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ABSTRACT

Characterizing genotype-phenotype relationships of
biomolecules (e.g. ribozymes) requires accurate
ways to measure activity for a large set of molecules.
Kinetic measurement using high-throughput se-
quencing (e.g. k-Seq) is an emerging assay appli-
cable in various domains that potentially scales up
measurement throughput to over 106 unique nu-
cleic acid sequences. However, maximizing the re-
turn of such assays requires understanding the tech-
nical challenges introduced by sequence hetero-
geneity and DNA sequencing. We characterized the
k-Seq method in terms of model identifiability, ef-
fects of sequencing error, accuracy and precision
using simulated datasets and experimental data from
a variant pool constructed from previously identi-
fied ribozymes. Relative abundance, kinetic coeffi-
cients, and measurement noise were found to af-
fect the measurement of each sequence. We intro-
duced bootstrapping to robustly quantify the uncer-
tainty in estimating model parameters and proposed
interpretable metrics to quantify model identifiabil-
ity. These efforts enabled the rigorous reporting of
data quality for individual sequences in k-Seq ex-
periments. Here we present detailed protocols, de-
fine critical experimental factors, and identify general
guidelines to maximize the number of sequences and
their measurement accuracy from k-Seq data. Analo-
gous practices could be applied to improve the rigor
of other sequencing-based assays.

INTRODUCTION

Determining the genotype-phenotype relationships for
any large set of biomolecules requires a high-throughput
method. For catalytic nucleic acids, this requires measuring
the activity of each unique sequence in a diverse popula-
tion. Ideally, methods to accomplish this would: (a) yield ac-
curate activity measurements for individual sequences, (b)
achieve high throughput to cover a large number of vari-
ants in sequence space and (c) be adaptable to different ri-
bozymes (and deoxyribozymes).

High-throughput sequencing (HTS) provides the abil-
ity to address these goals. The large amount of sequenc-
ing data (∼108 reads) can allow high accuracy count data
for many sequences in a high throughput, parallelized for-
mat. If reacted and unreacted molecules can be separated
from each other and sequenced independently, HTS can
quantify the extent of a reaction for millions of differ-
ent sequences simultaneously. Since nucleic acid sequences
act as their own ‘barcodes’, using sequencing as the as-
say avoids the need to isolate and test each unique se-
quence individually. Such a method can measure the activity
of each sequence in a population of functional molecules,
at multiple time points, substrate concentrations, or other
variable conditions. HTS-based kinetic measurements have
been proposed and demonstrated with nucleic acids, in-
cluding catalytic DNA (1), catalytic RNA (2–5), substrate
RNA (‘HTS-Kin’) (6), RNA aptamers (7) and transcrip-
tion factor (TF) binding DNA (8). In these studies, approx-
imately 103∼106 unique sequences are measured, depend-
ing on the experimental design. Similar approaches have
also been developed for proteins, notably an assay of ligand
binding affinities through mRNA display (9), ‘deep muta-
tional scanning’, in which the phenotype of fitness is assayed
for many mutants by deep sequencing (10), and a large-
scale measurement of dose-response curves (11). However,
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the development of these massively parallel measurements
also raises important questions about experimental design,
normalization, sequencing errors, and measurement accu-
racy and precision. To date, there is a relative lack of crit-
ical study of the theoretical and experimental effects of
such variables on the outcome of high-throughput measure-
ments. The present work examines these issues for the case
of ribozymes and develops appropriate methodology to ad-
dress these concerns for high-throughput measurement of
genotype-phenotype relationships.

Here, we focus on kinetic sequencing (k-Seq), a recently
reported method for quantification of kinetics in a mixed
pool of sequences (2). Advantages of k-Seq include abso-
lute, rather than relative (6) measurements, as well as the
lack of requirement for specialized instrumentation (4,7).
A general schema of k-Seq is described as follows (Figure
1): an input pool is designed containing sequences of inter-
est (e.g. candidate ribozymes). Aliquots of the input pool
are reacted under different experimental conditions, such as
different substrate concentrations or different time points.
Then, reacted and unreacted molecules are separated. Each
pool is converted to a DNA library and prepared for se-
quencing. Absolute measurement of reacted (or unreacted)
quantities is also performed to allow normalization. Reads
generated from HTS are subjected to quality control and
de-replicated to generate a ‘count’ table of the copy num-
ber for each sequence detected in a sample. Count data are
normalized to absolute abundance and fit to the appropri-
ate kinetic model to estimate the rate constants and other
parameters of interest.

Multiple issues could potentially limit the applicability
of k-Seq and related methods. Kinetic measurements re-
quire properly chosen experimental conditions (e.g. sub-
strate concentrations or time points) for a sufficient dy-
namic range. For a heterogeneous pool where different se-
quences have different optimal conditions, the conditions
chosen will represent a compromise for some sequences. For
example, in a single time-point (reacted versus unreacted)
experiment determining enzyme kinetics over 4096 RNA
substrates (6), the choice of reaction time would be opti-
mal for either highly active RNA substrates or less active
ones, but not all. Previous work determining kinetics for ri-
bozymes by k-Seq also showed that characterization of less
active ribozymes was limited when the kinetic model pa-
rameters (rate constant k and maximum amplitude of reac-
tion A) could not be independently estimated due to model
identifiability problems (2). While the number of experi-
mental conditions could be increased to address this prob-
lem, with HTS this potential solution would quickly be-
come prohibitively expensive in time and resources. There-
fore, it is important to rigorously understand how the choice
of conditions would affect the estimation of kinetic pa-
rameters and trustworthiness of measurements on each se-
quence.

Another consideration unique to HTS-based kinetic
measurements derives from the inevitability of sequencing
errors in the data. Sequencing error might misidentify a
molecule as a nearby sequence variant, and subsequently
change the quantification of both the true and incorrect se-
quences. This could be particularly problematic when one
sequence is present in high abundance relative to others,

and thus creates a relatively large number of misidentified
reads that confound the quantitation of related sequences.
It is important to note that this problem cannot be solved
by increasing the number of replicates or sequencing depth,
since the number of erroneous reads rises in proportion to
the number of reads (a systematic bias rather than random
noise).

A final concern is assessing the accuracy and precision of
k-Seq measurements. Using discrete count data (number of
reads of a particular sequence) as the approximation of a se-
quence’s relative abundance in the sample introduces some
complexity in assessing measurement accuracy, particularly
at low counts where large stochastic variation exists. One
approach taken in earlier works is to limit the library size
to thousands of sequences which are each present in high
copy number (high coverage of sequences) (1,6). However,
this requirement might unnecessarily restrict the applicabil-
ity of k-Seq and related methods. When extending the ap-
proach to larger libraries or libraries with uneven coverage
(e.g. a ‘doped’ variant pool or pool obtained from in vitro
selection), high error may be associated with measurements
of sequences with low counts (3,4,9). While one may simply
exclude sequences with counts lower than a cutoff value, it is
not obvious how to choose such cutoffs. Instead, it would be
desirable to estimate the uncertainty (e.g. confidence inter-
vals) on fitted parameter values for each sequence, given the
experimental scenario of a low number of replicates. This
approach would maximize the return of accurate informa-
tion from a k-Seq experiment.

