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ABSTRACT
Vegetation restoration is an essential approach to re-establish the ecological balance
in subalpine areas. Changes in vegetation cover represent, to some extent, vegetation
growth trends and are the consequence of a complex of different natural factors
and human activities. Microtopography influences vegetation growth by affecting the
amount of heat and moisture reaching the ground, a role that is more pronounced
in subalpine areas. However, little research is concerned with the characteristics and
dynamics of vegetation restoration in different microtopography types. The respective
importance of the factors driving vegetation changes in subalpine areas is also not clear
yet.Weused linear regression and theHurst exponent to analyze the trends in vegetation
restoration and sustainability in different microtopography types since 2000, based on
Fractional VegetationCover (FVC) and identified potential driving factors of vegetation
change and their importance by using Geographical Detector. The results show that: (1)
The FVC in the region under study has shown an up-trend since 2000, and the rate of
increase is 0.26/year (P = 0.028). It would be going from improvement to degradation,
continuous decrease or continuous significant decrease in 47.48% of the region, in the
future. (2) The mean FVC is in the following order: lower slope (cool), lower slope,
lower slope (warm), valley, upper slope (warm), upper slope, valley (narrow), upper
slope (cool), cliff, mountain/divide, peak/ridge (warm), peak/ridge, peak/ridge (cool).
The lower slope is the microtopographic type with the best vegetation cover, and ridge
peak is the most difficult to be afforested. (3) The main factors affecting vegetation
restoration in subalpine areas are aspect, microtopographic type, and soil taxonomy
great groups. The interaction between multiple factors has a much stronger effect on
vegetation cover than single factors, with the effect of temperatures and aspects having
the most significant impact on the vegetation cover changes. Natural factors have a
greater impact on vegetation restoration than human factors in the study area. The
results of this research can contribute a better understanding of the influence of different
drivers on the change of vegetation cover, and provide appropriate references and
recommendations for vegetation restoration and sustainable development in typical
logging areas in subalpine areas.
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INTRODUCTION
Vegetation is considered a critical factor in global terrestrial ecosystem changes (Ge et al.,
2021; Kelly, Tuxen & Stralberg, 2011). It is an essential contributor to regulating the carbon
cycles balance, reducing greenhouse gases, and mitigating climate change (Emamian
et al., 2021; Hu et al., 2010), and reflects the fundamental characteristics of geological,
geomorphological, climatic, hydrological, and soil (Newbold et al., 2015; Xu, Wang & Yang,
2017). Nowadays, environmental degradation has become a globally recognized topic of
attention. China was identified to be amongst the countries with the worst ecological
degradation, suffered vegetation degradation, soil erosion, and desertification (Yu et al.,
2021). The ecological restoration was a crucial factor for re-establishing ecological balance
and reversing environmental deterioration (Ma, Lv & Li, 2013), in which vegetation played
a vital part (Zhou et al., 2021). It is critical to understand the vegetation cover dynamics
and the drivers for policymaking by the administration.

The Tibetan Plateau (TP) is extremely vulnerable in terms of forest management and
deforestation due to extreme climatic conditions and ecosystem fragility (Zhang et al.,
2012). Over the past decades, extensive zones of deforestation have been left on the Eastern
Tibetan Plateau (ETP), due to logging-related destruction (Xiong et al., 2021). Since 2000,
China has implemented a series of ecological projects, such as the Natural Forest Protection
Project (NFPP) (Mullan et al., 2010), and the Return of Cropland to Forests and Grasses
Project (RCFGP) (Xie et al., 2006). However, ecosystems in this region are sensitive to
climate change (Xiaodan, Genwei & Xianghao, 2011), and natural recovery of vegetation
is a difficult and slow process. Therefore, there is a requirement to monitor vegetation
dynamics and the efficacy of vegetation restoration to facilitate timely intervention and
management by researchers and policymakers.

The Normalised Difference Vegetation Index (NDVI) is sensitive to the spectral
information of vegetation and has been widely used in vegetation monitoring (Tang,
He & Li, 2020). But it also has limitations, with sparsely vegetated areas having high
canopy background signal noise and high vegetation areas having low saturation (Anees et
al., 2022). The FVC calculated by NDVI reduces the effect of these limitations, effectively
reducing the uncertainty caused by the spectral characteristics of unvegetated areas (He, Shi
& Fu, 2021). It represents vegetation growth trends to some extent (Gao et al., 2017b;Wen
et al., 2013), is widely used in studies related to climate change and vegetation restoration
(He, Shi & Fu, 2021; Yan et al., 2011; Zhou, Shangguan & Zhao, 2006).

Vegetation change is influenced by a combination of natural factors and human
activities (Liu et al., 2021; Liu et al., 2018), and it has complex drivers (Chen et al., 2020b;
Zhu, Baskonus & Gao, 2020). The combination of various drivers determines vegetation
patterns and regional trends (Boschetti et al., 2013;Chen et al., 2016). Considerable research
has revealed that climate, topography, and soils were the major factors influencing
vegetation change (Chen et al., 2020b; Peng, Kuang & Tao, 2019). Liu et al. (2021) in the
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northeastern TP showed that mean annual temperature, soil type, and elevation were the
dominant factors driving vegetation change. In addition, human activities were another
important factor affecting vegetation growth (Meng et al., 2019). Its impact on the ETP has
gradually increased in the last decade (Chen, Yan & Lu, 2020a). However, fewer studies
have analyzed the influence of topography on vegetation restoration in subalpine areas,
especially the association between vegetation cover and microtopography types. The
respective importance of these various drivers for vegetation change in the ETP subalpine
region is not yet clear.

