduced [Eq. (13)]. If the robot moves

in a straight line, then increase confidence in vision [Eq. (16)].

Otherwise when the robot appears to rotate, then increase

confidence in lasers [Eq. (17)]

5. Let k=k+1, return 1

Output

of pose estimation using only laser data, when the robot enters
a scene with inconspicuous structural features such as a corridor,
the sensor data obtained by the robot during themovement along
the corridor may not change with time and the movement of the
robot. At this time, the accuracy of the pose estimation obtained
by the laser sensor is significantly reduced. If the pose is still
fused under normal conditions, it will lead to a large estimation
error. Similarly, when the vision is rotated, if the feature points
are not sufficiently obvious or the number of feature points is
insufficient, then the pose estimation from the vision is prone
to drift.

To effectively utilize the different characteristics of each
sensor, the concept of confidence is introduced according to this
characteristic of the sensor. When a robot walks in the corridor,
the influence of the deviation of the laser sensor data is reduced
as much as possible, and the pose drift problem caused by the
camera drift when the robot is turned is reduced to the maximum
extent possible.

FIGURE 2 | Gazebo simulation environment.

By using the confidence w to represent the confidence in
the pose estimates of the two sensors, Equation (9) can be
transformed as follows:
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, (13)

where wi represents the pose estimation confidence of the i-
th sensor.

The characteristics of the sensor are usually related to the
motion of the robot. When the robot walks in a straight line,
the laser sensor often experiences positioning problems, and the
camera often drifts when turning. Therefore,wi should be related
to the motion state of the robot. When the robot moves in a
straight line, the algorithm increases the confidence of the data
from the camera, and when the robot rotates, the algorithm
increases the confidence of the data from the laser.

In each fusion, the algorithm determines whether the robot
rotates during the current motion according to the latest pose
estimation of the laser sensor. This is obtained using Equation
(6) and is denoted as α2.
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FIGURE 3 | Mapping results of (A) pure laser algorithm, (B) visual pose estimation algorithm, (C) synchronous Kalman filter algorithm, and (D) asynchronous Kalman

filtering and weighting algorithm.

By substituting the angle change into w, we obtain:

{

w1 = α2

w2 = 1− α2
(14)

where α2 is the estimated rotation angle of the robot from
the previous moment to the current moment. According to
the current operation effect of the robot, the rotation angle of
the robot does not exceed 0.25 rad in each sampling period.
Therefore, Equation (14) can be transformed as follows.

{

w1 = 4α4

w2 = 1− 4α4
(15)

By substituting (15) into (13), we obtain:
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, (16)
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(17)
When compared to the synchronous fusion method, this method
first improves the data utilization rate of the visual sensor,
and then utilizes the varied characteristics of different sensors;
consequently, the algorithm has a better utilization rate for
different sensors under different conditions, and results in
more accurate system tracking effect. The algorithm flow is as
Algorithm 1.

EXPERIMENTAL RESULTS

Gazebo Simulation Environment
Experiment
To verify the effectiveness of the algorithm, experiments were
conducted in a gazebo simulation environment and a real
environment. In this section four kind of SLAM algorithms are
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FIGURE 4 | Comparison between the pose curve of the real robot and the pose curves estimated by the following algorithms: (A) Hector laser simultaneous

localization and mapping (SLAM) algorithm; (B) ORB_SLAM algorithm; (C) Kalman filter algorithm; (D) asynchronous weighted Kalman filter algorithm.

applied to a robot model equipped with vision and laser sensors.
The results are compared to find the best accuracy method.

Figure 2 shows a randomly built gazebo simulation
environment, where the simulation environment is a 16m
× 16m loop-shaped space. Most of the environment in this
space is a normal mapping environment; however, a long

corridor at the bottom is a degraded environment. In this
corridor, the laser obtains less feature information. The blue
point in Figure 2 represents the robot model, in which a
simulated LiDAR and a binocular camera are installed. The
LiDAR calls the libgazebo_ros_laser.so plugin with a maximum
scanning distance of 6m and maximum scanning angle of
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4 rad (∼230◦). The simulated noise is a Gaussian noise with
a mean of 0 and variance of 0.01. The camera model calls the
libgazebo_ros_multicamera.so plugin with a horizontal field of
view of 1.39 rad, square image size with dimensions of 800× 800;
moreover, the simulated noise is a Gaussian noise with mean of
0 and variance of 0.007.

