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Disparate responses of tumour vessels to angiotensin II:
tumour volume-dependent effects on perfusion and
oxygenation

O Thews, DK Kelleher and P Vaupel

Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany

Summary Perfusion and oxygenation of experimental tumours were studied during angiotensin II (AT II) administration whereby the rate of
the continuous AT II infusion was chosen to increase the mean arterial blood pressure (MABP) by 50–70 mmHg. In subcutaneous DS-
sarcomas the red blood cell (RBC) flux was assessed using the laser Doppler technique and the mean tumour oxygen partial pressure (pO2)
was measured polarographically using O2-sensitive catheter and needle electrodes. Changes in RBC flux with increasing MABP depended
mainly on tumour size. In small tumours, RBC flux decreased with rising MABP whereas in larger tumours RBC flux increased parallel to the
MABP. As a result of these volume-dependent effects on tumour blood flow, the impact of AT II on tumour pO2 was also mainly tumour
volume-related. In small tumours oxygenation decreased with increasing MABP during AT II infusion, whereas in large tumours a positive
relationship between blood pressure and O2 status was found. This disparate behaviour might be the result of the co-existence of two
functionally distinct populations of tumour vessels. In small tumours, perfusion decreases presumably due to vasoconstriction of pre-existing
host vessels feeding the tumour. In larger malignancies, newly formed tumour vessels predominate and seem not to have this vasoresponsive
capability (lack of smooth muscle cells and/or AT receptors), resulting in an improvement of perfusion which is not tumour-related per se, but
is due to the increased perfusion pressure. © 2000 Cancer Research Campaign

Keywords : angiotensin II; tumour vasculature; tumour blood flow; tumour perfusion; tumour oxygenation
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Tumour hypoxia – a common phenomenon in clinical oncolog
is an important factor known to be able to modulate the sensit
of tumours to several non-surgical tumour treatment modali
such as standard radiotherapy, chemotherapy with O2-sensitive
agents or photodynamic therapy (Bush et al, 1978; Freitas
Baronzio, 1991; Hall, 1994; Horsman, 1993). In addition, 
oxygenation status seems to affect biological properties
tumours which appear to be relevant in terms of their malig
behaviour (e.g. metastatic or apoptotic potential) (Giaccia, 1
Graeber et al, 1996). For this reason, tumour oxygenation 
independent parameter predicting for the long-term progn
(local control, overall survival) of cancer patients (Brizel et 
1996; Höckel et al, 1993; 1996; Nordsmark et al, 1996).

The oxygen deficiency found in tumours results presuma
from an imbalance of oxygen supply to the tissue and the ox
consumption of the cells (Vaupel, 1993; Gulledge and Dewh
1996). One major reason for the insufficient O2 transport to the
tissue is the inadequate and chaotic microvascular net
showing a series of morphological and functional abnormali
In tumour microvessels, for instance, tortuosity, exces
branching, blind endings, lack of contractile elements (smo
muscle cells), as well as interrupted endothelial linings and b
ment membranes, can be found (Konerding et al, 1995). T
vascular networks have no hierarchical organization (Koner
tors
ing
of the
s an
vaso-
 an
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et al, 1995) and show significant arterio-venous shunt perfusio
well as temporal variations in red cell flux (short of vascular sta
(Kimura et al, 1996) or even intermittent blood flow with temp
rary stasis (Chaplin and Hill, 1995). These functional abnorm
ties lead to an insufficient nutrient and oxygen supply of 
tumour tissue (Braun et al, 1999; Dewhirst et al, 1998; Vau
et al, 1989).

The inadequate blood flow through the tumour is relevant
only for the oxygenation status but also for the pharmacokin
of anticancer agents. Studies analysing the spatial distributio
perfusion within a tumour showed pronounced heterogen
which might compromise drug delivery to some regions of 
tumour (Tozer et al, 1996).

For these reasons, many attempts have been undertaken w
aim of increasing tumour perfusion and oxygen supply to the 
to improve treatment efficacy of radio- and/or chemothera
Several possible mechanisms have been analysed for their 
bility of modulating tumour perfusion (Jain and Ward-Hartl
1984; Vaupel et al, 1998; 2000): (i) vasoactive agents, (ii) rhe
gically active drugs, (iii) haemodilution, (iv) lowering interstiti
hypertension, (v) mild (low-dose) hyperthermia, and (vi) age
reducing intermittent occlusion of tumour vessels (Jirtle, 19
Kelleher et al, 1998; Powell et al, 1997).