The influence of different drivers on the role of vegetation change and the spatial
heterogeneity of factors has been neglected in prior research (Liu et al., 2021). Geographic
Detector (Geodetector) can fill these gaps, and this spatial statistical approach allows for an
integrated analysis of the different factors influencing FVC variation (Wang et al., 2010).
It considers the spatial heterogeneity of factors and can quickly determine the importance
of each factor, thereby determining the explanatory power of individual factors and the
synergistic effects of multiple factors (Song et al., 2020). In this study, Geodetector was used
to identify the main drivers of vegetation restoration, which can improve the efficiency of
the ecological projects and provide valuable references for ecological management.

Therefore, to explore the factors affecting vegetation change in subalpine areas, we
chose the Muru Basin, a typical subalpine deforestation and restoration area located on
ETP, as our study area. Firstly, we used Google Earth Engine cloud platform to calculate
and derive the FVC for 2000–2020; then we calculated the slope of FVC change and the
Hurst exponent to analyze the spatial and temporal variation characteristics of FVC and
change patterns on different microtopographic types; finally, we used the Geodetector
to measure the contribution of natural and human factors to FVC change. In general,
the aims of this research were (1) to analyze the spatial and temporal changes in FVC
for 2000-2020 and their future development; (2) to identify differences in FVC responses
between microtopographic types; (3) to identify the main factors affecting vegetation
variation and evaluate the specific effects of each factor on vegetation restoration. The
innovations of this study are mainly (1) to make up for the relatively few previous studies
on microtopography types on vegetation cover changes; (2) to identify the main drivers
of vegetation restoration and provide theoretical references for vegetation restoration in
subalpine logging areas.

MATERIALS & METHODS
Study area
Our study area is sited in the Muru Basin (30.6342◦∼30.8132◦N, 101.1160◦∼101.2772◦E),
Daofu County, Garze Tibetan Autonomous Prefecture, Sichuan Province, on the ETP
(Fig. 1). It has an area of approximately 268.40 km2, the elevation range is 2,860∼4,932
m. This area experienced a long period of logging until the implementation of the NFPP
and RCFGP around 2000, and the vegetation in this area was gradually restored. The
species types in this area were essentially the same before and after the restoration, as
native species were used for all vegetation restoration. The field survey found that the
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Figure 1 Location of Muru Basin in Eastern Tibet Plateau. The map is reproduced from Tianditu (http:
//www.tianditu.gov.cn).

Full-size DOI: 10.7717/peerj.13358/fig-1

study area is dominated by subalpine evergreen coniferous forests, with the main species
being Picea likiangensis and Abies squamata, mixed with Betula albosinensis and Populus
davidiana at lower altitudes regions, with a clear community stratification, the main species
in the shrub layer are Rhododendron decorum, Lonicera tangutica, Sorbus rehderiana, and
Rosa sweginzowii. Some areas of evergreen coniferous forest have degraded into scrub after
logging, with the main established species being Rhododendron decorum, Rhododendron
lapponicum, Quercus monimotricha, etc. According to the nearest Daofu meteorological
station data (101.11667◦E, 30.98333◦N; 2957.2 m a.s.l, 1982-2018), the average annual
temperature is 8.23 ◦C. Thewarmestmonth is July, with an average temperature of 16.12 ◦C.
The coldest month is January, with an average temperature of −1.51 ◦C. The land cover
types are mainly forests, shrublands, and meadows. The majority of the basin is forest and
shrub, with meadows mainly found at higher elevations along the basin margins. Traces
of human activities such as cultivated land, roads, and residential areas are mainly located
in the valleys. Soil taxonomy great groups (USDA system, https://www.openlandmap.org)
mainly include Cryoboralfs, Cryoborolls, Argicryolls, Haplustalfs, and Cryumbrepts.

Data sources
Landsat satellite images at 30 m spatial resolution were obtained from Google Earth Engine
(GEE, https://developers.google.com/earth-engine/), which provides uninterrupted global
multispectral surface imagery every 16 days. We used Landsat 5 from 2000 to 2011, with
178 images, and Landsat 7 in 2012, with 14 images, and Landsat 8 from 2013 to 2020, with
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145 images. All images were radiometrically calibrated, atmospherically corrected, and
geo-referenced to reduce interference and improve image quality. In addition, cloud masks
were used for all images to eliminate the effect of clouds. We used median calculations to
composite each year’s images into one image without clouds in the GEE. This method is
more resistant to extreme values and can be representative of the period studied (Bunting,
Munson & Bradford, 2019).

