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We reviewed the many discoveries in cell biology, made since the 17th century, which have
been based on red blood cells (RBCs). The advances in molecular and structural biology in
the past 40 years have enabled the discovery with these cells, most notably, of the first
water channel protein (WCP) called today aquaporin1 (AQP1). The main aim of our work
reviewed was to examine by light and electron microscopy a very wide range of RBCs from
reptiles, birds, monotremes, marsupials and placentals, in order to estimate from these
images the RBC cell volume and surface area. The diffusional water permeability of the
RBC membrane from these species has further been measured with a nuclear magnetic
resonance (NMR) spectroscopy technique. The significance of the observed permeability
of RBCs to water and possible influences on the whole body are discussed.
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RED BLOOD CELLS AS OBJECTS OF STUDIES IN CELL AND
MOLECULAR BIOLOGY OVER CENTURIES

Naked-eye inspection of blood at phlebotomy as part of medical diagnosis was practiced at least
2,000 years ago. However, only after the explosion of interest in microscopy in the 17th century did
the examination of the constituents of blood become possible and RBCs were seen. The Dutch
microscopist, Antoni van Leeuwenhoek (1632–1723), is credited by many (e.g., De Robertis, 1970)
with this discovery. In a critical analysis of the discovery of blood cells, Hajdu, (2003) concluded that
the Dutch naturalist Jan Swammerdam (1637-1680) was the first person to observe RBCs under the
microscope. However, Antoni van Leeuwenhoek described the size and shape of “red corpuscles” and
rendered the first illustration of them in a letter in 1665 to Swammerdam (Letter 42 of Arcana
Natura, 1695). The dispute over priority for the initial discovery emphasizes the difficulty in
establishing such claims and yet the correct position today is to consider who and when a fact is
reported in the formal refereed scientific literature.

Over the centuries, various (and sometimes unexpected) discoveries about living systems have
been made in experiments and observations on RBCs. Specifically, it was noted that the sizes of RBCs
in various species display much smaller variations compared to the large or even huge differences in
body size (mass), considering for example small animals like the mouse or bilby, versus much larger
ones like the horse or elephant. Extrapolated to various organs in the body, it became obvious that the
total mass of the organ is due to the number and not the volume of each cell. This led to the so called
“Law of constant volume”, that was formulated in the 19th century (De Robertis, 1970). The first
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isolation protocols of nucleic acids were developed in 1869 in
Tübingen by the German scientist Friedrich Miescher. He and his
superviser, Professor Felix Hoppe-Seyler are now recognized as
the discoverers of DNA. They found it in the biological material
called “nuclein”. Their work involved RBCs among other cells. In
1871 the first publications of Miescher and Hoppe-Seyler
describing the “nuclein” appeared (Miescher, 1871). In
addition, another student of Hoppe-Seyler, P. Plósz, (1871),
reported the presence of “nuclein” in the hemolyzed nucleated
erythrocytes from birds and snakes. The story of the work
performed in Tübingen at this time is reviewed by His, (1897).
Dahm, (2005) published a more complete history of the discovery
of DNA, while Hajdu, (2003) mentioned the discovery in the 19th

century of the medical implications of RBCs and the foundation
of a new medical specialty, hematology.