When vasoactive drugs are considered, these can be used 
different ways to enhance tumour blood flow. Firstly, vasodila
might be suitable to bring about a dilation of tumour feed
vessels and, by reducing the vascular (geometric) resistance 
tumour, might lead to an increase in perfusion (as long a
adequate perfusion pressure can be maintained). Secondly, 
constrictive agents supplied systemically might, by causing
225
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increase in the perfusion pressure, lead to a redistribution of b
flow in favour of the tumour.

However, the efficacy of vasoactive drugs seems to be ques
able due to the functional abnormalities of tumour microvess
Vasodilators (e.g. NO-donating drugs) may only be effective
tumour vessels which are previously in a contracted s
However, many tumours lack vascular smooth muscle c
(Konerding et al, 1989b; 1989c). In addition, the low extracellula
pH (Vaupel et al, 1989) and elevated levels of NO (Dworkin e
1995, Kennovin et al, 1994) found in tumours both lead t
maximal vasodilation. For these reasons the use of vasodil
(especially NO-donors) to improve tumour perfusion and
oxygenation may not be appropriate (Shan et al, 1997). At
other extreme, increasing the perfusion pressure by a syst
vasoconstriction might only be effective if tumour vessels w
not to react to the vasoconstrictive stimulus. It has been postu
that in many solid tumours the vascular system behaves li
chaotic network of rigid tubes. An increase in mean arterial bl
pressure (MABP) should therefore result directly in an impro
ment of blood flow through the tissue and subsequently i
change of the O2 and substrate supply to the tumour cells. Anot
aspect of using vasoconstrictive drugs for increasing blood p
sure might be an improvement of the convective transpor
macromolecules to the tumour cells. By increasing the blood p
sure the extravasation of these molecules out of the vascul
into the interstitial space can be enhanced (e.g. Netti et al, 1
An alternative measure to improve tumour perfusion is the ap
cation of rheologically active agents, which can reduce visc
resistance of the blood flowing through the tumour (Kelleher e
1998).

The aim of this study was to analyse the impact of the vaso
strictive drug angiotensin II on perfusion and oxygenation
experimental tumours. In particular, the investigation asse
whether changes in perfusion pressure result in compar
changes in tumour blood flow (as would be expected for a sys
of rigid tubes), or whether vasoactive effects take place in
tumour vascular system.

MATERIALS AND METHODS
Animals and tumours

Studies were performed using DS-sarcomas implanted sub
neously onto the hind foot dorsum of male Sprague-Dawley 
(body weight 180–250 g). Animals were allowed access to a s
dard diet (type 1324; Altromin, Lage, Germany) and water
libitum prior to experiments. For tumour implantation 0.4 ml 
DS-sarcoma ascites (approximately 104 cells µl–1) was injected.
Within 6–12 days tumours grew as flat, spherical segments
replaced the subcutis and corium completely with volumes
0.5–2.5 ml. Up to this volume the tumour grows without be
limited by the restricted space of the subcutaneous tissue o
hind foot dorsum (as confirmed by the exponential grow
observed) and without inducing pain or an elevated tissue pre
due to a non-compliant capsula. Volumes were determined
measuring the three orthogonal diameters of the tumour and u
an ellipsoid approximation with the formula: V = π/6 × d1 × d2 × d3.
From the volume-growth curves, the volume doubling time w
calculated during exponential tumour growth. All experiments 
previously been approved by the regional animal ethics comm
and were conducted in accordance to the German Law for An
Protection and the UKCCCR Guidelines (UKCCCR, 1998).
British Journal of Cancer (2000) 83(2), 225–231
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Surgical procedures

When tumours reached the desired volume, rats were anaesth
with sodium pentobarbital (40 mg kg–1 i.p., Nembutal; Ceva, Paris
France). Throughout all experiments, animals lay supine o
heated operating pad with the rectal temperature m
tained at 37.5–38.5°C. Animals breathed room air spontaneous
Mean arterial blood pressure (MABP) was continuously monito
through connection of an arterial catheter placed in the left ca
artery to a Statham pressure transducer (type P23 ID; G
Oxnard, CA, USA). A second catheter placed in the external jug
vein was used to continuously infuse angiotensin II.