Elevation, slope, and aspect were generated from DEM at 30 m spatial resolution
obtained via the Geospatial Data Cloud (http://www.gscloud.cn/). The microtopographic
type uses the 90m resolutionGlobal ALOS landforms dataset (https://www.sciencebase.gov/
catalog/item/564b4bb0e4b0ebfbef0d31d2), which takes full consideration of Continuous
Heat-Insolation Load Index and the multi-scale Topographic Position Index (Theobald
et al., 2015), the study area has been classified into 13 microtopographic types (lower
slope, lower slope (cool), lower slope (warm), upper slope, upper slope (cool), upper slope
(warm), valley, valley (narrow), cliff, mountain/divide, peak/ridge (warm), peak/ridge
(cool), and peak/ridge).

Soil taxonomy great groups, soil pH, and soil water content with a spatial resolution of
250mwere obtained fromOpenLandMap (https://www.openlandmap.org/). Soil taxonomy
great groups use the Soil Texture Class (USDA system) at 0 cm depth, soil pH uses the soil
pH in H2O at 0 cm depth, and soil water content at 0 to 200 cm uses all bands in the Soil
water content dataset at 33 kPa (field capacity).

Climatic datasets were obtained from WorldClim version 2.1 (https://www.worldclim.
org/data/worldclim21.html), released in January 2020, spatial resolution is 30 s. The datasets
included monthly values of the minimum temperature, maximum temperature, average
temperature, precipitation, solar radiation, wind speed, and water vapor pressure. Based
on these dataset, the annual average temperature, annual maximum temperature, annual
minimum temperature, annual precipitation, and annual average water vapor pressure
were calculated.

In addition to natural factors such as climate, topography, and soil, vegetation recovery
is also influenced by human activities (Zhou et al., 2021). Roads and residences are the
concrete embodiment of human activities in the study area, so we used distance to roads
and residences to quantify the intensity of human activity, other studies have also used
these two indicators (Liu et al., 2021). Roads and residences information was obtained
manually in Google Earth Pro, then the distances of roads and distance to residences were
calculated in ArcGIS 10.7 using the euclidean distance tool and finally resampled to a
spatial resolution of 30 m.

To avoid serious multicollinearity, the Variance Inflation Factor (VIF) was calculated in
ArcGIS 10.7 using the Ordinary Least Squares tool. Usually, VIF > 10 implies the possibility
of serious multicollinearity (Marcoulides & Raykov, 2019). The potential driving factors
with VIF > 10 were excluded; the final 12 factors were applied to the next step of the
analysis (Table 1).
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Table 1 Potential Driving Factor and VIF.

Category Variable Source Spatial
resolution

VIF

Aspect 30 m 1.0869
Slope

Geospatial data cloud
(https://www.gscloud.cn/) 1.1513Topography

Microtopographic
type

Theobald et al. 2015
(https://www.sciencebase.gov/
catalog/item/564b4bb0e4b0
ebfbef0d31d2 )

90 m 1.1213

Soil taxonomy
great groups

1.3425

Soil pH 2.7000
Soil water
content at 0 cm

8.0044

Soil water
content at 10 cm

9.4203

Soil water
content at 30 cm

9.1285
Soil

Soil water
content at 200 cm

OpenLandMap
(https://www.openlandmap.
org)

250 m

5.5598

Climate Annual average
temperature

WorldClim version 2.1
(https://www.worldclim.org/data/
worldclim21.html)

30 s 7.0501

Distance to roads 30 m 2.2141Human
activities Distance to residences

Google Earth Pro
30 m 4.6635

Vegetation cover calculation
Plant leaves have different absorption and reflectivity of red and near-infrared light
wavelengths (Xu et al., 2019). The multi-spectral sensor’s spectrum bands contain both
visible and infra-red wavelengths, which combine to produce vegetation indices (Brown et
al., 2006;Wang, Liu & Huete, 2003). NDVI is calculated as the proportion of the difference
between the near-infrared and red bands to the sum (Bianchi, Villalba & Solarte, 2019).
NDVI ranges between −1.0 to +1.0, where a value less than 0 corresponds to without
vegetation and greater than 0 corresponds to vegetation (Brehaut & Danby, 2018). The
FVC is the proportion of area with vegetation cover to the whole area (Hu et al., 2020).
The FVC is usually calculated from NDVI data in an image element dichotomous model
with the following equation (He, Shi & Fu, 2021):

FVC =
NDVI−NDVIn
NDVIv−NDVIn

(1)

where NDVI is the NDVI value of the image pixel, NDVIv and NDVIn represent the NDVI
values of the vegetation and bare ground image pixel, respectively. In the actual calculation,
the NDVI values of 5% and 95% of the cumulative frequency of the histogram are taken
as NDVIn and NDVIv . To avoid the FVC results being outside the range of 0 to 1, the FVC
was set to 0 for pixels with NDVI less than or equal to NDVIn and 1 for pixels with NDVI
greater than or equal to NDVIv .
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FVC change trend and sustainability analysis
Linear regression equation fitting methods can accurately measure the spatial patterns
of dynamic changes in FVC and identify trends in individual pixels. This study used this
method to simulate spatial trends in FVC from 2000∼2020. The formula is as follows He,
Shi & Fu (2021) and Zhang, Ge & Zhang (2020):

SLOPE =

[
n×

n∑
i=1

i×FVCi−

n∑
i=1

i
n∑

i=1

FVCi

]
/

n× n∑
i=1

i2−

( n∑
i=1

i

)2
 (2)

where SLOPE is the trend of FVC, n is the number of years in a time series, i is the annual
variable. SLOPE > 0 indicates a tendency for vegetation cover to improve, while the opposite
implies a tendency to deteriorate. For determining the significance of FVC tendency, a T -
test has been applied and per pixel’s P-value was computed. The results were classified into
five categories: extremely significant increase (SLOPE > 0, P < 0.01), significant increase
(SLOPE > 0, 0.01 <P < 0.05), extremely significant decrease (SLOPE < 0, P < 0.01),
significant decrease (SLOPE < 0, 0.01 < P < 0.05), and insignificant change (P > 0.05).