The RBC membrane was the main one to reveal the essential
features of the structure and function of virtually all cell
membranes. Specifically, (1) the “Lipid bilayer model”
proposed by the Dutch scientists Gorter and Grendel, (1925);
the model proposed in 1935 by the Americans Danielli and
Davson, revised in 1943, to include proteins on both surfaces
of the lipid bilayer, and also the idea of protein “pores” through
the lipid bilayer to allow solute exchange (Davson and Danielli,
1943); the “Fluid mosaic model” proposed in 1972 by Americans
Singer and Nicolson: it includes so called “intrinsic membrane
proteins” (embedded in the lipid bilayer) and the proteins
attached on both sides of the membrane (Singer and Nicolson,
1972); (2) the analysis of membrane proteins by sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the
analysis of lipids by chromatography, and the study of
protein-lipid interactions; (3) the visualization of glycoproteins
and glycolipids in the glycocalix; (4) the interactions between the
intrinsic membrane proteins and the proteins located inside the
cell, in the cytoskeleton; (5) the identification of proteins with
roles as antigens (beginning with the blood group antigens). Such
aspects are presented in many publications (e.g., De Robertis,
1970; Kummerow et al., 1983; Benga et al., 1984; Benga and
Holmes, 1984; Benga et al., 1985a; Benga et al., 1985b; Benga et al.,
1985c; Benga et al., 1987a; Benga et al., 1987b; Benga and Tager,
1988; Benga et al., 1989; Benga et al., 1990; Benga et al., 1991;
Sperelakis, 2001; Alberts et al., 2008).

THE TRANSPORT PROCESSES ACROSS
THE RBC MEMBRANE AND THE
DISCOVERY OF THE FIRST WATER
CHANNEL PROTEIN, LATER CALLED
AQUAPORIN1 (AQP1)

The permeability of the RBC membrane to water, ions,
micromolecules has been investigated for decades, as reviewed
in several books (e.g., House, 1974; Benga et al., 1985a; Benga
et al., 1985b; Benga et al., 1985c; Stein, 1986; Benga, 1989a; Benga,
1989b). The start point for the discovery in the RBCmembrane of
the first water channel protein (WCP), later called aquaporin1
(AQP1), was the comparative NMR measurements of water

permeability of the RBC from children with epilepsy and
control children performed in 1976 in Cluj-Napoca, Romania,
by Gheorghe Benga, Vasile V. Morariu, Ileana Benga and
Cornelia Morariu. The results of the study were published in
Nature (Benga and Morariu, 1977). The complete story of the
discovery was also recently presented (Benga, 2021).

The water permeability of RBCs in children with epilepsy
compared with control children was measured by the NMR
method of Conlon and Outhred. (1972). The method involves
addition of a paramagnetic solution (MnCl2) to the plasma
and measurement of the spin-spin relaxation time (T2) of the
RBC water proton. The spin-spin relaxation time of water
inside the isolated RBCs is about 140 ms and is much longer
than the time required for water to exchange across the
membrane (the water exchange time, Tae), which is about
10 ms. The value of Tae is inversely related to the water
permeability (Pd) of RBCs. If the relaxation time in plasma
is made much shorter than the exchange time (by adding the
paramagnetic ion Mn2+) the observed relaxation time of the
RBC (T2b) is dominated by the exchange process through the
membrane. The spin-spin relaxation time is evaluated from a
logarithmic plot of the nuclear spin-echo as a function of the
time interval 2 τ where τ is the time interval between the
radiofrequency pulses. When the system is characterized by a
single relaxation time, the plot is a straight line and the
relaxation time is the reciprocal of the slope. For a system
characterized by two relaxation times (as for the blood doped
with Mn2+) the plot consists of two lines and the relaxation
times are calculated from the slopes of these lines; see Figure 1
in ref. Morariu and Benga. (1977), which can be accessed on
Google Chrome following two steps:

https://scholar.google.ro/scholar?q=Morariu+Benga+Biochimica+
Biophysica+Acta+1977&hl=ro&as_sdt=0&as_vis=1&oi=scholart;
then click on [PDF]Academia.edu.