In this work, we performed a k-Seq experiment on a
newly designed pool of variants based on ribozymes previ-
ously isolated from in vitro selection (2). These ribozymes
react with an activated amino acid substrate (biotinyl-
Tyr(Me)-oxazolone, or BYO) to produce aminoacyl-RNA,
and are characterized by pseudo-first order kinetics. Cou-
pled with theoretical and simulation studies, we systemati-
cally characterize model identifiability, accuracy, and preci-
sion of estimation from HTS data. We discuss key factors to
consider when optimizing experimental design for k-Seq ex-
periments. Lastly, we present a Python package of analysis
tools for users undertaking k-Seq experiments. Incorpora-
tion of these techniques and lessons into HTS-based kinetic
measurements should improve rigorous quantitative infer-
ence from similar experiments.

MATERIALS AND METHODS

Pseudo-first order kinetic model

The fraction of BYO reacted with ribozymes during the ex-
periments is small compared to the initial concentration of
BYO and to BYO hydrolysis in aqueous solution (2). With
this approximation, we modeled the kinetics of the reaction
using a pseudo-first order rate equation. Fixing the reaction
time and varying the initial BYO concentration was experi-
mentally expedient, as BYO degradation could be included
as a constant coefficient (�):

fi j = Ai
(
1 − e−αtki c j

)
(1)

where fi j is the reacted fraction for sequence i in sample j
with initial BYO concentration c j . The kinetics for sequence
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Figure 1. General scheme of k-Seq experiment and analysis. A heterogeneous input pool containing nucleic acids is reacted at different experimental
conditions (e.g. different substrate concentrations or different reaction time). Reacted and unreacted molecules are separated and either (or both) of these
fractions is prepared for high-throughput sequencing. The reads from DNA sequencing are processed to obtain a count table for each unique sequence
across samples, normalized by a standard, and abundances across samples are fit into a kinetic model to estimate parameters (e.g. rate constants). react.
frac. = reacted fraction.

i are characterized by Ai (the maximum amplitude of reac-
tion) and ki (the rate constant). A constant reaction time
t = 90 min was used, corresponding to the degradation co-
efficient α = 0.479, as measured in (2). The product ki Ai
was used as a combined activity measure and represents the
initial rate of the reaction.

Model identifiability for different k and A

Depending on the BYO concentrations, the pseudo-first
order kinetic model may be characterized as practically
unidentifiable (12) where k and A are sensitive to noise and
cannot be separately estimated. We evaluated this effect for
each sequence using bootstrapping (resampling data with
replacement; see below for details). We designed two met-
rics to score the model identifiability from bootstrapping
results: σA and γ = log10

σk×μA
σkA

, where σA, σk, σkA are the
standard deviations for A, k and the product kA, and μA is
the mean value of A, from bootstrapped samples for each
sequence. The score γ is the ratio of standard deviations
for the rate constant k over the product kA, scaled by esti-
mated A. If k and A are well-estimated independently, the
ratio would be close to 1 and γ would be close to 0; if k and
A are not estimated independently such that k has larger
variance than kA in estimation, γ would be larger than 0.

While bootstrapping can capture the noise in the experi-
mental measurements through resampling, we also sepa-
rately examined the convergence of fitting through 20 inde-
pendent runs with random initial values of k and Asampled
from Uniform(0, 10) min−1M−1 and Uniform(0, 1) respec-
tively, using the original data (no resampling). The conver-
gence of fitting was evaluated by the range of fitted Avalues
(�A = Amax − Amin) and used as a third candidate metric
for model identifiability (higher �A ∼ less identifiable).

To study model identifiability with controlled variables,
we created a simulated reacted fraction dataset contain-
ing 10 201 (1012) sequences with the log10 of true val-
ues of k and A on a 101-by-101 grid across the region
with log10 k ∈ [−1, 3] and log10 A ∈ [−2, 0]. The true re-
acted fraction f 0

i j for sequence i in sample j with initial
BYO concentration c j was calculated based on the pseudo-
first order rate equation (Eq. 1). To model the effect of mea-
surement noise, we added a Gaussian error term erri j on
the true reacted fraction f 0

i j with the variance equal to ε f 0
i j ,

where the ε is the relative error of the reacted fraction:

fi j = f 0
i j + erri j = Ai

(
1 − e−αtki c j

) + erri j

erri j ∼ Normal
(
0, ε f 0

i j

)
(2)



e67 Nucleic Acids Research, 2021, Vol. 49, No. 12 PAGE 4 OF 13

where fi j is the observed reacted fraction. We chose ε =
0, 0.2, 0.5, 1.0 to evaluate the effect of measurement error.
Negative values of fi j were reassigned to be zero. These sim-
ulated reacted fractions were then used to estimate ki and
Ai for each simulated sequence using least-squares fitting
as described below.

To study whether experimental and sequencing effort
would be best spent extending the substrate concentration
range vs. performing additional replicates, we simulated re-
acted fraction data for three different sets of BYO concen-
trations: (i) standard set: 2, 10, 50, and 250 �M with tripli-
cates, for 12 samples in total, as done previously to analyze
a pool after in vitro selection (2); (ii) additional replicates: 2,
10, 50 and 250 �M with four replicates each, for 16 samples
in total and (iii) extended substrate range: 2, 10, 50, 250 and
1250 �M with triplicates, for 15 samples in total, as done in
the variant pool experiment reported here.

Sequence variant pool for aminoacylation assay

Four DNA libraries were obtained from Keck
Biotechnology Laboratory, with the sequence 5′-
GATAATACGACTCACTATAGGGAATGGATCCAC
ATCTACGAATTC-[central variable region, length 21]-
TTCACTGCAGACTTGACGAAGCTG-3′ (nucleotides
upstream of the transcription start site are underlined).
For each library, the central region corresponded to a
21-nucleotide variable sequence, based on a ribozyme
family wild-type sequence (S-1A.1-a, S-1B.1-a, S-2.1-a
or S-3.1-a previously identified in (2), see Supplementary
Table S1 for sequences), with partial randomization at each
position (specified to be 91% of the wild-type nucleotide
and 3% of each base substitution at all 21 positions, i.e. a
‘doped’ pool). 60-90 �g RNA was transcribed from 500 ng
template DNA using HiScribe T7 RNA polymerase (New
England Biolabs) and purified by denaturing polyacry-
lamide gel electrophoresis (PAGE) with 0.5× TBE buffer,
as previously described (2). An equimolar mixture of these
four RNA libraries (the variant pool) was prepared for the
k-Seq experiment.

