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Introduction

Lung cancer is the most common cancer and leading cause 
of cancer-related death worldwide (1,2). Non-small cell 
lung cancer (NSCLC) represents approximately 85% of 

all lung cancer cases, and can be further classified into 

lung adenocarcinoma (LUAD), squamous cell carcinoma, 

and large cell carcinoma (3). Of these, LUAD is the 

most frequently occurring NSCLC subtype, and its 
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development is linked to smoking, alcohol consumption, 
and metabolic imbalances (4,5). Despite advancements in 
LUAD treatments, which include surgery, chemotherapy, 
radiotherapy, targeted therapy, and immunotherapy, patient 
survival rates remain disappointingly low (6). Recent 
research has highlighted the insufficiency of traditional 
histological categorizations of LUAD, due to the inherent 
heterogeneity and complex nature of the disease (7). This 
has led to an increased focus on molecular subtype research 
to refine treatment approaches. Understanding how genetic 
alterations disrupt the tumor microenvironment (TME) 
and affect LUAD prognosis is crucial for identifying novel 
therapeutic targets (8,9).

Disulfidptosis is a novel form of cell death distinct 
from other known types such as apoptosis and ferroptosis 
(10,11). It occurs under certain conditions, such as glucose 
starvation in cells with high expression of the SLC7A11 
gene (12,13). The other genes were FLNA, FLNB, MYH9, 
TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN, IQGAP1, 
ACTN4, PDLIM1, CD2AP, and INF2, which are closely 
related to disulfidptosis. This process is characterized by 
the accumulation of intracellular disulfides, leading to 
aberrant disulfide bonds in cytoskeleton proteins, which in 
turn affect the actin cytoskeleton, causing cell death. That 

is caused by disulfide stress caused by the accumulation 
of excess cystine in cells. The study of genes related to 
disulfide death is of great significance for understanding 
the mechanism of cell death and exploring potential cancer 
therapies. Current research on the role of disulfidptosis in 
cancer is burgeoning, yet there are no reports on its effect 
on the immune microenvironment (13). Our study aimed to 
analyze the immunoregulatory role of disulfidptosis-related 
genes in LUAD to unveil and underscore their significance 
in the process of immune regulation.

In this study, we examined 15 disulfidptosis-related genes 
previously reported (14) and conducted a clustering analysis 
of the sequencing results of the LUAD cohort from The 
Cancer Genome Atlas (TCGA). Subsequently, we analyzed 
the immune infiltration scores of the clusters regulated by 
disulfidptosis. By integrating the results of bulk and single-
cell RNA sequencing from immune therapy cohorts, our 
research findings shed light on the immunoregulatory 
role of disulfidptosis in cancers, exemplified by LUAD. 
We present this article in accordance with the STREGA 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-1182/rc).

Methods

Preprocessing the RNA expression data

The RNA expression datasets for TCGA-LUAD were 
meticulously compiled using the UCSC Xena platform 
(https://xenabrowser.net/datapages/). A total of 511 cases 
were included in the study. Additionally, comprehensive 
somatic mutation data corresponding to these cases were 
acquired from the Genomic Data Commons (GDC) portal of 
the National Cancer Institute (NCI), which can be accessed 
at the NCI GDC Repository (https://portal.gdc.cancer.
gov/). Single-cell sequencing data from patients treated with 
programmed cell death protein 1 (PD1) therapy were curated 
from a breast cancer study (15). Such datasets are invaluable 
in advancing understandings of the molecular intricacies in 
LUAD. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Principal component analysis (PCA) and consensus 
molecular clustering by non-negative matrix factorization 
(NMF)

A PCA, a critical technique in data dimensionality 
reduction, was conducted using highly variable genes. 
NMF, a method extensively employed for clustering in 
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high-dimensional datasets, especially in the realm of 
computational biology, was then applied. Focusing on 
TCGA-LUAD cohort, we identified distinct disulfidptosis-
related molecular clusters using a consensus clustering 
approach via the “NMF” function.

Data analysis for Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) screens

The CRISPR screen data were curated from lung cancer 
mouse in vitro and in vivo models (16). To process and 
analyze the CRISPR screen data, we employed MaGeCK 
software. Specifically, Fastq reads from the CRISPR screen 
underwent processing via the MaGeCK count module. 
Subsequently, using the default parameters, the robust 
rank aggregation (RRA) module was used to calculate the 
log2fold changes and P values associated with the genes. 
Additionally, custom scripts in R (version 4.1.3) were 
developed and used to visualize the data.