The paper published by Benga andMorariu, (1977) can also be
accessed on Google Chrome following two steps: https://af.
booksc.eu/book/10454413/a8b701; followed by click on [PDF].
The values of Tae were measured in 24 children with epilepsy
(aged 1–12 years) and 24 controls (children aged 2–16 years). In
all children with epilepsy the exchange time of water through the
RBC membrane (Tae) was longer than in control subjects. In
other words decreased values of the water permeability were
found in case of RBCs from children with epilepsy. There were no
significant differences in Tae values between idiopathic and focal
epilepsies. High values of Tae were found in patients who had
seizures every day and in whom the attacks were poorly
controlled by anticonvulsant therapy. It was also found that
the value of Tae during the seizure was not higher than in the
interictal period. This indicated that the low water permeability of
RBCs in epilepsy is a permanent alteration (not a transient one).
The abnormal water permeability was found in both untreated
and treated patients, i. e. was not related to the anticonvulsant
therapy. An alteration (decrease) of the permeability to water of
RBCs in children with epilepsy was the most likely explanation
for the findings. Gh. Benga, Vasile Morariu, Ileana Benga and
Cornelia Morariu realized immediately the important
significance of findings, as they had already studied extensively
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FIGURE 1 | Reptiles, birds and monotremes: (A) Green Sea Turtle (Chelonia mydas) RBCs, bright field optical micrograph (Nikon Eclipse E800 Plan Apo ×40
0.95NA objective); (B) Green Sea Turtle RBCs, secondary electron SEM image (Jeol JSM-6300f); (C) Little Penguin (Eudyptula minor) RBCs, DIC optical micrograph
(Nikon Eclipse E800 Plan Apo ×40 0.95NA objective); (D) Little Penguin RBCs, secondary electron SEM image (Jeol JSM-6300f); (E) Platypus (Ornithorhynchus
anatinus) RBCs, bright field optical micrograph. (Nikon Eclipse E800 Plan Apo × 40 0.95NA objective). The original images were published by (Benga, 1994; Benga,
2003; Benga et al., 2015).
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the publications regarding the NMR (Vasile Morariu) and
epilepsy (Gheorghe and Ileana Benga). In October 1976 a
manuscript was sent to Nature, in December 1976 was
accepted to be published without change and in February 1977
it appeared (Benga and Morariu, 1977). The authors concluded
that “decreased permeability in erythrocytes of epileptics may
reflect a membrane defect in all tissues and may be an expression
of the individual predisposition in epilepsy; it might be of
particular importance in the nervous system. Further studies
on erythrocyte membranes in epilepsy may give clues to the
understanding of the membrane defect in molecular terms
(Benga and Morariu, 1977; Morariu et al., 1981).” Subsequent
studies of Morariu and Benga, (1984) on the effects of
temperature allowed the calculation of the activation energy
(Ea,d) of the RBC membrane diffusional permeability (Pd) to
water and showed that the water diffusion time (Te), is related
with Pd by the expression involving the cell water volume (V) and
the cell surface area (A):

Pd � V/A x 1/Te (1)
Gh. Benga, working at The “Iuliu Haţieganu” University of

Medicine and Pharmacy (abbreviated as U.M.F.) Cluj-Napoca,
Romania, started an extensive program of research aimed to
identify the pathway by which the water molecules cross the
membrane. Several important aspects had to be studied until the
final goal was achieved: NMR measurements of the effects on Pd of
various inhibitors and of chemical modifications of membrane
proteins, measurements on resealed ghosts (prepared by a special
procedure: hemolysis to remove hemoglobin and then restoring the
membrane integrity, as described by Schwoch and Passow, 1973),
labelling of the protein involved in water permeability by a radioactive
inhibitor 203Hg-PCMBS, - PCMBS being an abbreviation of p-
(Chloromercuri) benzenesulfonate, and finally the identification of
this protein by SDS-PAGE. After almost a decade of hard work, the
water channel protein (WCP) in the human RBC membrane was
identified by Gh. Benga’s group. The discovery was reported in two
landmark publications (Benga et al., 1986a,b). The discovery of the
first WCP was really achieved in 1985 when the first landmark paper
was sent for publication to the prestigious American journal
Biochemistry, which accepted the publication without change
(Benga et al., 1986a). In this paper it was stated: “previous
labelling experiments with sulfhydryl-reactive reagents did not
correlate binding with inhibition of water transport. The binding
pattern of PCMBS that was observed in correlationwith the inhibition
of water diffusion suggests that either or both band 3 and 4.5 proteins
could be associated with water channels. Polypeptides migrating in
these regions have already been identified in other transport functions,
notably anion exchange and the transport of glucose and
nucleosides.To date, however, there is no evidence that a specific
inhibitor of one of these processes will inhibit water transport. It
remains possible that a minor membrane protein that binds PCMBS
is involved in water transport.” Finally, it was also indicated how the
final confirmation could be achieved. “We believe the best way to
clarify the role of bands 3 and 4.5 in water transport will ultimately be
through studies on the reconstitution of purified proteins in
liposomes.” The second landmark paper was published in 1986 in