k-Seq experiment on the mixed pool of variants

Reactions were carried out in triplicates at 2, 10, 50, 250 and
1250 �M BYO for 90 min, following the incubation, RNA
recovery and reverse-transcription protocols used in (2).
Briefly, in each 50 �L k-Seq reaction, 2 �g total RNA (1.7
�M) was reacted with BYO in the aminoacylation buffer
(100 mM HEPES, pH 7.0, 100 mM NaCl, 100 mM KCl,
5 mM MgCl2, 5 mM CaCl2) for 90 min. The reactions
were stopped using Bio-Spin P-30 Tris desalting columns
(Bio-Rad) to remove unreacted substrates and placed on
ice. Reacted sequences were isolated by pull-down with
Streptavidin MagneSphere paramagnetic beads (Promega)
at a volume ratio of 1:1 and eluted with 95% formamide/10
mM EDTA for 5 min under 65◦C. 10% of eluted RNA
was taken to measure the total RNA amount using Qubit
and qPCR (see below). A ‘spike-in’ RNA was added as an
alternative quantification method (see below). RNA was
prepared for sequencing by reverse transcription and PCR
(RT-PCR), with primers complementary to the fixed se-
quences flanking the variable region (GATAATACGACT

CACTATAGGGAATGGATCCACATCTACGAATTC,
forward;CAGCTTCGTCAAGTCTGCAGTGAA, re-
verse). DNA from each of 15 samples was barcoded
and pooled together in equal proportions. A reverse-
transcribed unreacted sample was added at three times
the total amount of DNA of one reacted sample to have
similar total sequencing depth with each set of BYO
concentration triplicates. Pooled DNA was sequenced
on an Illumina NextSeq 500 with 150 bp paired-end
run (Biological Nanostructures Laboratory, California
NanoSystems Institute at UCSB), using a high output
reagent kit expected to produce > 400 million reads. To
confirm that the concentration of BYO was in excess during
the aminoacylation reaction, sequencing of the lowest BYO
concentration reaction (2 �M) showed that the fraction
of reacted RNA was ∼2×10−3. Given the initial RNA
concentration of 1.7 �M, the amount of BYO consumed
by aminoacylation was < 1% of the initial concentration.

Quantitation of total amount of RNA per sample

We used two methods to quantify the absolute amount of
RNA in k-Seq samples. Method 1 measured the amount of
RNA in the samples after elution using Qubit or qPCR. For
reactions carried out at 250 and 1250 �M, 10% of the RNA
recovered after elution was quantified with an Invitrogen
Qubit 3.0 fluorometer. If the recovered RNA was below
the limit of detection by Qubit, quantitation was done by
reverse-transcription-qPCR (same PCR primers as in the
previous section) using a Bio-Rad C1000 thermal cycler
with CFX96 Real-Time PCR block, SuperScript III RTase
(Invitrogen), Phusion® High-Fidelity Polymerase (New
England Biolabs), and SYBR Green (Bio-Rad, 0.5× stan-
dard concentration) (Supplementary Figure S1). Method 2
used an internal standard (spike-in sequence) and data were
normalized using sequencing results. A control spike-in se-
quence (5′-GATAATACGACTCACTATAGGGAATGG
ATCCACATCTACGAATTC-AAAAACAAAAACAA
AAACAAA-TTCACTGCAGACTTGACGAAGCTG-3′,
promoter underlined) was added to each sample before
reverse transcription. 0.04, 0.2, 1, 2 and 2 ng of spike-in
RNA was added to samples with 2, 10, 50, 250, 1250 �M
BYO concentration respectively. 10 ng of spike-in RNA
was added to the unreacted pool sample. The total RNA
recovered (Q j ) in sample j was calculated as

Q j = Nj − ns j

ns j
× qs j (3)

where Nj is the total number of reads in sample j , ns j is
the total reads of sequences within 2 edit distance (i.e. num-
ber of substitutions, insertions, or deletions) of the spike-in
sequence in sample j , and qs j is the quantity of spike-in se-
quence added to sample j after the reaction.

Processing of k-Seq reads

FASTQ files of de-multiplexed paired-end Illumina reads
were processed using EasyDIVER (13) to count the num-
ber of reads of each unique sequence in each sample. The
forward and reverse reads were joined using PANDAseq
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(14) with the options ‘-a’ to join the paired-end reads be-
fore trimming and ‘completely miss the point:0’ to enforce
absolute matching in the overlapped variable region (any
pairs with a disagreement between forward and reverse
reads were discarded), thus minimizing sequencing errors.
After joining, forward and reverse primers were trimmed
by PANDAseq using ‘CTACGAATTC’ (forward) and ‘CT-
GCAGTGAA’ (reverse) adapter sequences. Next, multiple
lanes for the same sample were combined and reads were
de-replicated to give unique sequences and counts. The gen-
erated count files were analyzed using the ‘k-seq’ python
package (https://github.com/ichen-lab-ucsb/k-seq). We col-
lected all detected sequences in unreacted and/or reacted
samples and discarded those that were not 21 nucleotides
long, with ambiguous nucleotides (‘N’), or within an edit
distance of 2 from the spike-in sequence. The absolute
amount (ng) for sequence i in sample j were quantified us-
ing total RNA recovered Q j and number of reads:

qi j = ni j

Nj − ns j
× Q j (4)

The reacted fractions for sequences in reacted samples
were further calculated as the ratio to the absolute amount
in the unreacted pool (q0 j ):

fi j = qi j

q0 j
(5)

To be considered analyzable for fitting, a sequence needed
at least one non-zero value among reacted samples as well as
a non-zero count in the unreacted sample; non-analyzable
sequences were discarded.

Experimental coverage of mutants in the variant pool

Coverage of mutants in the variant RNA pool was analyzed
from sequencing results of the unreacted pool. Unique se-
quences were classified into family centers (Hamming dis-
tance d = 0), single mutants (d = 1), double mutants (d =
2), triple mutants (d = 3), and others (d ≥ 4) based on their
Hamming distance (number of substitutions) to the near-
est family center (S-2.1-a, S-1A.1-a, S-1B.1-a or S-3.1-a).
The coverage fraction for a certain class of mutants was
calculated by dividing the number of unique sequences de-
tected by the number of possible sequences in each class
(4C(L, d)3d where C is the combination operator to select d
elements from a set of size L, where L = 21 is the length of
the variable region, and the factor 4 is the number of fami-
lies in the pool).

Point estimation of model parameters

Model parameters k and A for each sequence were esti-
mated using least-squares fitting on reacted fractions with
different initial BYO concentrations. Least-squares fittings
were performed using the ‘optimize.curve fit’ function of
the ‘SciPy’ package in python with ‘trust region reflective’
(trf) method. The initial values of k and A were sampled
from uniform distribution between 0 and 1. The bounds
[0, 1] were applied on A values and [0,+∞) on k values.
The tolerances for optimization termination (ftol, xtol, gtol)
were kept as default (10−8). Optimal k, A determined from

all sample points for a sequence were reported as point es-
timates.