The Hurst exponent is a useful approach to predict future trends in FVC (Emamian
et al., 2021). The Hurst exponent utilizes the benefits of self-covariance and is usually
applied at measuring the stationarity of big data sequences in the natural world through
the Rescaled Range Series Analysis (Hurst, 1951; Zhang, Ge & Zhang, 2020). Based on the
FVC from 2000 to 2020, the Hurst exponent has been adopted in our research to predict
the future tendency. Provided a series of time sequences xi, i = 1, 2, 3, . . . , n, the Hurst
exponent was computed as follows Emamian et al. (2021):

First, split the time series into different segments.
Second, calculate the mean value of each segment:

m=
1
n

n∑
i=1

xi (3)

Third, calculate the series of deviations:

yi= xi−m (4)

Fourth, calculate the widest difference:

Ri=max
(
y1,y2,y3,...,yi

)
−min

(
y1,y2,y3,...,yi

)
(5)

Finally, calculate the standard deviation:

Si=

[
1
n

n∑
i=1

(xi−m)2
] 1

2

(6)

With an increase in i, various values of R/S were derived and the below expressions were
obeyed:

Ri/Si∝ iH . (7)

In which H is the Hurst exponent. 0 < H < 0.5 means a tendency for future variation
to be the reverse direction of the history (opposite); H = 0.5 indicates random fluctuation
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(random); 0.5 < H < 1 represents a tendency for future variation is same as the history
(continuous).

Combining the values of the SLOPE andH, we have divided the future trends of FVC into
six groups: random fluctuation (H = 0.5), continuous decrease (0.5 < H < 1, SLOPE < 0,
P > 0.05), continuous increase (0.5 <H < 1, SLOPE > 0, P > 0.05), continuous significant
decrease (0.5 <H < 1, SLOPE < 0, P < 0.05), continuous significant increase (0.5 < H < 1,
SLOPE > 0, P < 0.05), from degradation to improvement (0 < H < 0.5, SLOPE < 0), and
from improvement to degradation (0 < H < 0.5, SLOPE > 0).

Geographical detector
Geodetector (http://www.geodetector.cn/) incorporates a range of spatial statistical
methodologies, which explore the explanatory variables affecting the dependent
variable through a spatial variance analysis (Wang, Zhang & Fu, 2016; Wang et al.,
2010). Geodetector enables convenient and accurate exploration of spatial variance and
quantification of drivers and is widely used to quantify the drivers and their interactions
affecting vegetation cover change (Liu et al., 2021).
(1) Factor detector

The ability of an arbitrary factor to explain the FVC change is measured using the factor
detector, and q-statistic was used to measure stratified heterogeneity in FVC change (Wang,
Zhang & Fu, 2016). The q takes on a range of values from 0 to 1, the closer the value of q
is to 1, indicates greater explanatory power of factor x for FVC change. The corresponding
formulas are Chen et al. (2020b) and Liu et al. (2021):

q= 1−
L∑

h=1

Nhσ
2
h /Nσ

2 (8)

where q is the ability of the factor to explain the FVC change. N is the sample size, Nh is
the sample size of factor x in zone h, σ 2 is the variance of the regional FVC change, and σ 2

h
is the variance of factor x in zone h.
(2) Interaction detector

This module is used to determine the explanatory power of the FVC change when the
two factors interact. First, the q-values were calculated by the two factors as q (x1) and q
(x2). Secondly, the q-value reflecting the interaction of the two factors is calculated as q (x1
∩x2) and compared with q (x1) and q (x2), indicating the type of interaction between the
two variables (Peng, Kuang & Tao, 2019). The types of interaction were classified into five
groups (Table 2).
(3) Risk detector.

The risk detector was utilized to analyze whether the mean values of the drivers of FVC
change differed significantly across sub-regions and to identify the range or type of factor
that was most favorable. Risk detection is based on the t -statistic (Liu et al., 2021):

t =
Ȳh=1− Ȳh=2√

Var(Ȳh=1)
Nh=1

+
Var(Ȳh=2)

Nh=1

(9)

where Ȳh is the mean of the FVC change in zone h; Nh is the sample size of factor x in zone
h, and Var is the variance.
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Table 2 Types of interaction between the two factors.