a well known European journal (Benga et al., 1986b). The title of this
paper clearly indicated that Benga’s group has identified the proteins
present in the RBC membrane implicated in water transport.

Gh, Benga presented the novelty of the discovery of his group
in reviews published before 1990 (Benga, 1989a; Benga, 1989b;
Benga, 1989c) and in many publications in the following years
(Benga and Borza, 1995; Benga, 2003; Benga, 2009, Benga, 2012a;
Benga, 2012b; Benga, 2012c). It should be emphasized that
previous “labelling studies” (Brown et al., 1975; Sha’afi and
Feinstein, 1977) pointed to band 3 protein (“a major protein”,
known to be the anion transporter in the RBC membrane) to also
be the water channel. For the first time Gh. Benga considered the
possibility that “a minor protein” in the RBC membrane could be
a specific water channel.

In 1988 the protein identified by Benga et al. (1986a), Benga
et al. (1986b) was by serependipity purified by Peter Agre’s group
working at The Johns Hopkins University, School of Medicine,
Baltimore, United States (Denker et al., 1988). Agre confessed on
several occasions (cited by Alleva et al., 2012): “Our laboratory
got into the water channel field by accident”. In 1988 he and his
coworkers had no idea of the function of the purified protein,
which they called CHIP28, from CHannel forming integral
membrane protein of 28 kDa (Denker et al., 1988). In addition
to the 28 kDa component, the protein had a 35–60 kDa
glycosylated component, i.e., the one previously detected by
Benga et al. (1986a), Benga et al. (1986b) as the binding site of
PCMBS under conditions for the inhibition of water transport
across the RBC membrane. In their paper Agre and coworkers
(Denker et al., 1988) have cited one of Benga’s group articles
(Benga et al., 1983a): “the characteristics of CHIP28 are
consistent with other known features of water channels, e.g.,
CHIP28 proteins in intact RBCs are impervious to proteolytic
digestion (Denker et al., 1988; Smith and Agre, 1991) as are water
channels (Benga et al., 1983a).” However, they have not cited the
two landmark papers previously published by Gh. Benga’s group
Benga et al. (1986a), Benga et al. (1986b).

Following the advice of Prof. John C. Parker (Agre’s Clinical
Mentor at The Univ. of North Carolina at Chapel Hill) that
CHIP28 could be a water channel, Agre’s group performed an
experiment which proved that oocytes from Xenopus laevis
microinjected with in vitro-transcribed CHIP28 RNA
exhibited increased osmotic water permeability. This was
inhibited by mercuric chloride, therefore, it was suggested that
CHIP28 is a functional unit of membrane water channels
(Preston et al., 1992). However, they recognized that “the
possibility exists that CHIP28 may function as a water channel
regulator, rather than the water channel itself.” The final proof
that CHIP28 is the water channel itself rather than a water
channel regulator was demonstrated by reconstitution in
liposomes and direct measurements of osmotic water
permeability by the collaboration of Mark Zeidel’s group
(from Harvard Medical School) with Peter Agre’s group
(Zeidel et al., 1992). This was already suggested by Gh.
Benga’s group in the first landmark paper (Benga et al. (1986a).