Simulated count data based on the experimental pool

To best resemble the experimental pool and conditions, we
simulate the k-Seq pool dataset from experimentally mea-
sured values. We sampled M = 106 sequences with param-
eters (pi0, ki , Ai ) estimated in the k-Seq experiment on the
mixed variant pool, where pi0 is the relative abundance for
sequence i in the unreacted pool (normalized to 1 after sam-
pling) and ki , Ai are point estimates from fitting. We used
the pseudo-first order rate equation (Eq. 1) to calculate the
reacted fraction fi j for each sequence with initial BYO con-
centrations from the extended substrate range and tripli-
cate samples. The relative abundance in the simulated re-
acted samples was pi j = pi0 fi j

M∑

r=1
pr0 fr j

. We then used the multi-

nomial distribution Multinomial(Nj , p1 j , p2 j , . . . , pMj )
(where Nj = 40M, yielding a similar mean count per se-
quence to that observed in the experimental pool), to model
the process of sequencing by sampling Nj reads for each
sample (unreacted and reacted). To simulate total RNA re-
covered, we sampled from Normal(μ j , 0.15μ j ), where μ j =
M∑

i=1
pi0 fi j is the total RNA amount reacted in the mixed pool

reaction and 0.15 is the relative error. The value of the rela-
tive error was based on the relative standard deviation cal-
culated from quantification using the spike-in or by direct
RNA amount quantification (Supplementary Figure S2).

Uncertainty estimation using bootstrapping

The uncertainty of estimation was assessed using boot-
strap sampling of the relative residuals. Let fi j be the re-
acted fraction for sequence i in reacted sample j , and
f̂i j be the fitted value from point estimation. For each se-

quence, we calculated the relative residual as ri j = fi j − f̂i j

f̂i j
.

Each bootstrapping process resampled the relative residu-
als for sequence i (with replacement) to the same sample
size (r̂i1, r̂i2, · · · , r̂i J), then applied the resampled relative
residuals to f̂i j with proper scaling (i.e. (1 + r̂i j ) f̂i j ) as boot-
strapped data points. Least-squares fitting was performed
on each set of bootstrapped data points for which k, A, and
kA values were recorded. Sample mean, standard deviation
(s.d.), median, and estimated 95% confidence interval (CI-
95, as mean ± 1.96 s.d. or [2.5-percentile, 97.5-percentile])
on k, A and kA were calculated from bootstrapped results
for each sequence.

We performed least-squares fitting on data from the
mixed pool of variants (reported in this paper), data from
the previously published selection (2), the simulated reacted
fraction dataset (reported in this paper), and the simulated
pool dataset (reported in this paper). Bootstrapping was
performed for 100 re-samples for each sequence for uncer-
tainty estimation. To compare the performance of boot-
strapping, we also applied the triplicates method, used pre-
viously (2), to the simulated pool dataset, with each repli-
cate in a BYO concentration assigned to one of three series.

https://github.com/ichen-lab-ucsb/k-seq
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Each of the simulated triplicate series was fitted separately
to calculate the standard deviation in estimating k, A and
kA for each sequence.

‘k-seq’ python package for data analysis

The k-Seq analysis pipeline is open-source and given in
a python package, ‘k-seq’, for future practitioners. The
package includes pre-processing of count data from raw
FASTQ files using EasyDIVER (13), filtering sequences
and samples, quantification of individual sequences using
total nucleic acid amount or the spike-in sequence, kinetic
model fitting with bootstrapping, data simulation, as well
as data analysis and visualizations. The package contains
both pipeline scripts for standard data analysis and python
modules to quickly build customized pipelines. Read pre-
processing, sequence quantification, and auxiliary data sim-
ulation are included in the ‘data’ submodule. k-Seq fitting
with bootstrapping is implemented in the ‘estimate’ mod-
ule. The package in its current form uses pseudo-first or-
der kinetics, but it can be used to fit other reaction kinet-
ics by modifying the fitting equation (Supplementary Text
S1). See GitHub (https://github.com/ichen-lab-ucsb/k-seq)
for examples and usages.

RESULTS

Model identifiability depends on kinetic coefficients, experi-
mental conditions and measurement error

We used the simulated reacted fraction dataset to evaluate
the effect of kinetic coefficients, measurement error, and ex-
perimental conditions on model identifiability for pseudo-
first order kinetics, specifically if k and A can be separately
estimated. We first evaluated the model identifiability qual-
itatively, for sequences selected from 6 regions over the pa-
rameter space of log10(k) from -1 to 3, log10(A) from -2 to
0, and kA > 0.1 min−1M−1 (Supplementary Figure S3-S9).
In each region, sequences fitted in repeated fitting or boot-
strapping were sampled for visual evaluation of the separa-
bility of k and A, under various measurement error rates ε.
As summarized in Supplementary Table S2, sequences with
higher k, A values and lower ε are more likely to be separa-
ble.

To quantify separability for individual sequences, we cal-
culated three metrics: �A or the range of A across repeated
fittings (no resampling); σA, or the standard deviation of A
from bootstrapping samples; and γ , a measure of how noisy
the separate estimation of k and A is compared to estimat-
ing the product kA. �A was able to identify sequences with
numerically unstable fitting results which have small k, A
values, but was not able to identify sequences whose fitting
optima were sensitive to noise in the data. Almost all the se-
quences from the 6 selected regions each converged to a uni-
form optimum in repeated fitting, and the convergence was
insensitive to the level of noise. In contrast, bootstrapping
results account for noise in the data, and the optima from
fitting subsampled data points did not always converge, pro-
viding more comprehensive separability information than
convergence of multiple fittings. By comparing the distri-
bution of each metric for sequences in the selected regions,

both σA and γ reflected the trend of model identifiability ob-
served by examining individual curves: higher metric value
corresponded to less separable parameters of a sequence
(Supplementary Figure S10). In practice, we found σA and γ
aligned equally well with human intuitions (Supplementary
Figure S11) and with each other (Supplementary Figure
S12) in evaluating model identifiability from variant pool
k-Seq data.

Using metric γ , we further assessed the effects of exper-
imental conditions and measurement error on model iden-
tifiability (Figure 2). Model identifiability depends on the
true k and A values, choice of substrate concentrations, and
the level of measurement error. Controlling the experimen-
tal design and measurement error, k and A were more sep-
arable for sequences with higher k and A value. Comparing
the sequences for a given kA, model identifiability appears
to be more dependent on k than A, especially for cases with
lower measurement error (e.g. relative error ≤ 0.5). To as-
sess the effect of experimental conditions, we compared the
case of adding one more replicate to each reaction (4 ver-
sus 3) to adding a higher concentration of BYO (1250 �M)
in triplicate. Despite having more samples, adding another
replicate did not change the region of sequences with iden-
tifiable models. However, adding a higher concentration of
substrate shifted the boundary of separability on kA values
by a factor of ∼10, effectively increasing the dynamic range
of the k-Seq assay (Figure 2A). Additionally, the difficulty
of separating k and A increased when the measurements
were noisier (Figure 2B). Sequences with separable parame-
ters at low measurement error (e.g. kA ∼ 10 min−1M−1 and
relative error < 0.2) became non-separable when the mea-
surement error was large (e.g. relative error = 1.0).