Angiotensin II infusion

Angiotensin II (AT II; Sigma, Deisenhofen, Germany) w
dissolved in isotonic saline at a concentration of 6µg ml–1. This
solution was continuously infused over 30 min with the infus
rate being adjusted (0.5–2.0µg min–1 kg–1 body weight) to achieve
an increase in MABP of 50–70 mmHg. Due to fast adaptatio
the animals to AT II, the infusion rate had to be increased du
the experiments in order to maintain the target increase in b
pressure.

Oxygenation measurement

The spatial distribution of tumour oxygen tensions (pO2) was
measured polarographically using steel-shafted microelectr
(outer diameter 300µm) and pO2 histography (Eppendorf
Hamburg, Germany; for more details of this method see Va
et al, 1991). A small midline incision was made in the s
covering the lower abdomen and the Ag/AgCl reference elect
placed between the skin and the underlying musculature.
tumour pO2 measurement, a small incision was made into the 
overlying the tumour using a 24-gauge needle and the elec
advanced to a depth of approximately 1 mm. The electrode
then automatically moved through the tissue in pre-set steps
an effective step length of 0.7 mm (Vaupel et al, 199
Approximately 100 pO2 values were obtained from each tumour
up to 12 parallel electrode tracks with a horizontal distanc
1–3 mm. The oxygenation status of each tumour was describe
the mean and median pO2, as well as the fraction of pO2 values
≤2.5 mmHg and ≤5 mmHg. Oxygenation studies of individu
tumours were generally carried out in less than 20 m
Additionally, arterial blood gas analysis was performed imme
ately before and after tumour tissue pO2 measurements, using 
pH/blood gas analyser (Type 178; Ciba Corning, Fernw
Germany) to ensure that animals had arterial blood gases w
the physiological range during the measurement period.

For assessing temporal changes in tissue oxygenation, 
tumour pO2 was measured continuously using polarograp
catheter electrodes of the Clark type (Licox; GMS, K
Germany). The O2-sensitive cathode has a length of 5 mm an
placed in a O2-permeable flexible catheter with an outer diame
of approximately 350µm. For positioning of the electrode 
catheter was inserted into the tumour along its long axis. A
placing the electrode in the trocar, the catheter was withdr
leaving the electrode in the tumour centre. Measured pO2 values
were averaged over a period of 1 min. Continuously measuredpO2

data were expressed relative to the pO2 value immediately prior to
the start of AT II infusion.
© 2000 Cancer Research Campaign
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Figure 1 Courses of MABP and RBC flux during intermittent application
of angiotensin II in tumours of different sizes. (A) small tumour, volume =
0.57 ml. (B) large tumour, volume = 2.05 ml. Grey bars indicate periods of
AT II infusion (demonstration of characteristic experiments).
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Figure 2 Examples of the relationship between mean arterial blood
pressure and (A) RBC flux, and (B) resistance to flow (TVR) during
angiotensin II infusion in a small (volume = 0.75 ml) and a large (volume =
1.82 ml) tumour. Each point represents the mean value of a 2-min interval.
Laser Doppler flowmetry

Red blood cell (RBC) flux was measured using the laser Dop
technique (semiconductor laser diode, wavelength 780 nm, o
power 1–2.5 mW, cut-off frequency 15 kHz, Oxford Arra
Oxford Optronics, Oxford, UK). Details of this method have be
described earlier by Kelleher et al (1995; 1998). In each tum
RBC fluxes were obtained from three different central and per
eral locations in the tissue using needle probes (Model MPM
o.d. 0.5 mm). For insertion of the probe a small incision was m
with a 24-gauge needle in the skin covering the tumour, such
bleeding from the wound was kept to a minimum. To
backscatter was recorded continuously in order to optimize p
positioning and to ensure a constant probe location. In cases w
flux artefacts due to alteration of probe position (e.g. as a resu
movement) occurred (as indicated by a sudden change in 
backscattered light), the flux values obtained from these chan
were excluded from further analysis. At the end of each exp
ment, the probes were left in place and the animal was sacri
by an overdose of anaesthetic to obtain the ‘biological zero’ l
Doppler signal (which was always < 15% of the RBC flux
t = 0 min). After subtracting the ‘biological zero’ value, data w
expressed as relative RBC flux, and represent percentage v
related to the flux measurement immediately prior to the AT
infusion. RBC flux measurements were performed 30 min bef
during and for 30 min after AT II infusion.