Immune analysis

We applied gene signatures of immune cells, as identified 
by Charoentong et al. (17), to compute the scores related to 
immune infiltration. This computation was performed using 
the single-sample gene set enrichment analysis (ssGSEA) 
technique.

Statistical analyses

All the statistical analyses were conducted using R software 
(version 4.1.2) and GraphPad Prism (version 9.50). The 
Wilcoxon test, log-rank test, and Kruskal-Wallis H test 
were employed to evaluate the data. For comprehensive 
details regarding the statistical tests used, please refer to the 
specific annotations provided in the figure legends.

Results

Genetic variation of disulfidptosis-related genes in LUAD

To study the regulatory role of disulfidptosis in lung cancer, 
we referenced a gene signature of disulfidptosis reported in 
previous article (18). Using TCGA-LUAD RNA expression 
cohort, we conducted a PCA of cancer and adjacent non-
tumor tissues (Figure 1A). The results demonstrated that the 
genes related to disulfidptosis could be used to distinguish 

between the tumor and adjacent non-tumor tissues in 
LUAD. Figure 1B shows the frequency of gene mutations 
in this category; FLNA had the highest mutation frequency. 
The results of the copy number variation (CNV) analysis 
are presented in Figure 1C. Combining the expression levels 
of these genes in the tumor and adjacent non-tumor tissues 
in LUAD (Figure 1D), the copy number amplification 
of ACTB and CD2AP were consistent with their high 
expression levels in tumors, while the decreased copy 
number amplifications of MYH10, DSTN, and INF2 were 
consistent with their low expression levels in tumors. This 
suggests that these genes play a significant regulatory role 
in LUAD; thus, the regulatory mechanisms of disulfidptosis 
in the development of cancer urgently need to be explored.

Disulfidptosis-related clusters in LUAD

To better explore the regulatory role of the disulfidptosis in 
LUAD, we adopted the classical categorization algorithm 
(i.e., NMF) (19,20) to subgroup the disulfidptosis-related 
gene clusters based on gene expression levels in LUAD. The 
NMF rank algorithm (Figure 2A) suggested that dividing 
the LUAD into three groups was appropriate. Figure 2B 
shows the heatmap of the consensus matrix. Therefore, 
we concluded that under the regulation of disulfidptosis, 
LUAD can be divided into three significant groups; that 
is, clusters 1–3. A subsequent survival analysis (Figure 2C) 
showed that cluster 1 had the worst prognosis, while cluster 
3 had the best prognosis. The pathway ssGSEA (21,22) 
revealed that the cell cycle activity in cluster 1 was more 
robust, which to some extent confirmed the reason for 
the poorer prognosis of cluster 1 (Figure 2D). Conversely, 
cluster 3 expressed higher levels of immune activation 
pathways, which suggests that patients in this LUAD 
subgroup might be more suitable for immunotherapy. To 
further corroborate this hypothesis, we used a common set 
of immune-related genes for a GSEA. The results showed 
that the activated cluster of differentiation 8 (CD8) T cell 
GSEA score (i.e., the CD8 activation-related score) was 
highly expressed in both clusters 1 and 3 (Figure 2E). This 
increase in cluster 3 confirmed that it was an immune-
activated LUAD subgroup. However, the activation of CD8 
T cells in the cluster1 subgroup, which had the poorest 
prognosis, might indicate the presence of factors leading 
to exhausted CD8 T cells, rendering it unresponsive to 
immunotherapy.
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Analyses of TME infiltration of disulfidptosis-related 
clusters

Given that clusters 1–3 demonstrated potential mechanisms 
of immune infiltration linked to prognosis, we proceeded 
to investigate the expression levels of disulfidptosis-related 
genes in these clusters. Notably, we found that SLC7A11 
was significantly overexpressed in cluster 1 (Figure 3A). 
SLC7A11, a gene known for its strong association with 
disulfidptosis, has also been reported to be highly expressed 
in cancer (23). This finding aligned with our analysis, 
which suggested a poorer prognosis for cancer patients in 
cluster 1. High SLC7A11 expression was correlated with 
an immunosuppressed state in patients; however, it did not 
necessarily reflect the inherent immune-regulatory functions 
of the gene. To explore this further, we analyzed CRISPR 
screen single-guide RNA sequencing data (24) from co-

cultures of OT1 mouse T cells and tumor cells (Figure 3B). 
Our analysis identified SLC7A11 as a significant contributor 
to immune evasion. Additionally, we used PD1 bulk tissue 
sequencing results for our analysis. The initial findings 
showed that patients with high SLC7A11 expression had a 
poorer prognosis than those with low SLC7A11 expression 
(Figure 3C). Further, we observed that patients with higher 
SLC7A11 expression demonstrated a greater tolerance to 
immunotherapy than those with lower SLC7A11 expression 
(Figure 3C). This indicates that SLC7A11, which is a critical 
gene regulating disulfidptosis, plays a key role in immune 
evasion.