While the ability to estimate k and A separately is of gen-
eral interest for kinetic measurements, we found they could
not be estimated separately for most of sequences within a
Hamming distance of 2 to the family centers in the variant
pool (Supplementary Figure S11). Thus, for the purpose of
analyzing accuracy and uncertainty for k-Seq over a wide
range of activities (analysis below), we focus on the estima-
tion of the product kA.

k-Seq of ribozyme mutants: data pre-processing

We conducted the k-Seq experiment on a multiplexed sam-
ple containing mixed pools of variants of ribozymes S-1A.1-
a, S-1B.1-a, S-2.1-a and S-3.1-a, using the expanded ex-
perimental conditions evaluated above (2–1250 �M sub-
strate). A known amount of an unrelated RNA sequence
(the ‘spike-in’ sequence) was added to each reaction to aid
absolute quantitation. After demultiplexing the reads, we
obtained 39 151 684 paired-end reads in the unreacted sam-
ple and a mean of 13 057 929 (s.d. = 4 359 249) paired-
end reads in reacted samples (Supplementary Figure S13A).
Around 90-92% of the reads were successfully joined in each
sample (Supplementary Figure S13B, Supplementary Table
S3). Dereplication, removal of reads with length not equal
to 21, removal of reads with ambiguous nucleotides (‘N’),
and removal of the spike-in sequence reads yielded a count
table of the number of reads for each unique sequence de-
tected in each sample. On average 87.9% (s.d. = 1.1%) of
total reads were preserved in the samples.

https://github.com/ichen-lab-ucsb/k-seq
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Figure 2. Effect of experimental factors on model identifiability to separately estimate k and A. Identifiability was evaluated using metric γ , based on the
simulated effects of (A) choice of BYO samples (with relative error = 0.2) and (B) relative error (using the BYO series of the extended substrate range).
Reacted fractions for 10 201 (1012) simulated sequences with true k, A in the parameter space shown in the figure were fit to the pseudo-first order model,
and γ values for each sequence were calculated from 100 bootstrapped samples. Higher values of γ indicate that k and A are less separable. (A) Choosing
a wider range of BYO concentration is more effective in improving the region of identifiable data compared to adding more replicates of the same BYO
concentrations. (B) With higher measurement error, k and A become increasingly difficult to estimate separately.

In principle, in order to calculate the reacted fraction with
at least one non-zero value for fitting, a sequence must be
detected in the unreacted sample (denominator) and in at
least one of the reacted samples (numerator). Using this ini-
tial criterion, 764 756 valid unique sequences were consid-
ered to be analyzable for least-squares fitting to a pseudo-
first order kinetic model, which comprised 77.9% of total
reads in the unreacted sample and an average of 87.7% (s.d.
= 0.6%) of total reads among reacted samples (Supplemen-
tary Figure S13B, Supplementary Table S3).

Absolute quantitation of sequence concentration

While the relative abundance of each sequence in a par-
ticular reaction sample can be calculated by dividing read
counts by the total reads in each sample, calculation of the
reacted fraction of each sequence requires comparing the
absolute quantity of each sequence in each sample to the
quantity of that sequence in the unreacted sample. This
can be done by measuring the absolute RNA quantity in
each sample. We compared two methods: (i) spiking in a se-
quence at a known concentration into each sample, provid-
ing a conversion between the number of reads and absolute
concentration in each sample; or (ii) measurement of the to-
tal absolute RNA concentration of each sample by Qubit or
qPCR. Sample quantitation by both methods agreed well
with each other (Figure 3), with both having comparable

Figure 3. Comparison of RNA quantitation methods for k-Seq. Total
RNA amount quantified for samples incubated with different BYO con-
centrations, determined by spike-in method vs. direct quantification using
Qubit or qPCR, correlates well (Pearson’s r = 0.999, P-value = 2.39 ×
10−21) and with comparable relative standard deviation (Supplementary
Figure S2). Error bars show standard deviations calculated from triplicates
for reacted samples.
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relative standard deviation among triplicates (Supplemen-
tary Figure S2). Further analysis was done based on the sec-
ond method for quantitation, since the first method is dis-
advantageous in reducing the HTS reads available for other
sequences and requiring additional bioinformatic steps.

Distribution of ribozyme mutants in the variant pool

For each chosen ribozyme (S-1A.1-a, S-1B.1-a, S-2.1-a, S-
3.1-a), a variant pool was chemically synthesized such that
each position had the wild-type identity with 91% proba-
bility, with non-wild-type residues being equally probable
(i.e. 3% each). In theory, each variant pool should con-
tain ∼14% wild-type (d = 0), ∼0.45% of each single mu-
tant (d = 1), and ∼0.015% of each double mutant (d = 2),
or a ratio of ∼0.033 for the abundance of a d-th order mu-
tant to a (d – 1)-th order mutant (Supplementary Text S2,
S3). The wild-type probability was selected to maximize the
relative abundance of double mutants (Supplementary Fig-
ure S14). We sequenced the unreacted pool and categorized
each sequence read according to ribozyme families (1A.1,
1B.1, 2.1, 3.1) and the Hamming distance to the family cen-
ter. Sequencing results confirmed that the mixed variant
pools followed the design (Figure 4A). The variant pools
contained at least ∼1000 reads per sequence for d ≤ 2 (up to
double mutants, see Figure 4A and Table 1), and a mean of
39.7 reads per sequence for d = 3. Thus, the unreacted pool
showed good coverage of analyzable sequences for d ≤ 3
(Table 1).

Sequencing errors of a common sequence can spuriously
inflate the apparent counts of a related sequence, a particu-
larly acute problem if the pool is uneven and a small number
of sequences (e.g. wild-type sequences) are very highly rep-
resented. Consequently, sequencing errors could potentially
confound k-Seq results and lead to incorrect estimation of
the kinetic coefficients. This may be a particular problem
for less abundant or less active sequences that are closely
related to more abundant and active sequences (e.g. result-
ing in estimation of parameters being biased toward those
of the abundant sequence). There are two distinct effects re-
lated to this problem. First, the number of reads observed
for a given sequence is lower than the true number, due to
erroneous reads that are assigned to other sequences. Sec-
ond, the number of reads observed for a sequence is inflated
by the contribution of erroneous reads arising from related
sequences. The combination of the two effects could change
the observed sequence abundances substantially at high se-
quencing error rate (Figure 4B). In our variant pool, con-
taining a 9% mutation rate, a sequencing error rate of 1%
could cause >10% of reads for a mutant (d ≥ 1) to be the
result of sequencing error from its neighbors (Supplemen-
tary Figure S15). On the other hand, the most abundant
sequences in the doped pool, wild-type sequences (d = 0),
were least affected by the sequences from its neighbors. This
problem can be mitigated by decreasing the error rate. If the
sequence length is small enough to be covered by paired-
end sequencing, requiring absolute matching of the over-
lapped region between the paired-end reads of a single se-
quence during joining should result in compounded fidelity
(e.g. from an error frequency of 1% to 0.01%). With a se-
quencing error rate of 0.01%, the fraction of spurious reads

from neighboring sequences was reduced to <0.5% for up to
quadruple mutants (d ≤ 4) without significant loss of reads
during joining (Supplementary Figure S13B, Supplemen-
tary Table S3).