As a measure of the resistance to flow, the relative tum
vascular resistance (TVR) was calculated from the ratio of
normalized mean arterial blood pressure and the RBC flux.

Statistical analysis

Results are expressed as means ± standard error of the mea
(SEM). Differences between various groups were assessed b
two-tailed Wilcoxon-test for unpaired samples. The significa
level was set at α = 5%. For regression analysis, continuou
measured signals were averaged for each 2 min interval an
correlation of two signals was calculated by the correla
coefficient (r).

RESULTS

Angiotensin II (AT II) infusion led to a significant increase in t
mean arterial blood pressure (MABP) of up to 200 mmHg. 
effect was dose-dependent and disappeared within a few mi
when the infusion was stopped.

The change in MABP as a result of AT II infusion was acco
panied by changes in RBC flux, the pattern of these changes 
tumour volume-dependent. Figure 1 shows two examples
MABP and relative RBC flux in a small (volume = 0.57 ml, Figu
1A) and a large tumour (volume = 2.05 ml; Figure 1B) dur
intermittent infusion of AT II. In the small tumour, the AT I
induced increase in blood pressure was accompanied by a si
cant worsening of tumour perfusion as indicated by a decrea
RBC flux down to 50% of the pretreatment level (Figure 1A). T
effect on tumour blood flow was completely reversible. In the c
of the large tumour, increasing MABP led to a rise in tum
perfusion parallel to changes in blood pressure (Figure 1B).

In order to quantify the impact of various tumour volumes
the response of tumour perfusion to AT II, MABP and RBC f
values were averaged and correlated for every 2-min inte
British Journal of Cancer (2000) 83(2), 225–231© 2000 Cancer Research Campaign
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group (n = numbers of tumours investigated).
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tumours (open triangles) and during continuous AT II infusion (dots). Each
point represents a minimum of six tumours.
during AT II infusion. Figure 2 shows examples of the correla
between MABP and RBC flux and resistance to flow (TVR
MABP/RBC flux), for a small (volume = 0.75 ml) and a lar
(volume = 1.82 ml) tumour, respectively. Although the perfus
pressure increases during AT II application, the perfusion in
small tumour decreases (r = –0.60) whereas the TVR significant
increases (r = 0.94, Figure 2B). The large tumour shows a differ
behaviour. During AT II infusion, RBC flux increases with risi
MABP (r = 0.57, Figure 2A) and the resistance to flow (TV
is almost unaffected by the AT II-induced increase in MA
(r = 0.11, Figure 2B) indicating that the elevated tumour perfu
during AT II application is most probably the result of an increa
perfusion pressure. On average, this behaviour of tumour
different sizes has been found in almost all tumours investiga
Figure 3 shows the correlation coefficients for each tum
separated for the different tumour volume groups.

Since perfusion is a paramount parameter determining
oxygenation status of tumours, the volume-dependent differe
in tumour blood flow upon AT II application should be reflected
the pO2 distribution in the tissue. In order to quantify the impac
AT II-induced changes on mean pO2 in tumours of different
British Journal of Cancer (2000) 83(2), 225–231
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volumes, pO2 and MABP values were continuously monitored a
averaged for every 2-min interval from 14 min before until 14 m
after the end of AT II infusion. These averaged values of b
parameters were then correlated. The initial pO2 showed
pronounced tumour volume-dependent differences (mean pO2 =
31 ± 6 mmHg in small tumours with a volume < 1.0 ml, 30 ± 6
mmHg in medium-sized tumours with a volume of 1.0–< 1.5
and 9 ± 4 mmHg in large tumours with a volume ≥ 1.5 ml). For
this reason, the measured pO2 was normalized for each tumour t
values prior to commencement of AT II infusion. Figure 4 sho
two examples of the correlation between MABP and normali
tumour pO2 for a small (volume = 0.66 ml) and a large (volume
2.34 ml) tumour. In the small tumour, the mean pO2 decreased
with increasing MABP during angiotensin infusion (r = –0.81)
indicating an AT II-induced worsening of tumour oxygenatio
presumably due to the observed decrease in RBC flux. In
larger tumour, the mean tumour pO2 improved significantly
parallel to the AT II-induced increase in MABP (r = 0.79). Figure
5 shows the coefficients of all tumours investigated for the corr
tion between MABP and mean tumour pO2. On average it could be
demonstrated that in small tumours oxygenation worsens 
© 2000 Cancer Research Campaign
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Disparate responses of tumour vessels to AT II 229
increasing MABP (as indicated by a negative correlation co
cient) whereas in large tumours pO2 increases with increasin
MABP (positive correlation coefficient).