Interaction Description

Weaken, nonlinear q (x1 ∩ x2) <Min (q (x1), q (x2))
Weaken, univariate Min (q (x1), q (x2)) <q (x1 ∩ x2) <Max (q (x1)), q (x2))
Enhance, bivariate q (x1 ∩ x2) >Max (q (x1), q (x2))
Independent q (x1 ∩ x2) = q (x1) + q (x2)
Enhance, nonlinear q (x1 ∩ x2) >q (x1) + q (x2)

RESULTS
Temporal variation characteristics of FVC change
Figure 2 shows the fluctuating trend of the average FVC from 2000 to 2020. The FVC
ranged from 50.26 to 63.45%, with an average of 56.10%. Overall, FVC variation had a
rising pattern, with a growth rate of + 0.26/year (P = 0.028), indicating that remarkable
progress has been accomplished by implementing ecological protection projects during the
last 21 years. The FVC change can be divided into three stages: 2000 to 2005 shows a slight
upward trend, 2005 to 2010 shows a downward trend, since 2010 the quality of vegetation
has been good but fluctuation is large.

From 2000 to 2020, the FVC of each microtopography in the Muru Basin changed
significantly (Fig. 3). The highest FVC is 83.46% for the lower slope (cool), which is
significantly higher than other microtopographic types (Fig. 3C). The lowest FVC is 0,
distributed in the peak/ridge (cool) (Fig. 3A). ThemeanFVC for differentmicrotopographic
types 2000–2020 is ranked from highest to lowest as follows (Table 3): lower slope (cool)
(69.62%), lower slope (62.90%), lower slope (warm) (58.42%), valley (57.39%), upper
slope (warm) (54.42%), upper slope (54.15%), valley (narrow) (53.31%), upper slope
(cool) (47.13%), cliff (44.42%), mountain/divide (32.77%), peak/ridge (warm) (23.61%),
peak/ridge (17.92%), peak/ridge (cool) (2.74%). As shows in Table 4, from 2000 to 2020,
the FVC of microtopography types: peak/ridge (warm), cliff, upper slope, lower slope, and
lower slope (cool) increased significantly (P < 0.05), while other microtopographic types
did not. The microtopography with the fastest growth in FVC is the cliff, lower slope, upper
slope, and lower slope (cool), with growth rates of +0.79/year, +0.53/year, +0.52/year,
and +0.49/year, respectively (Table 4).

Spatial variation characteristics of FVC change
Figure 4 shows the spatial distribution of microtopographic types and FVC changes in the
study area. The areas with insignificant change, extremely significant increase, significant
increase, extremely significant decrease, and significant decrease of FVC accounted for
70.42%, 13.08%, 8.62%, 4.04%, and 3.84% of the whole study region, respectively
(Fig. 4B).Most regions with significant changes in FVC showed an extremely significant and
significant increasing trend, only a small number of areas have shown extremely significant
or significant decreasing trends (Fig. 4B). Figure 5A shows that the study area has the
largest number of areas with Hurst exponent less than 0.5 (opposite) (67%), followed by
greater than 0.5 (continuous) (19.22%) and equal to 0.5 (random) (13.76%). To further
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Figure 2 FVC change tendency from 2000 to 2020.
Full-size DOI: 10.7717/peerj.13358/fig-2

determine the sustainability of vegetation restoration in the study area, the FVC change
trend and Hurst exponent were spatially overlaid to analyze the future tendency of FVC
change (Fig. 5B). The results showed that the areas from degradation to improvement,
continuous increase, and continuous significant increase accounted for 33.35% of the
whole area. Random fluctuation areas mostly located at the margin of the basin accounted
for 19.17% of the whole area. The areas from improvement to degradation, continuous
decrease, and continuous significant decrease accounted for 47.48% of the whole area. This
indicates that vegetation degradation is likely to occur in the future.

It is clear from Fig. 6A that the highest percentage of the extremely significant increase
in FVC was the cliff, accounting for 15.57%, followed by the lower slope (warm), lower
slope, upper slope, and lower slope (cool), accounting for 15.41%, 14.43%, 14.18%, and
13.73, respectively. It is also clear that the significant increase of FVC was highest in the
lower slope, accounting for 12.53%, followed by the upper slope, cliff, and lower slope
(cool), accounting for 12.21%, 10.81%, and 10.03% (Fig. 6B). The proportion of extremely
significant decrease and significant decrease in FVC on the upper slope (cool) and lower
slope (cool) was much less than on the upper slope (warm) and lower slope (warm) (Figs.
6C and 6D). This is likely due to the lower evaporation and better water conditions on the
upper slope (cool) and lower slope (cool) than on the upper slope (warm) and lower slope
(warm), so the growth of vegetation is stronger.

Future variation trends FVC are disparate in each microtopographic type (Fig. 7). The
proportion of the continuous significant increase in FVC is greatest on the lower slope
(warm) (Fig. 7A). The proportion of the continuous increase in FVC was greater on the
valley (narrow) and valley than on other microtopographic types (Fig. 7C). The area with
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the largest proportion of FVC from degradation to improvement was the upper slope
(warm) (36.78%), accounting for 7.3% of the total study area (Fig. 7E). Compared with
other microtopographic types, valley (narrow) FVC showed the highest proportion of
continuous significant decrease and continuous decrease (Figs. 7B and 7D). In the lower
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Table 3 Mean FVC for different microtopographic types 2000–2020.