The protein identified in Cluj-Napoca was the first water channel
discovered. OtherWCPs were discovered in 1993: in a plant (Maurel
et al., 1993) and in the kidney (Fushimi et al., 1993). The name of
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aquaporins was proposed for the WCPs (Agre et al., 1993) and
CHIP28 was named aquaporin 1 (AQP1). In a few years it became
obvious that a large family of WCPs exists, with three subfamilies:
aquaporins (AQPs), aquaglyceroporins, and S-aquaporins.
Moreover, it was discovered that actually the WCP family (with
all three subfamilies) belongs to a superfamily ofMembrane Intrinsic
Proteins (MIPs). MIP is an acronym first used for MIP 26 (Major
Intrinsic Protein of 26 kDa) of lens fiber cells in the eye (Gorin et al.,
1984). Later, the presence and roles of such proteins in all kinds of
species on Terra (from prokaryotes to plants, animals and humans)
have been revealed. Lots of papers, special issues of prestigious
journals, multi-authored books, were dedicated to the newly
discovered proteins (Heymann and Engel, 1999; Benga, 2005;
Zardoya, 2005; Gonen and Walz, 2006; Kuchel, 2006; Benga,
2009; Benga, 2012a; Yang, 2017).

In 2003, Peter Agre was awarded the Nobel Prize in Chemistry,
which he shared with Roderick MacKinnon for their “discoveries
concerning structure and function of channels in cell membranes”.

Agre introduced his Nobel Lecture with these words: “I wish to
discuss the background in order to give credit to the individuals who
were in this field long before we joined the field. The current view is
that the lipid bilayer has a finite permeability for water, but, in
addition, a set of proteins exists that we now refer to as “aquaporins”.
Their existence was suggested by a group of pioneers in the water
transport field who preceeded us by decades–people including
Arthur K. Solomon in Boston, Alan Finkelstein in New York,
Robert Macey in Berkeley, Gheorghe Benga in Romania,
Guillermo Whittembury in Venezuela, Mario Parisi in
Argentina–who by biophysical methods predicted that water
channels must exist in certain cell types with high water
permeability as renal tubules, salivary glands, and red cells (Agre,
2004).” Some comments regarding the 2003 Nobel Prize in
Chemistry appeared in 2003 and afterwards (Balaban et al., 2006;
Cucuianu, 2006; Haulică, 2006).

George Emil Palade (1974 Nobel Laureate in Physiology of
Medicine) sent on December 2003 a message by fax supporting
the recognition of the priority of Gh. Benga:

“Dear Doctor Benga,
I did not expect The Nobel Committee for Chemistry to select

water channels as area to give prominence this year and I did not
realize either how close is your work to that of Peter Agre.

The idea of a petition has the merit of attracting the attention
to the scientific com-munity in the regrettable mistake of your
omission from the group of laureates this year.

In any case I signed the petition received from you, I wish you
enough courage and strength to carry through this battle and I
remain sincerely,

George E. Palade”
Wed, 19 November 2003 To: Gheorghe Benga <gbenga@

clujnapoca.ro> From Naoyuki Taniguchi <proftani@
biochem.med.osaka-u.ac.jp> Subject: I regret very much.

Dear Professor Benga: I was really surprized to know that you
are not awarded even though you are the first scientist who
discovered aquaporin 1. It is my also great regret to hear that one
of the Nobel Laureates did not cite your work which is really
unfair. I do not know what kind of politics existed in these
processes [...] Sincerely yours, Naoyuki Taniguchi M.D. Ph.D.,

Professor and Chairman, Dept. of Biochemistry, Osaka Univ.
Medical School, Osaka University Graduate School of Medicine,
Room B-1, 2-2 Yamadaoka Suita Osaka 565–0871 Japan.