A traditional pure laser algorithm, visual pose estimation
algorithm, synchronous Kalman filter algorithm, and
asynchronous Kalman filtering and weighting algorithm, which
is the proposed algorithm, were used for 2D SLAM mapping in
the simulation map. The mapping results of the aforementioned
algorithms are shown in Figures 3A–D, respectively.

FIGURE 5 | Error curves between the pose of the real robot pose and the pose estimated by the following algorithms: (A) Hector laser SLAM algorithm; (B)

ORB_SLAM algorithm; (C) Kalman filter algorithm; (D) asynchronous weighted Kalman filter algorithm.
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It can be seen from Figure 3A that there is a large error in
the simple laser algorithmmapping, which is primarily caused by
the degraded environment in the lower part of the map. In this
environment, because the data returned by the robot from the
laser sensor do not change with time during the movement, the
robot has a large error in its own pose estimation, which leads to
the mapping error of the entire map.

When compared to the mapping result of the laser sensor, it
can be observed from Figure 3B that the visual pose estimation
is more stable and the map reflects the real scene. However,
although the visual pose estimation has a certain accuracy in the
degraded environment, owing to the mismatching problem that
occurs during the process of rotation in the visual algorithm,
the map boundary is more blurred, resulting in the problem of
multiple boundaries.

From Figure 3C, it can be observed that the result of the
Kalman filtering algorithm is better than the mapping results
shown in Figures 3A,B. When compared to the mapping results
obtained by the pure laser algorithm, the pose estimation of
this algorithm in the degraded environment is more accurate;
some optimisations have been incorporated; consequently, the
image boundaries of this method are relatively more stable.
However, thismethod still exhibits certain limitations. First, there
is still a certain error in the degraded environment. Although
the boundary has been improved, there is a problem with
multiple boundaries.

As shown from Figure 3D, the asynchronous Kalman filtering
and weighting algorithm has best tracking accuracy than other
algorithms. Moreover, it has better robustness in the case of
degraded environment or robot rotation.

Further, this study also compared the pose estimation
performance of the above four algorithms in a specific
environment. The results are shown in Figure 4. Figures 4A,B
show the running trajectory of the pure laser and pure vision
algorithms and the corresponding real motion trajectories of the
robot, respectively. Figure 4C shows a comparison of the fusion
pose estimation obtained by the Kalman filter algorithm using

TABLE 1 | Laser SLAM, Vision SLAM, Kalman filtering algorithm, and Weighted

Kalman filtering algorithm.

Laser SLAM Vision SLAM Kalman Weighted Kalman

filtering filtering

algorithm algorithm

Maximum error 1.485675 0.911249 0.679231 0.414312

Mean error 1.032539 0.472870 0.447091 0.264413

Median error 1.428655 0.532956 0.507386 0.274588

the visual and laser pose estimations with the motion trajectory
of the real robot. Figure 4D shows a comparison between the
fusion pose estimation obtained by the weighted asynchronous
fusion Kalman filter algorithm and the motion trajectory of the
real robot using the visual and laser pose estimations.

From Figure 4A, it can be observed that, before the robot
moves to the degraded environment, the running trajectory of the
pure laser algorithm in this environment coincides significantly
with the actual trajectory, which reflects the movement trajectory
of the robot. When the robot enters the degraded environment,
the algorithm demonstrates obvious errors in its own posture
judgement, indicating that the robot has a significant problem
in the positioning of the area; after the robot leaves the area,
the error is maintained within a certain range until the end of
the movement.

In Figure 4B, it can be noted that the error in pose estimation
is more obvious than that in the laser algorithm. The robot
exhibits certain deviations in the movement process, especially
when the robot rotates, and the error changes more obviously.
Before the loop closure, the error gradually increases with the
increase in the moving distance of the robot.

In Figure 4C, it can be observed that the visual error has
been improved using laser pose estimation; however, it can be
observed from the figure that its running error in the degraded
environment is still obvious, and the wrong pose estimation of
the laser sensor affects the entire algorithmic pose estimation.
Modifying the noise term reduces this error but increases its error
in other scenarios.