Accuracy of k-Seq estimation of model parameters and un-
certainty

To evaluate the accuracy of k-Seq for estimating kinetic
model parameters, sequences with read counts in unreacted
and reacted pools were simulated using parameters (k and
A) estimated from the variant pool k-Seq experiment as the
‘ground truth’. The data set was constructed to simulate an
experiment in which ribozymes were reacted with the ex-
tended BYO concentration series in triplicate. These data
were fitted according to the pseudo-first order kinetic model
to estimate k and A. We expected that sequences having a
low number of counts in the data set would show reduced
estimation accuracy. To characterize this effect, we plotted
the ratio of the point estimate of kA to the true kA against
the average number of counts across the simulated samples
(Figure 5A). We found that the relative error in estimation
for sequences with high mean counts (>1000) was <10%
and <2-fold for a mean count around 100. However, the
error increased substantially as the mean count decreased
<100. Thus, sequences with low mean counts (especially
<100), either from low abundance in the input pool or low
abundance in the reacted pool (due to low activity), were
susceptible to high error in estimation. Meanwhile, very
high mean counts (e.g. >10 000) would not substantially
benefit the measurement, as other sources of experimental
error would likely be greater (2,15). Thus, the results indi-
cate that >1000 mean count would be favorable for estima-
tion, with >100 counts being acceptable if a 2-fold error in
estimation is tolerated.

We also compared the k-Seq-estimated kA for selected
sequences with an independent experimental measurement,
namely gel-shift assays reported in (2). For seven unique se-
quences measured in both techniques, the results were well-
correlated (Pearson’s r = 0.835, P-value = 1.94 × 10−2

and Spearman’s ρ = 0.750, P-value = 5.22 × 10−2; Supple-
mentary Figure S16). This level of correlation is similar to
that seen between the two k-Seq experiments (see section on
Precision of k-Seq estimation).

While the above analysis demonstrated the accuracy of
point estimation, a reliable quantification of uncertainty is
required to assess the precision in estimating from real data
when the ground truth is unknown. We therefore explored
the accuracy of uncertainty quantification using bootstrap-
ping. Bootstrap resampling (n = 100) was used to estimate
the 95% confidence intervals (CI-95) in two ways: first, us-
ing mean and standard deviation of estimated kA (mean
± 1.96 s.d., assuming a normal distribution), and second,
using the 2.5-percentile to 97.5-percentile confidence inter-
vals (normal distribution not assumed), for sequences in
the simulated pool dataset that were analyzable (602 246
sequences in total). A sensible evaluation of CI-95 estima-
tion is the fraction of sequences with true kAvalue included
in the estimated CI-95. If the estimation were correct, the
CI-95 would include the true value for roughly 95% of se-
quences. We found bootstrapping gave an accurate CI-95
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Figure 4. Distribution of mutants in the pool and the effect of sequencing error. (A) Relative abundance (counts) of sequences in the unreacted pool (four
ribozyme families, total number of reads = 32 931 917), categorized by Hamming distance to its nearest family center. Observed abundance of different
classes was similar to the expected number of counts (black dashed line). (B) The effect of different levels of sequencing error (ξ ) to the expected observed
abundance as the ratio to the true abundance for mutants with different orders (d) in a variant pool with 9% mutation rate. Due to the mixed effects of
losing counts from being misidentified to a neighboring sequence and gaining counts from the misidentification of a neighboring sequence, the observed
abundance for a sequence would either decrease (d = 0, 1) or first increase then decrease (d = 2, 3, 4) as the sequencing error increases. See Supplementary
Text S3 for calculation details.

Table 1. Coverage of local sequence space in the variant pool containing four ribozyme families. N/A = not applicable. s.d. = standard deviation. The
calculation of expected counts in the unreacted pool does not include effects of sequencing error

Order of
mutants (d)

# of unique
sequences

# of analyzable
sequences

Fraction of possible
unique sequences that

were analyzable
Mean counts in the
unreacted pool (s.d.)

Expected counts in the
unreacted pool

0 4 4 1.000 1 243 500 (151 356) 1 136 125
1 252 252 1.000 37 599.9 (10 607.1) 37 455
2 7560 7560 1.000 1198.3 (454.8) 1234
3 143 640 143 482 0.999 39.7 (18.9) 40.7
4 1 939 140 590 115 0.304 1.7 (1.3) 1.34
≥5 N/A 23 343 N/A 0.7 (0.5) N/A

estimation by either method. 96.5% of sequences included
the true kA within the estimated CI-95 from 2.5-to-97.5-
percentiles, and 96.4% did so when estimating CI-95 from
the mean and standard deviation. Of note, the fractions of
sequences with their true kA included in the CI-95 were rela-
tively consistent regardless of their mean counts (Figure 5B)
or true kA values (Supplementary Figure S17), indicating
that these methods could be used broadly to quantify uncer-
tainty for sequences across different abundance or activity
values. For comparison, we also examined uncertainty es-
timation using the mean and standard deviation estimated
from triplicates (mean ± 1.96 s.d.). In our simulated pool
dataset, 83.5% of sequences had the true kA value included
in the CI-95 estimated from triplicates, indicating that un-
certainty is underestimated for a substantial fraction of se-
quences (i.e. overconfident in estimated values) (Figure 5B).

Precision of k-Seq estimation: experimental data set

The precision of k-Seq measurement for data from the vari-
ant pool experiment was evaluated in two ways. First, given
the reasonable accuracy obtained by the bootstrapping pro-

cedure, we calculated the fold-range (97.5-percentile divided
by 2.5-percentile) estimated from bootstrapping (n = 100).
While there was a slight tendency for sequences with higher
kA to have higher estimation precision (lower fold-range;
Supplementary Figure S18) in each order of mutants, the
precision was more evidently dependent on the mean counts
value for sequences, both within and across groups (Figure
6A). All wild-type sequences and most single and double
mutants had CI-95 spanning less than one order of magni-
tude (fold-range < 10). Triple mutants had generally lower
precision, consistent with their lower counts.