This tumour-volume-dependency of the angiotensin effec
tumour oxygenation is also reflected in the spatial pO2 distribution.
During AT II infusion the oxygenation of small tumours (volum
< 1.1 ml) is worsened (expressed by a decrease in medianpO2

from 14 to 3 mmHg and an increase in the fraction of hypoxic pO2

values ≤ 2.5 mmHg from 32 to 48%, Figure 6), whereas in lar
tumours (volume ≥ 1.1 ml), the O2 status was significantly
improved. The spatial analysis of the pO2 distribution showed tha
the improvement in large tumours is most pronounced in 
tumour periphery, whereas more central regions remained al
completely hypoxic (as was the case in untreated control tumo

DISCUSSION

Newly formed tumour vessels show several structural and f
tional abnormalities (e.g. loss of vascular hierarchy, arterio-ven
shunting) (Konerding et al, 1989a–c). In particular, the absenc
a functioning innervation, smooth muscle cells and/or physio
ical receptors in these vessels results in an incapability to reg
perfusion to meet the tissue’s demands (Mattsson et al, 1
Peterson, 1983; 1991; Reinhold, 1979; Warren, 1979). At the s
time however, normal vessels of the host tissue are incorpo
into the growing tumour mass (Day, 1964; Mattsson et al, 1
Warren, 1979). Thus, the rate and distribution of blood flow wit
a tumour reflects: (i) the fraction of newly formed tumour vess
as opposed to incorporated host vasculature; (ii) the arrange
of these different vessel populations within the tumour (paralle
serial); and (iii) the structural organization of tumour vascula
relative to the surrounding (non-incorporated) normal tis
vessels, which may result in steal or anti-steal effects (Hirst, 1
Vaupel, 1993). Vasoactive drugs affecting the functionally in
formerly host-tissue vessels can thus alter tumour perfusio
various ways. Where tumour vessels show no vasomotive res
siveness and are located parallel to the host-tissue vessels, a
MABP should increase tumour blood flow since in this c
tumour vessels might react as a network of rigid tubes that wi
better perfused due to the higher perfusion pressure.

For this reason, previous experiments have analysed the e
of (systemic) vasoconstriction on tumour perfusion and oxyge
tion. In early investigations adrenaline was used for inducing v
constriction. In these studies a reduction of tumour perfusion
usually observed (Cater et al, 1962; Gullino and Grantham, 1
Mattsson et al, 1980). The use of AT II as a strong vasoconstr
led to non-uniform results. In some studies AT II resulted i
passive expansion of the vascular bed due to the increased 
sion pressure (Hori et al, 1985; 1993), an increase in tumour p
sion (Shankar et al, 1999; Suzuki et al, 1981; 1984; Tokuda e
1990; Trotter et al, 1991), as well as a reduction in the fractio
transiently occluded microvessels (Hemingway et al, 1992; Tro
et al, 1991). In contrast, other studies showed a decrease in tu
perfusion during systemic application of AT II (Dworkin et 
1997; Jirtle et al, 1978; Tozer and Shaffi, 1993; 1995; Tozer e
1996). Hirst et al (1991) demonstrated that the effect of AT
depended on the site of tumour implantation. In subcutaneo
implanted tumours perfusion improved, whereas intra-abdo
nally growing tumours showed a decrease in blood flow.
the same way as perfusion, tumour oxygenation was 
non-uniformly affected by AT II infusion (Suzuki et al, 1982).
© 2000 Cancer Research Campaign
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In the present study, the impact of angiotensin on perfusion
oxygenation was tumour volume dependent. In small tum
(volume < 1.0 ml), both parameters worsened showing a neg
correlation between the AT II-induced increase in MABP and R
flux or tumour pO2, respectively (Figures 2–5). In larger tumou
(volume ≥ 1.5 ml), an improvement of perfusion and O2 status
with increasing MABP by AT II was seen (Figures 2–5). Th
tumour volume-dependent differences (in the same tumour m
under identical experimental conditions) might be explained by
different responsiveness of tumour vessels upon AT II applica
in small and large tumours. Presumably, the AT II-indu
increase in resistance to flow in small tumours (Figures 2B an
and the reduction in tumour perfusion is the result of a substa
vasoconstriction of the incorporated host vessels, i.e. the fra
of these functionally intact vessels is therefore responsible fo
described net effect. In contrast, in large tumours, the perfu
seems to passively follow changes in systemic blood pres
according to Hagen–Poiseuille’s law. This may reflect the ov
inability of the vascular network to respond to AT II as seen by
lack of significant changes in TVR (Figures 2B and 3). Th
reasons for the lack of reactivity of the tumour neovasculatu
AT II have to be discussed: (i) many newly formed tumour ves
show no smooth muscle cells (Konerding et al, 1995; Wa
1979), (ii) the density of AT II receptors is significantly reduced
these vessels compared with normal tissue vasculature (Andr
al, 1998; Kohzuki et al, 1998; Tozer et al, 1996), and (iii) elev
levels of nitric oxide (NO) in these tumours (Kennovin et 
1994). The third phenomenon might play a role since the 
sarcoma shows a tumour-volume dependency of oxygen
leading to more pronounced hypoxia in larger tumours (Figur
which can in turn result in elevated levels of NO as compare
smaller tumours. NO has been shown to diminish pharmaco
cally induced vasoconstriction (Dworkin et al, 1995), which mi
explain the lack of responsiveness in larger tumours.