“In the late 1980s, Peter Agre, while working on the rhesus
blood group antigens at Johns Hopkins University
serependipitously discovered a new membrane protein that he
called CHIP28 (channel integral protein of molecular weight 28
kD). At the time he had no idea that its function was . . .
Previously and independently, Gheorghe Benga and his group
in Romania had shown that the water transport inhibitor
p-chloromercuribenzene sulfonate selectively bound to a
protein in red blood cell membranes . . . Subsequent studies
showed that this was a glycosylated form of CHIP28
(Vandenberg and Kuchel, 2003).”

“The detection of water-specificmembrane channels in red blood
cells belong to the fundamental discoveries in biology of the 20th
century . . . In 1986 and 1988, the independent groups of Gheorghe
Benga and Peter Agre, respectively, discovered the water channel
proteins which later were called aquaporins (Wolburg et al., 2011).”

“The 2003 Nobel prize in chemistry was awarded for the
discovery of “porins”–protein channels that transport molecules
through cell membranes. It went to the Americans Peter Agre for
aquaporins, or water channels, and Roderick MacKinnon for
potassium channels. But aquaporins were first described in 1986
by Gheorghe Benga, in what was then communist Romania.
There is no doubt that Agre told us much more about aquaporins
than Benga did, but I can’t believe Benga would have been
excluded from the award had he been working in a Western
nation (Cox, 2014).”

Consequently, looking in retrospect, asking the crucial
question, when was the first water channel protein, aquaporin
1, discovered, a fair and clear cut answer would be: the first water
channel protein, now called aquaporin 1, was identified or “seen”
in situ in the human RBC membrane by Benga and coworkers in
1986 (Benga et al. (1986a), Benga et al. (1986b)). It was again
“seen” when it was by chance purified by Agre and coworkers in
1988 (Denker et al., 1988), and was again identified when its main
feature, the water transport property was found by Agre, Zeidel
and coworkers in 1992 (Preston et al., 1992; Zeidel et al., 1992).
The discovery of AQP1 laid the ground for the identification of
other water channel family members by homology cloning and
other means, which has led to the understanding that aquaporins
play essential roles in water transport in tissues. Today almost
400,000 articles are indexed under the tag water channel proteins
in PubMed (http://www.ncbi.nlm.nih.-gov/pubmed).

COMPARATIVE LIGHT AND SCANNING
ELECTRON MICROSCOPIC ASPECTS OF
RBCS FROM HUMANS AND VARIOUS
ANIMAL SPECIES AND NMR STUDIES OF
RBC WATER PERMEABILITY

In September 1989 at an international event on RBCs organized
in what was then The “East Berlin” Gh. Benga had the chance to
meet Professor Philip Kuchel (The University of Sydney), who
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was aware of the papers published in 1977 by Benga and Morariu
(mentioned above). The idea of a comparative program of studies
of water permeability of RBCs in various animals occurred in the
discussion. Gh. Benga mentioned that in Cluj-Napoca such
studied have already been started and it would be very
interesting to compare the characteristics of water permeability
of RBCs from animal species living in Europe with those living
only in Australia or introduced from Europe to Australia. A
collaborative program of research of Gh. Benga’s group in
Romania with Philip Kuchel, Guy Cox and other distinguished
Australian scientists whose names are listed in the Dedication
(The Australian group) was established after 1990, when the
“communist” regime collapsed in Romania. The two groups
achieved exchange working visits, performing studies of the
RBC water permeability of over 30 species and the program is
still active.

Samples of blood were obtained from: “Iuliu Haţieganu”
University of Medicine and Pharmacy Cluj-Napoca, Romania;
Taronga Zoo, Sydney, NSW; Dubo Zoo, NSW; University of New
England, Armidale, NSW; CSIROMcMaster Laboratory, Sydney,
NSW; CSIRO Wildlife and Ecology Division, Canberra, ACT;
Department of Veterinary Physiology, University of
Sydney, NSW.