Microtopographic types Mean FVC (%)

Lower slope (cool) 69.62
Lower slope 62.90
Lower slope (warm) 58.42
Valley 57.39
Upper slope (warm) 54.42
Upper slope 54.15
Valley (narrow) 53.31
Upper slope (cool) 47.13
Cliff 44.42
Mountain/divide 32.77
Peak/ridge (warm) 23.61
Peak/ridge 17.92
Peak/ridge (cool) 2.74

Table 4 Temporal variation characteristics of FVC change.

Microtopographic types Regression equation P-value

Peak/ridge (warm) y=−0.106x+ 236.59 0.327
Peak/ridge y= 0.2492x−482.97 0.043
Peak/ridge (cool) y= 0.1855x−370.08 0.369
Mountain/divide y= 0.1504x−269.52 0.162
Cliff y= 0.7926x−1548.7 0.006
Upper slope (warm) y= 0.0204x+ 13.436 0.327
Upper slope y= 0.5232x−997.56 0.001
Upper slope (cool) y= 0.4653x−888.14 0.085
Lower slope (warm) y= 0.1276x−198.14 0.359
Lower slope y= 0.5337x−1009.8 0.002
Lower slope (cool) y= 0.4922x−919.62 0.040
Valley y= 0.2583x−461.88 0.123
Valley (narrow) y=−0.0316x+ 116.86 0.894

slope (cool) (69.41%) and lower slope (58.20%), the proportion of FVC coverage from
improvement to degradation was larger, accounting for 10.23% of the total study area
(Fig. 7F). The future variation trend was a continuous significant increase, continuous
increase, or from degradation to improvement indicating vegetation improved. On the
contrary, continuous significant decrease, continuous decrease, and from improvement to
degradation indicate vegetation degradation. This means that although there is a greater
proportion of continuous improvement in FVC in the lower slope (warm), valley (narrow),
and upper slope (warm), there is still a risk of vegetation degradation. The proportion
of random fluctuation was more extensive in the peak/ridge area (include peak/ridge
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(cool), peak/ridge, and peak/ridge (warm)) (Fig. 7G), indicating that afforestation in the
peak/ridge area was difficult and had a principal impact on the survival of vegetation.

Identification of driving forces
(1) Factor detector analysis

We quantified the effect of each factor on the FVC change using Geodetector (Fig. 8).
The effect of each factor in FVC change was significant (P < 0.05), except for the slope
(P = 0.273). The explanatory power (q-statistic value) of aspect (q = 21.28%, P < 0.001),
microtopographic type (q = 8.61%, P < 0.001), soil taxonomy great groups (q = 8.12%,
P < 0.001), and soil water content at 200 cm (q = 5.75%, P < 0.001) exceeded 5%, are the
main drivers of FVC variation in the study area. These are followed by soil water content at
30 cm (q = 3.77%, P < 0.001), distance to roads (q = 2.90%, P < 0.001), annual average
temperature (q = 2.57%, P < 0.001), soil water content at 0 cm (q = 1.71%, P = 0.005),
distance to residences (q = 1.57%, P = 0.010), soil pH (q = 1.53%, P = 0.010), soil water
content at 10 cm (q= 1.41%, P = 0.019), and slope (q= 0.66%, P = 0.273). This indicates
that aspect, microtopographic type, and soil taxonomy great groups are important factors
influencing FVC change in the study area. Although human activities such as roads and
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residences are important factors, in our study area they are much less important than
natural factors such as aspect. This probably is due to the implementation of policies such
as the NFPP and RCFGP have greatly reduced the disturbance of vegetation by human
activities. In addition, the vegetation in the study area is mainly deep-rooted vegetation
such as Abies squamata, Picea likiangensis. Therefore, soil water content at 0–30 cm did not
show a significant explanatory power to the variation of FVC.
(2) Interaction detector analysis

Figure 9 shows that the interactions between the two factors all have stronger explanatory
power for the FVC changes than the individual factors and that the majority of the
interaction effects are non-linearly enhanced. Specifically, the interactions between aspect
and microtopographic type, soil taxonomy great groups, soil water content at 200 cm;
and the microtopographic type and soil water content at 200 cm; and soil water content
at 30 cm and soil water content at 200 cm demonstrated bivariate enhancement, whereas
the interaction between other factors showed a nonlinear enhancement. According to the
results, the q-statistic value of the interaction between any factor and aspect was larger
than that of the other two factors, indicating that aspect played an important role in FVC
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Figure 6 FVC change trend on different microtopographies.
Full-size DOI: 10.7717/peerj.13358/fig-6

change. This was consistent with the conclusion in factor detector analysis, the q-statistic
value of aspect was 21.28%. In addition, amongst these interactions, aspect and annual
average temperature (q = 29.20%) were the strongest. Although the explanatory power of
annual average temperature for FVC change is less than 3% (q = 2.57%), its interaction
with aspect has larger explanatory power than the sum of each and is much larger than the
interaction between the other factors. It can be seen that annual average temperature also
has a significant effect on the change of FVC, mainly in the interaction with aspect.
(3) Risk detector analysis