Precision as measured above represents variation among
replicates done in the same experimental batch but does not
include variation between different k-Seq experiments. To
understand the precision of estimates from independently
designed and separately executed k-Seq experiments, we
compared the results from the variant pool k-Seq reported
here to a previously reported k-Seq assay from a selection
pool (2). 2513 unique sequences were found for which the
2.5-percentile for kA, estimated from bootstrapping, was
greater than the baseline kA of 0.124 min−1M−1 (measured
in (2)) in both experimental data sets. Point estimates of kA
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Figure 5. Accuracy of parameter estimation by k-Seq. (A) Dependence of accuracy (ratio of estimated kA to true kA) on mean counts across all simulated
samples (including the unreacted pool sample). The dashed lines correspond to ratios as labeled. Ratios >100-fold or <0.01-fold are shown at the borders
of the plot. (B) Fraction of sequences for which the CI-95, estimated using bootstrapping or using triplicates, includes the true kA values, for sequences
with different mean counts across all samples. Sequences were ranked by mean counts (from highest to lowest) and binned in sets of 25 000 sequences.
Each data point indicates the fraction of CI-95 that includes the true values in each bin.

Figure 6. Precision of estimation by k-Seq. (A) Fold-range (97.5-percentile/2.5-percentile) of kAestimation depended on the mean counts. Increasing mean
counts increases precision, as shown by the relationship of fold-range with mean counts across different orders of mutants. For d ≥ 2, only 1000 sequences
were randomly selected for visualization. (B) Alignment between estimated kA from two independently conducted experiments (experiment from (2), and
the k-Seq experiment reported here). Only sequences with 2.5-percentile higher than baseline catalytic coefficient (kA = 0.124 min−1M−1, reported in (2))
were included. Each point represents a sequence whose color reflects the minimum of mean counts (between two experiments).

for these sequences from the two experiments were com-
pared to each other (Figure 6B). For sequences with suffi-
cient counts (e.g. mean counts of at least 1000 in both exper-
iments, corresponding to 39 sequences), the results from the
two experiments were well correlated (Pearson’s r = 0.896,
P-value = 1.20 × 10−14; Spearman’s ρ = 0.864, P-value =
1.38 × 10−12), indicating good repeatability of those mea-
surements from different experiments. As expected, lower-
ing the count threshold gave a decrease in repeatability:
sequences with mean counts greater than 100 in both ex-
periments (119 sequences) showed Pearson’s r = 0.183 (P-
value = 4.68 × 10−2) and Spearman’s ρ = 0.460(P-value =

1.44 × 10−7). For analyzable sequences with mean counts
<100 in either experiment, weak to no correlation was
found (Pearson’s r = –0.0234, P-value = 2.52 × 10−1; Spear-
man’s ρ = 0.0505, P-value = 1.34 × 10−2).

DISCUSSION

In this work, we addressed several issues related to the rigor
of inferring kinetic model parameters from k-Seq analysis,
namely model identifiability, sequencing error, and estima-
tion of uncertainty.
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A model is not identifiable when the optimal set of pa-
rameters fitting the model cannot be uniquely determined
due to noise in the data (12,16). For the ribozymes exhibit-
ing pseudo-first order kinetics studied here, the parame-
ters k (rate constant) and A (maximum reaction amplitude)
could not be separately estimated when the data collected
did not show saturation behavior, i.e. the data fell into the
initial linear region of the curve. While it would be possible
to adjust the substrate concentrations to mitigate the prob-
lem for individual sequences, it is impossible in k-Seq exper-
iments to apply optimal conditions for each sequence due to
pool heterogeneity. We previously reported the product kA
as the measure of chemical activity (2). However, separate
estimation of k and A is still an important goal. In general,
we found that higher values of k or A and lower noise level
yield better separability. Of the metrics (σA and γ ) we calcu-
lated from bootstrapping results, both showed good perfor-
mance scoring the separability of k and A. These metrics al-
lows one to semi-quantitatively assess separability, in com-
bination with experimental intuition, to determine which
results can be reasonably reported as k and A separately vs.
reported as the product kA.

Using a simulated data set, we studied how an experi-
ment might be designed to increase the number of sequences
in the separable region. Extending the substrate concentra-
tion range (to 1250 �M) expands the region of separable
sequences by pushing the lower bound on k or A down by
roughly one order of magnitude. By contrast, adding an-
other replicate to each substrate concentration did not sub-
stantially change the separability map. Thus, we used the
extended substrate range in the present k-Seq experiment to
provide a wider dynamic range. Even so, a substantial frac-
tion of sequences exhibited non-separable kA, so in prac-
tice the choice of parameters to be reported depends on the
goals of the experiment (e.g. for maximum exploitation of
the data, all of k, A, and kA could be reported along with
σA or γ ).

Experimental biases from non-specific retention of RNA
and PCR amplification are two possible concerns for k-Seq-
type experiments. In the aminoacylation ribozyme system
used here, non-specific binding to the streptavidin beads
was found to be small and thus should have little impact
on RNA quantification (Supplementary Figure S19). For
systems with substantial non-specific binding, a control ex-
periment without substrate may be used for baseline sub-
traction to better estimate the amount of RNA isolated
due to reaction. Differences in PCR amplification efficiency
could potentially affect kinetic estimation. Since this bias
is largely driven by extremes in GC content (17,18), some
pool designs, such as that used here (GC content ranging
from 42-46% for the wild-types and 40-48% for the dou-
ble mutants), are less likely to exhibit substantial bias. For
pools in which PCR bias is anticipated to be larger, we sug-
gest the following experimental design. If the number of
cycles is kept constant across samples, including the unre-
acted sample, then the factor by which PCR biases affect
the true quantity should be constant across samples for a
given sequence. Because the reacted fraction is determined
by the ratio between the amount of the sequence in the re-
acted sample versus the unreacted sample, this sequence-
specific factor should cancel out and thus minimize the ef-

fect of PCR bias. Another simple measure to reduce PCR
bias is to minimize the number of PCR cycles. In our case, 10
or fewer cycles were used to recover RNA. Finally, another
method to correct for PCR bias could also be applied, such
as unique molecular identifiers (UMI) to track and dedu-
plicate original sequences (19). Ultimately, k-Seq or similar
assays should be validated by measurement of individual
sequences using an appropriate orthogonal technique. Esti-
mation of error in the orthogonal technique is also impor-
tant to assess the agreement between the two techniques.
The assay presented here was validated by gel-shift mea-
surement of the kinetics for 10 individual sequences (Sup-
plementary Figure S16) measured in (2). Ideally, a high
Pearson correlation coefficient should be seen across the dy-
namic range of the assay. The Spearman correlation is rele-
vant in cases where there is a nonlinear relationship between
measurements in different assays (such as may be caused
by a saturation effect in one assay), or in case the relative
ranking of sequences is more important than the absolute
measurements.