Species studied were: Placentals: man (Homo sapiens), mouse
(Musmusculus), rat (Rattus norvegicus), sheep (Ovis aries), dog (Canis
familiaris), dingo (Canis lupus dingo), horse (Equus ferus caballus),
cow (Bos taurus), guinea pig (Cavia porcellus), rabbit (Chinchilla)
(Oryctolagus cuniculus), alpaca (Lama pacos), camel (Camelus
dromaderius), elephant (Elephas maximus). Marsupials: bilby
(Macrotis lagotis sagitta), bandicoot (Isoodon macrourus),
Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctus
cinereus), brushtail possum (Trichosurus vulpecula), Godfellow’s
tree kangaroo (Dendrolagus goodfellowi), Bennett’s wallaby
(Macropus rufogriseus), parma wallaby (Macropus parma), swamp
wallaby (Wallabia bicolor), tammar wallaby (Macropus eugenii),
whiptail wallaby (Macropus paryi), Eastern grey kangaroo
(Macropus giganteus), red kangaroo (Macropus rufus).
Monotremes: platypus (Ornithoryncus anatinus), echidna
(Tachyglossus aculeatus). Birds: little penguin (Eudyptula minor),
chicken (Gallus domesticus). Reptiles: green sea turtle (Chelonia
mydas), saltwater crocodile (Crocodyllis porosus). Human RBCs
were used as reference materials.

Blood was collected into heparinised tubes (∽15 IU/ml),
refrigerated within 30 min and used within 72 h. The RBCs
were isolated by centrifugation, washed three times in
medium S (150 mMNaCl, 5.5 mM glucose, 5 mM Hepes [4-
(2-hydroxy-ethyl)-1-piperazine ethanesulphonic acid), pH
7.4. Finally, the erythrocytes were suspended in medium S
(supplemented with 0.5% bovine serum albumin) at a
hematocrit of 30–50%.

The mean cell volumes were calculated from the
measurements of hematocrits and mean cell counts, using a
Sysmex-CC 130 Microcell counter (Tao Medical Electronics
Co. Ltd., Kobe, Japan).

The cell water content was determined by drying samples of
RBCs at 105°C to constant weight (∽15 h) and calculating the cell
water volume as a fraction of cell volume.

The cell surface areas were calculated from the mean cell
diameters when the cells were swollen to spheres in hypotonic
NaCl solutions containing 0.5% (w/v) albumin as previously
described (Benga et al., 1993a). The measurements were
performed using an image analyzer (Tracor Northern TN
8502, Madison, WI, United States).

For scanning electron microscopy (SEM), samples of
sedimented washed RBCs were fixed using 1% glutaraldehyde
in medium S. After 90 min at 0°C the cells were sedimented and
washed twice in 150 mM-phosphate buffer, pH 7.2. They were
then post-fixed in 1% osmium tetroxide, dehydrated and critical-
point dried from CO2. After mounting and sputter-coating with
gold, samples were examined and photographed in a Hitachi HU-
11A (in Romania) and a Jeol JSM-6300 f scanning electron
microscope (in Australia). The diameters of RBCs were
measured on photographs using a binocular enlarging system
with a calibrated eye piece. The measurements were performed
only on cells lying completely flat or exactly on edge. Other details
of the SEM analyses were previously described (Benga et al.,
1992b; Benga et al., 1999; Benga et al., 2000a; Benga et al., 2003;
Benga et al., 2010a; Benga et al., 2010b; Benga et al., 2015).

A selection of optical micrographs and SEM images of RBCs
from humans and some animal species are presented in Figures
1–3. Some aspects of RBCs from these Figures need to be
discussed. A first important aspect is the presence of nucleus in
the RBCs of reptiles and birds: Green Sea Turtle (Chelonia
mydas), respectively Little Penguin (Eudyptula minor)
presented in Figure 1. As mentioned in the Introduction, P.
Plósz, (1871) reported the presence of “nuclein” in the hemolyzed
nucleated erythrocytes from birds and snakes and this was
actually a crucial step in the discovery of DNA.