Differences in the density of AT II receptors might also 
important for the spatial heterogeneity of the AT II-induced ef
on tumour perfusion. Tozer et al (1996) described a signifi
decrease of tumour blood flow in peripheral areas of experim
P22 carcinosarcomas following AT II infusion, whereas perfus
in the tumour centre was almost unaffected. This pattern of sp
perfusion distribution upon AT II correlated well with the distrib
tion of AT II receptor expression in tumour vessels found to
approximately 10% higher in the periphery (Tozer et al, 19
The higher sensitivity of the tumour periphery to AT II mig
therefore be the reason for the observed vasoconstriction in 
tumour areas. The authors also demonstrated that the cha
tumour perfusion upon AT II, as well as the distribution of AT
receptors, show pronounced heterogeneity so that the overal
effect of AT II on tumour blood flow cannot be predicted.

As Hirst et al (1991) demonstrated, the site of tumour gro
plays an important role in the responsiveness of tumour vess
AT II. The DS-sarcoma used in the present study also shows d
ences in the vascular pattern when implanted into different 
tissues (Vaupel and Gabbert, 1986) which in turn influences
nutrient supply and tumour oxygenation (Vaupel and Gab
1986; Vaupel and Mueller-Klieser, 1986). However, if D
sarcomas were implanted into the same host tissue (subcutis)
different locations (e.g. hind foot dorsum, thigh), these param
showed comparable values. For this reason, the results fro
site of tumour growth used in the present study should be co
rable to other s.c. locations used in experimental studies. Alth
British Journal of Cancer (2000) 83(2), 225–231
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230 O Thews et al
differences in the vascular pattern of the tumour depending o
host tissue have been demonstrated, the present study c
shows that under well-defined experimental conditions (s
tumour model, same site of implantation) the responsiveness 
tumour vasculature to AT II strongly depends on the tum
volume.

Since in larger tumours perfusion increases with rising b
pressure, it can be concluded that in DS-sarcomas newly fo
tumour vessels and pre-existing host-tissue vessels are arr
mostly parallel to each other. In small tumours however, func
ally intact vessels appear to be located proximately to the tu
vessel network, because in these tumours AT II-induced vaso
striction led to a worsening in tumour perfusion. Obviously, 
fraction of functionally insufficient vessels from neovascular
tion increases during tumour growth whereas the (relative) nu
of integrated normal host-tissue vessels is reduced. From
results of the present study, it can be concluded that impro
perfusion and oxygenation by systemic vasoconstriction is 
possible in some tumours. Since the behaviour of tumour ve
to vasoconstrictive agents cannot be predicted a priori (Tozer
1996), the applicability of these drugs in the clinical settin
questionable.
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