Using DNA sequencing counts to quantify the abun-
dance of sequences has two consequences that need consid-
eration: sequencing error that mis-identifies a sequence as a
related sequence, and stochastic noise in measurement for
sequences associated with lower counts. The first is a par-
ticular problem when sequences are close in the sequence
space (e.g. mutational analysis on a variant pool) and the
pool is quite uneven. In this case, sequencing errors can con-
tribute a non-trivial portion of reads to less abundant neigh-
bor sequences, effectively mixing the k-Seq measurement for
these less abundant sequences with those of their neighbors.
While model-based sequencing error correction could be at-
tempted (20,21), this problem can also be circumvented by
paired-end reads. By enforcing absolute matching during
the joining process, the error rate of sequencing (e.g. ∼1%
per base) can be substantially decreased (e.g. to 0.01% per
base) if the entire sequence was read in both directions.
While this decreases the number of reads that passed quality
control (Supplementary Table S3), the benefit is important
as misidentification from this level of sequencing error was
essentially negligible for observed abundances (Supplemen-
tary Figure S15).

Low counts had a major effect on the accuracy of es-
timation of kinetic coefficients. In practice, we found that
the average counts for a sequence across samples (i.e. mean
counts) was a better guide for estimation accuracy com-
pared to counts in the input pool (Figure 5A, Supplemen-
tary Figure S20). Accuracy was good for sequences above
a certain threshold of mean counts (e.g. 100 reads per sam-
ple) but decreased markedly below this. At the same time,
the benefit from large counts (e.g. 10 000 reads per sam-
ple) was marginal and other experimental factors likely con-
tribute greater error. The activity of a sequence also af-
fected the accuracy, as lower counts were found in the re-
acted samples for low activity sequences. Nevertheless, our
simulated count data showed that low activity sequences
(kA < 1 min−1M−1) still yielded reasonable accuracy (∼2-
fold error) if abundance in the initial pool was high enough
(e.g. >1000 counts, Supplementary Figure S21). Thus, k-
Seq can be effective for low activity sequences if they are



e67 Nucleic Acids Research, 2021, Vol. 49, No. 12 PAGE 12 OF 13

abundant in the pool, and the accuracy of estimation could
be improved by increasing sequencing depth or altering the
library design. To check that low abundance in the unre-
acted pool does not cause the analysis to miss potentially ac-
tive sequences, one may look for sequences with high mean
counts in the reacted samples that do not appear in the un-
reacted sequence reads. The experimental design used here
did not yield any such cases (Supplementary Table S3), but
this check should be performed for other experiments when
needed.

Estimating uncertainty is important for k-Seq experi-
ments, but replicates are likely to be limited due to the ex-
pense associated with HTS. Bootstrapping simulates virtual
replicates by resampling data (in this case, the relative resid-
uals from fitting) with replacement to its original size. The
results can be used to estimate population characteristics,
such as confidence intervals for estimated model parame-
ters. Indeed, bootstrapping results reflected the true 95%
uncertainty level more appropriately than the standard de-
viation estimated from triplicate experiments, as the latter
tended to underestimate the uncertainty. As seen for the ac-
curacy of low count sequences, precision showed a steep
drop-off when mean counts dropped <100 (Figure 6A),
while large counts also did not significantly improve pre-
cision. Using bootstrapping instead of replicates also pro-
vided resampling data to calculate σA and γ for model iden-
tifiability analysis. As modern computational resources be-
come cheaper and easier to access, bootstrapping, despite its
higher computation cost, becomes more affordable. There-
fore, while experimental replicates are valuable for control-
ling for some sources of error, we suggest that bootstrap-
ping analysis is an excellent method for properly estimating
errors and understanding model identifiability.

To maximize coverage, or the number of sequences with
estimated model parameters having acceptable accuracy
and precision, it is desirable to maximize the number of
sequences satisfying a minimal count requirement without
spending excessive sequencing resources on abundant se-
quences. In the present experiment, we had approximately
full coverage for single and double mutants in each fam-
ily, for which the measurement precision may be considered
reasonable (fold-range < 10; mean counts > 10) (Figure
6A). While HTS technology enabled the kinetic measure-
ment for large pools with high richness (number of unique
sequences), the practical coverage for k-Seq is affected by
pool evenness, as highly uneven pools may have many se-
quences with insufficient counts for precise estimation. Such
pools may result from enrichment after selections or from
variant pool synthesis of ribozyme variants exploring many
mutants of a given wild type. For enriched pools from selec-
tion experiments, the pool evenness usually decreases dur-
ing the selection. For doped pools, evenness is tuned by
the ratio of wild-type nucleotides at each position. In the
analysis of BYO-aminoacylation ribozymes presented here,
the designed variant pool was more even than the selec-
tion pool from which these ribozymes were derived (Sup-
plementary Figure S22); thus k-Seq analysis of selected ri-
bozymes may be improved by designing a new pool rather
than directly analyzing the selected pool itself. The design
of the variant pool used here was optimized for maximum
representation of double mutants (mutation rate � = 0.09),

yielding >1000 reads per sequence at a sequencing depth of
107 reads per sample (Supplementary Text S2, Supplemen-
tary Figure S14). Increasing � would decrease the number
of reads of double mutants while increasing the number of
reads of triple and higher-order mutants. However, due to
the very high number of possible triple mutants and limited
sequencing depth (∼107) done at the time, triple mutants
would have had <100 counts on average even at an � op-
timized for them. Other experimental designs may choose
to explore higher-order mutants at a cost of lower estima-
tion certainty, depending on the purpose of the investiga-
tion. Increasing sequencing depth (e.g. >108 reads, which is
now readily available), would enable complete coverage of
the triple mutants at reasonable counts per sequence (>100
and possibly >1000), such that a choice of higher �, such as
0.15, could give both full coverage of the triple mutants and
good estimation of kinetics. Alternatively, different pool
synthesis methods (e.g. the precise synthesis of large uni-
form oligo pools (22)) that allow increased evenness would
allow greater sequence exploration.

In this work, we presented a model analysis pipeline to
apply k-Seq to a pseudo-first order kinetic system with vary-
ing initial substrate concentrations. This pipeline can be
readily applied to any kinetic model with a closed integral
form, including first-order kinetics with varying time and
second-order kinetics (Supplementary Text S1). Pool com-
position and the resulting sequencing coverage are critical
parameters of the k-Seq measurement. Greater evenness in
the samples may be achieved in the near future by emerging
pool synthesis technologies as well as by improvements in
sequencing technology to achieve greater total sequencing
depth. With bootstrapping, data with low counts can be as-
sessed with estimated uncertainty rather than discarded. On
the other hand, systematic errors due to sequencing errors
cannot be assessed by replicates or bootstrapping analysis;
instead, effort would be well-spent reducing sequencing er-
rors, and the degree to which results might be biased by the
resulting error rate should be kept in mind when interpret-
ing the data. Attention to these issues is important for ful-
filling the promise of kinetic sequencing and related tech-
niques for providing unprecedented insights into genotype-
phenotype relationships.
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