FIGURE 6 | Robot in real scene.

TABLE 2 | Algorithm operation time and iteration times.

Step size 0.01 0.008

Time consumption (ms) Iteration times a Iteration times b Time consumption (ms) Iteration times a Iteration times b

Kalman filtering 13.4 5.2 3.8 17.9 5.5 6.8

Asynchronous Kalman filtering 11.3 4.6 3.8 12.8 5.3 4.4
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When compared to the other estimation curves, it can be
observed from Figure 4D that the pose estimation curve of this
algorithm has a higher degree of fit with the actual motion curve
of the robot, and the robot exhibits a higher positioning accuracy.

To compare the error between the curves estimated by the
algorithms and the real trajectory in Figures 4A–D, we used
the evo_ape function in the evo tool to calculate the deviation
between the two curves and plotted graphs, as shown in Figure 5.

From the error curves, we can observe the pose estimation
effects of the four algorithms. Among them, the error of the
pure laser SLAM algorithm increases sharply in the degraded
environment, and the error of the pure visual SLAM algorithm
gradually accumulates during the movement process. The pose
estimation results based on Kalman filtering are optimized;
however, the error is still large. When compared to the ordinary

FIGURE 7 | Real motion scene.

Kalman filter algorithm, the pose estimation result of the
weighted Kalman filter algorithm is more effective for the pose
estimation results of these two sensors, and the overall error is
the smallest.

The statistical results of the pose estimation errors of the four
algorithms are listed in Table 1.

In summary, in terms of the accuracy of the above four
algorithms, the weighted asynchronous fusion algorithm has
a good positioning effect in both normal and degraded
environments, and the overall accuracy of the algorithm is the
best among the four algorithms.

In the visual and laser pose estimations, the algorithms use
nonlinear optimisation to obtain the optimal pose estimation.
The number of iterations and results of the nonlinear
optimisation are closely related to the initial value. A good initial
value can accelerate the convergence speed and prevent it from
falling into a local minimum. In the traditional laser SLAM
algorithm, because only one laser sensor is used to estimate the
pose, more pose information cannot be provided. Therefore, in
the laser SLAMalgorithm, each pose update is usually the optimal
pose estimation of the previous moment, which the algorithm
considers as the initial value of the pose of the robot at the current
moment. The robot is in a continuous motion process; therefore,
the initial value is usually far from the real value, and it requires
several iterations to reach the real value.

In the proposed algorithm, the pose estimation characteristics
of asynchronous sensors are completely considered. When the
frequency of the sensor is different, the latest pose of the sensor
with a higher frequency is used as the pose estimation prior of
the sensor with a lower frequency. Therefore, the algorithm has a
more accurate prior and the operation speed of the algorithm is
improved by reducing the number of iterations of the algorithm.

To compare the computing speed of the two algorithms, the
time required for each operation over a period of time and the
number of iterations of the algorithm were extracted, as listed in
Table 2.

The search step listed in Table 2 was obtained by an iterative
calculation in the nonlinear optimisation process. Because
nonlinear optimisation is a process of continuous iterations and
infinite approximations to the optimal value, the algorithm sets

FIGURE 8 | Mapping results of (A) pure visual algorithm; (B) pure laser algorithm; (C) Kalman filter algorithm; (D) weighted asynchronous fusion algorithm.
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FIGURE 9 | Robot trajectory results obtained using (A) pure vision algorithm; (B) pure laser algorithm; (C) Kalman filter algorithm; (D) asynchronous weighted fusion

algorithm.

a threshold. When the number of iterations or the step size of
an iteration is less than a certain fixed value, the pose estimation
of the algorithm is considered to be sufficiently accurate,
and the iterative process is stopped at this time. This paper
discusses the time consumption when using the Kalman filtering
and asynchronous Kalman filtering algorithms under different

thresholds. When the threshold is 0.01, the average Kalman filter
algorithm takes 13.4ms on average, whereas the asynchronous
Kalman filter algorithm requires only 11.3ms on average in
the case of a better prior. When the threshold is reduced to
0.008, the period in the ordinary Kalman filtering algorithm
increases to 17.9ms, whereas the period in asynchronous Kalman
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filtering algorithm increases to 12.8ms. It can be observed that
the operation speed of the algorithm has a definite improvement
in the case of better prior.