The risk detector can detect the most suitable level of vegetation restoration for each
factor. A higher value of FVC slope for a given level represents a more favorable level of this
factor for vegetation restoration, with different factors presenting significant differences
in the value of FVC change (Fig. 10). The response of the FVC slope to the aspect of
different levels first decreases and then increases (Fig. 10A). The FVC slope was the highest
when the aspect was 292.5∼337.5◦ (northwest), 337.5∼22.5◦ (north), and 22.5∼67.5◦

(northeast) (Fig. 10A), indicating that the northern slope (292.5∼67.5◦) was the most
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Figure 7 Future FVC change trend on different microtopographies.
Full-size DOI: 10.7717/peerj.13358/fig-7

suitable for vegetation restoration. Concerning the microtopographic types, the lower
slope (cool) was conducive to vegetation restoration, with the largest FVC slope (Fig. 10B).
The soil taxonomy great group most conducive to vegetation restoration was Cryumbrepts
(Fig. 10E). Cryumbrepts are well- or moderately drained soil common in subalpine areas
that support forest, grassy, and tundra vegetation (Rieger, 1983). The value of the FVC
slope increases with the increase of soil water content at 200 cm depth (Fig. 10I). When the
water content at 200 cm was 15∼20%, it was the most suitable for vegetation restoration
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(Fig. 10I). The FVC slope was highest at an annual average temperature of 1.52∼3.14 ◦C
(Fig. 10J), which was the most favorable level for vegetation restoration. In terms of
the impact of human activities on vegetation recovery, the FVC slope shows an increase
followed by a decrease with increasing distance to roads and residential areas, with the
greatest FVC slope in the range of 1500∼2000 m from roads (Fig. 10K), and the greatest
FVC slope in the range of 1000∼2000 m from residences (Fig. 10M).

DISCUSSION
Vegetation change features and the impact of microtopographic type
Overall, there has been an increasing trend in FVC on the Muru Basin from 2000 to
2020, which is consistent with a positive trend in vegetation cover on the TP (Song, Jin
& Wang, 2018; Zhang et al., 2018). However, it must not be overlooked that some of
the microtopographic types are degraded (Figs. 5 and 7), where vegetation restoration
is not sustainable. Due to extreme climatic conditions and ecosystem fragility in the
subalpine areas of the ETP, the ecology is highly sensitive to logging activities, and
post-harvest ecological restoration faces enormous challenges (Xiong et al., 2021). Even
some achievements have been made in forest restoration by government support, but the
survival rate of afforestation is still low in some areas (He, Shi & Fu, 2021), and vegetation
is degraded in some places (Wang et al., 2019). The uncertainty in vegetation restoration is
a major challenge for sustainable forest management and conservation in subalpine areas.
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We found that the lower slope was the microtopographic type with the best vegetation
cover (Fig. 3). The ridge/peak areas had the greatest proportion of FVC decrease and
random fluctuation (Figs. 6C, 6D and 7G). Topographic factors (elevation, slope, aspect,
and microtopographic type) play an essential role in the dynamics of vegetation cover (Jia
et al., 2020; Li, Shi & Wu, 2020). They influence the climate and soil moisture conditions
during the year by controlling precipitation, solar radiation, and temperature (Metzen et al.,
2019). The lower slopes have a non-native water input from upper slope areas in addition to
groundwater (Thompson et al., 2011), which is more beneficial for plant growth. The lower
slope has better hydrological conditions compared to the other microtopographic types
(Thompson et al., 2011), and in study areas where Abies squamata and Picea likiangensis
are common forest species, moist soil are more conducive to their growth. The ridge/peak
areas soils are relatively shallow, soil moisture and nutrients are lacking (Gao et al., 2017a),
so afforestation is difficult. In general, relatively humid lower slopes are the most suitable
for vegetation restoration, and peak/ridge should be avoided as much as possible.

Key factors influencing vegetation restoration
The morphology and function of watersheds result from long-term co-evolution between
water, soil, landforms, and ecosystems (Thompson et al., 2011), with solid feedback
between vegetation, topography, climate, and soil (Kirkpatrick et al., 2014). Our study
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Figure 10 Results of FVC change for each class of different factors. For easy observation, the value of
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used Geodetector to determine the key drivers of FVC change in subalpine regions. In
contrast to other statistical approaches, it can measure Spatial Stratified Heterogeneity
(SSH) and analyze the effects of factors and their interactions on FVC (Liu et al., 2021).

Our research shows that aspect is the most critical factor influencing FVC change,
followed by the microtopographic type and soil taxonomy great groups (Fig. 8). Previous
studies have also shown that topography and soils are important drivers of vegetation
restoration (He, Shi & Fu, 2021; Zhong et al., 2022). The northern slope (292.5∼67.5◦) was
the most suitable for vegetation restoration (Fig. 10A); they are more humid than the
southern slopes (Qingkong et al., 2020; Sun et al., 2019). Predecessors’ research supports
our conclusion that northern slopes have adequate soil moisture and higher vegetation
cover than southern slopes (Louhaichi et al., 2021;Metzen et al., 2019). The lower slopes are
recharged by both groundwater and non-native water from the upper slopes (Thompson
et al., 2011), and are more suitable for vegetation growth. In addition, soil texture also
influences FVC change, with the most suitable soil taxonomy great groups for vegetation
restoration being Cryumbrepts. Soil is an important determinant of vegetation restoration
(Mills et al., 2021), affects the growth and composition of vegetation (Fernández-García
et al., 2021). Cryumbrepts are consistently well- or moderately drained soil (Rieger, 1983),
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well-drained soils are more conducive to vegetation root expansion, respiration, and
growth (Crowell & Lane, 2001). In vegetation restoration, the drainage of the planting site
is essential for the health and growth of seedlings.