Immune function analysis of disulfidptosis-related clusters

The bulk tissue sequencing levels indicated high SLC7A11 
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Figure 3 Analyses of TME infiltration of disulfidptosis-related clusters. (A) Boxplot depicting the expression patterns of 15 disulfidptosis-
related genes across three clusters. (B) CRISPR screen data analysis indicating that SLC7A11 is a key gene in immune evasion. (C) Kaplan-
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expression in the immunotherapy non-responsive group; 
however, we could not exclude the influence of the 
expression levels of immune microenvironment cells. Thus, 
we subsequently introduced single-cell sequencing data 
from PD1-treated patients (15). The data we referenced 
used T cell receptor (TCR) clonal expansion as an indicator 
of patient response to PD1 treatment. Thus, clonal 
expansion (“E”) indicated a response to immunotherapy, 
and no expansion (“NE”) indicated a tolerance to 
immunotherapy. The analysis revealed that SLC7A11 
was highly expressed in the tumor cells in the NE group  
(Figure 4A). Additionally, we used the average expression 
level of epithelial cells to represent the SLC7A11 expression 
in each sample, and the results were consistent with the 
single-cell analysis; that is, the average expression of 
SLC7A11 in the tumor cells of the NE group was higher 
than that of the E group (Figure 4B). Following this, we 
categorized patients into high- and low-expression groups 

based on the median of the average expression level of 
SLC7A11 in tumor cells. We found that patients with low 
SLC7A11 expression had a lower proportion of CD8+ T cell 
infiltration. In summary, SLC7A11 plays a role in immune 
evasion (Figure 4C).

Discussion

In this study, we explored the transcriptomic landscapes 
shaped by disulfidptosis-related genes. We found that 
the LUAD cohort from TCGA could be stratified into 
three distinct clusters, each characterized by unique 
clinicopathological features. Notably, cluster 1 was 
characterized by the poorest survival outcomes and a 
high degree of immune cell infiltration. While cluster 3 
was characterized by robust immune cell infiltration, a 
favorable prognosis, and the notable presence of immune-
activating cells like activated CD8 T cells. This study 
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effectively mapped the intratumoral transcriptomic 
diversity as influenced by disulfidptosis, shedding light on 
the tumor TME infiltration patterns. Disulfidptosis-driven 
molecular subtyping can offer fresh perspectives in LUAD 
pathogenesis.

By exploring the expression of disulfidptosis-related 
genes in our three distinct clusters, we observed that 
SLC7A11 was highly expressed in cluster 1. This study 
showed that the role of SLC7A11 in cancer is integral to 
the process of disulfidptosis, which is a unique form of 
cell death. When expressed at high levels, particularly in 
the context of glucose starvation, SLC7A11 leads to an 
excessive accumulation of intracellular disulfides (13). This 
accumulation causes aberrant disulfide bonding in actin 
cytoskeleton proteins, leading to cell death. A previous 
well-known study showed that disulfidptosis occurs in 
the SLC7A11-high condition of cancer (25). Further, it 
suggested that targeting disulfide stress, particularly in 
SLC7A11-high tumors, could be a promising therapeutic 
strategy in cancer treatment. In our research, we confirmed 
that SLC7A11 was highly expressed in LUAD patients 

with a poor prognosis, reinforcing its significant role in 
promoting the progression of LUAD. However, our study 
differed notably from previous research in that it focused 
more on the role of high SLC7A11 expression in regulating 
the immune microenvironment in LUAD tumors. We 
discovered that SLC7A11 is a gene associated with immune 
evasion and shows resistance to immunotherapy. Therefore, 
we believe that targeting and inhibiting SLC7A11 in LUAD 
patients could enhance the response to immunotherapy.

However, our study mainly focused on the bioinformatic 
analyses, which falls short of robust confirmation. 
Therefore, a more in-depth experimental validation of our 
findings is required.

Conclusions

In conclusion, the study provided new insights into 
the role of disulfidptosis in LUAD, particularly the 
immunoregulatory effects of SLC7A11. Our findings could 
lead to the development of novel therapeutic strategies 
targeting SLC7A11 to enhance immunotherapy responses 
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