The number of iterations in Table 2 represents the average
number of iterations required till the algorithm step size reaches
the threshold. In the laser SLAM algorithm, because the multi-
resolution map is used for pose estimation, the algorithm
first performs a nonlinear optimisation at low resolution
(corresponding to the number of iterations “a” in Table 2), and
then improves the resolution when the step length reaches the
threshold (corresponding to the number of iterations “b” in
Table 2). The algorithm stops iterating when the optimisation
step reaches the threshold under the high-resolution map. From
the results listed in Table 2, it can be observed that the iterative
period of the asynchronous Kalman filtering algorithm is less
than that of the ordinary Kalman filtering algorithm under both
step-size thresholds. This shows that sufficiently accurate priori
conditions can reduce the number of iterations of the algorithm,
thereby improving the speed of the algorithm.

Comparative Experiment in a Real
Environment
In addition to the experiment in the simulation environment,
comparative experiments between the two algorithms were
performed in a real environment.

Figure 6 shows themapping robot. The controller of the robot
is Jetson TX2, on which the Ubuntu 16.04 system and kinetic
version of the Robot Operating System are installed. The laser
scanning range finder installed above the robot is URG-04LX-
UG01 2D laser scanning range finder produced manufactured
by HOKUYO AUTOMATIC CO., LTD. The measuring distance
is 5.6m, measuring angle is 240◦, and updating frequency is
10Hz. The Kinect v1 RGB-D camera was installed above the laser
sensor. The color resolution of the camera is 640× 480 pixels; the
resolution of the depth map is 320 × 240; moreover, the update
frequency is 30Hz. The horizontal and vertical fields of view are
57 and 43◦, respectively. The chassis of the robot is fitted with
a pair of differential drive wheels. The socketCAN node of the
Robot Operating System is used to communicate with the motor
driver, and the robot motion is controlled by a keyboard control
node.

The scenes shown in Figure 7 are images of the real scene
used for mapping, and the structure is a trapezoidal-shaped
common first floor of an office building. A part of the middle
area is a degraded scene where the robot moves and maps the
area. The maps obtained using the four algorithms are shown
in Figures 8A–D, respectively. The robot trajectory is shown in
Figures 9A–D.

Figures 8A,B show the mapping results obtained using the
visual and laser SLAM algorithms, respectively. Similar to the
results in the simulation, the errors in pose results using vision
data primarily occur in angular deviations, whereas the errors
in pose results using the laser data predominantly occur during
the pose estimation in the degraded environments. Figure 8C
shows the mapping result obtained using the Kalman filter
algorithm, which is obtained by combining the laser and visual

pose estimations. This algorithm can reduce the influence of the
degraded environment to a certain extent; however, there is still a
large error. Figure 8D shows the trajectory results obtained using
the weighted asynchronous Kalman filtering algorithm. When
compared to the previous results, the result of this algorithm
is the best among the four mapping results, which shows that
the mapping accuracy of the weighted asynchronous Kalman
filtering algorithm is better than the previous three algorithms.

Figure 9 shows the trajectory of the robot based on the
pose estimations by the four algorithms. From the trajectory
estimation results of the four algorithms, it can be observed
that the pure laser algorithm has the largest estimation error in
the degraded environment among the four algorithms, and the
visual algorithm is prone to angular deviation. The starting and
ending points in the trajectory estimation using the weighted
asynchronous Kalman filter algorithm are basically the same,
which shows that the positioning accuracy of the proposed
algorithm is better than the previous ones.

CONCLUSION

When compared to the traditional laser algorithm, the proposed
weighted asynchronous multi-rate fusion algorithm can
overcome the problem of inaccurate positioning in a degraded
environment. The asynchronous fusion simultaneously achieves
a higher tracking accuracy, fewer algorithm iterations, and
shorter algorithm cycle times than ordinary fusion algorithms.
The weighting algorithm can more effectively utilize the
characteristics of different sensors and improve the positioning
accuracy of the system in different scenarios. The current fusion
mainly considers for pose estimation in the front-end, and we
will consider adding it to loop detection to improve the accuracy
of the algorithm in the future.
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