Roads and residences are the concrete embodiment of human activities in the study area,
they are mainly located in lower elevations and valleys areas, and the residences are mostly
located along the roads. The field survey found that areas close to roads and residences in
the study area are mostly cultivated and heavily influenced by human activities, which is
not conducive to vegetation restoration. Further away from the roads and residences are
located at the edges of the basin and are meadows where the vegetation is more affected by
grazing and self-growth restrictions. Accordingly, the results of the study show that areas
moderately close to roads and residences are the most favorable for vegetation restoration.
However, the contribution of distance from roads and distance from residents to FVC
change is only 2.90% and 1.57%, respectively, which is much less than 21.28% for aspect
and 8.61% for microtopographic types. Since 1998, a series of ecological protection projects
have been implemented, such as NFPP and RCFGP, which have greatly limited human
disturbance and damage to the local ecology. Overall, the impact of human activities on
vegetation restoration in the study area is much less than the natural factors.

Besides, the diversity of geographical processes shows that the interplay of various factors
influences changes in vegetation cover (Huo & Sun, 2021). Interaction between the two
factors had stronger explanatory power for the FVC changes, which is similar to the idea
that the interaction between various factors has amarkedly stronger effect on the vegetation
than the individual factors (Liu et al., 2021). We explored that annual average temperature
also has a significant effect on the change of FVC, mainly in the interaction with aspect. In
particular, the interaction between temperature and aspect has the most excellent effect on
FVC change, probably because aspect variation leads to differences in temperature (Pepin
et al., 2017), which affects the vegetations’ spatial distribution and growth.

Limitations and uncertainties
Vegetation restoration is influenced by a combination of topography, climate, soils, and
human activity (Chen et al., 2020b;Meng et al., 2019; Peng, Kuang & Tao, 2019). Our study
used Landsat imagery with a resolution of 30 m to capture the dynamics of vegetation
restoration. Unlike MODIS, Landsat with higher resolution captures more spatial detail
(Seto et al., 2004). However, the 16-day revisit time and frequent cloud cover make it
difficult to obtain sufficient high-quality data, which may reduce its performance in
detecting rapid ecosystem change (Liao et al., 2016). A spatial–temporal fusion approach to
mixMODIS and Landsat into new composite data seems to be a good solution. In this study,
the main drivers of vegetation restoration in subalpine areas were identified and analyzed
using Geodetector, which incorporates a range of spatial statistical methodologies to
explore the explanatory variables affecting the dependent variable through a spatial variance
analysis (Wang, Zhang & Fu, 2016; Wang et al., 2010). Nevertheless, some of the factors
such as precipitation and elevation, which have a strong influence on vegetation restoration
(He, Shi & Fu, 2021; Zhang et al., 2021), are excluded due to severe multicollinearity. This
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is most likely caused by the small scale of our study area and the need to consider a more
detailed study on a larger scale such as the ETP.

In addition, previous research has shown that the impact of human activity on vegetation
change is crucial (Cheng et al., 2021; Meng et al., 2019). Whereas, our study found that
distance from roads and distance from residents contributed only 2.90% and 1.57%
respectively to the change in vegetation cover. This indicates that the impact of human
activity on vegetation in our study area is much lower than other natural factors. On one
hand, the implementation of ecological projects limited the impact of human activities.
On the other hand, it would be because the roads and residents could not cover all human
activities in the study area. Some studies use land-use data to measure the intensity of
human activities and have achieved good results (Chen et al., 2020b). We can combine
roads, residents, and land-use data to quantify the intensity of human activities for further
research.

CONCLUSIONS
This study used trend analysis and the Hurst exponent to explore the spatial and temporal
variation and future sustainability of vegetation cover in the Muru Basin from 2000
to 2020, and quantified the influence of various drivers and their interactions on FVC
changes based on Geodetector. Regional vegetation cover has shown an increasing trend
since 2000. Aspect, microtopographic type, and soil taxonomy great groups are the main
factors influencing vegetation cover change in subalpine regions. The lower slope has
the highest mean FVC, peak and ridge have a relatively low mean FVC. The northern
slope (292.5∼67.5◦) is the most suitable aspect for vegetation restoration. Accordingly,
we suggest selecting lower slope, northern slope, and better-drained soils (Cryumbrepts)
for vegetation restoration, and areas such as peak and ridge should be avoided as much
as possible for afforestation. The implementation of a series of ecological projects in the
study area has reduced the impact of human activities, and regional vegetation restoration
is mainly limited by natural factors, with a low impact of human factors. The study results
enrich the understanding of vegetation cover changes within a typical basin in the subalpine
region of the ETP and reveal important factors affecting vegetation restoration. The results
of the study provide theoretical references and suggestions for vegetation restoration and
sustainable development in typical logging areas in the subalpine region. However, we
need to take the potential drivers of vegetation restoration more comprehensively in future
studies.
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