The second aspect is the correlation between the size of RBCs
with the whole body size (mass) of various organisms. In Figure 2
RBCs from nine species of marsupials are presented: bandicoot
(Isoodon macrourus), bilby (Macrotis lagotis sagitta), koala
(Phascolarctus cinereus), red kangaroo (Macropus rufus),
Bennett’s wallaby (Macropus rufogriseus), parma wallaby
(Macropus parma), swamp wallaby (Wallabia bicolor),
Tammar wallaby (Macropus eugenii), whiptail wallaby
(Macropus paryi). The RBCs of these species have a rather
similar size, although the whole body size is highly variable
(from the small sizes in bilby and bandicoot to the large sizes
of wallabies and kangaroos). The relationship between the size of
RBCs and the body size (mass) is also easy to be seen in the case of
the Indian elephant (Elephas maximus) compared with humans
(Homo sapiens) (Figure 3). The diameter of the elephant RBC is ∽
9.3 μm, which is ∽1.4 μm larger than that for the human RBC
(Benga et al., 2000a). The difference between the whole body size
(mass) of these two species is huge. As mentioned in the
Introduction such observations led to the so called “Law of
constant volume”, formulated in the 19th century (De Robertis,
1970).

The third aspect is the shape of RBCs. The human RBCs, and
the RBCs of the majority of animal species are biconcave disks.
This is true for: 1) the RBCs of monotremes: platypus
(Ornithorhynchus anatinus) in Figure 1; 2) the RBCs of all
marsupials; 3) the RBCs of some placentals: humans (in
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FIGURE 2 | Marsupials. Scanning electron microscopic appearance of red blood cells from (A) bandicoot; (B) bilby; (C) koala; (D) red kangaroo; (E) Bennett’s
wallaby; (F) parma wallaby; (G) swamp wallaby; (H) Tammar wallaby; (I,J) whiptail wallaby; and (K–M) man. (A–K) original magnification ×2,000, scale bar 5 µm; l, m
original magnification ×10,000, scale bar 5 µm. The original images were published by (Benga et al., 1992b).
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Figures 2, 3), Indian elephant (Elephas maximus) in Figure 3. On
the other hand there are placentals which have ellipsoidal RBCs.
This is the case of RBCs from camelids: camel (Camelus
dromedarius) and alpaca (Lama pacos) (Figure 3). It is
probably related to their ability to swell rapidly when a
dehydrated camel rehydrates and thereby avoid haemolysis
(Benga et al., 1999).

Samples of sedimented washed RBCs were fixed using 1%
glutaraldehyde in medium S. After 90 min at 0 oC the cells were
sedimented and washed twice in 150 mM-phosphate buffer, pH
7.2. They were then post-fixed in 1% osmium tetroxide,
dehydrated and critical-point dried from CO2. After mounting
and sputter-coating with gold, samples were examined and
photographed in a Hitachi HU-11A (in Romania) and a Jeol

JSM-6300 f scanning electron microscope (in Australia). The
diameters of RBCs were measured on photographs using a
binocular enlarging system with a calibrated eye piece. The
measurements were performed only on cells lying completely
flat or exactly on edge. The details of the SEM analyses were
previously described (Benga et al., 1992b; Benga et al., 1999;
Benga et al., 2000a; Benga et al., 2003; Benga et al., 2010a; Benga
et al., 2010b; Benga et al., 2015). The values are mean ± standard
deviations.

Samples of elephant (Elephas maximus) blood were obtained
from Taronga Zoo, Sydney, New South Wales; the donor was a
female, aged 43 years and weighing 3500 kg. Blood samples were
collected into heparin (15 IU/ml), refrigerated within 30 min and
used within 72 h. The last sample had a haematocrit of 48%, mean

FIGURE 3 | (A) DIC optical micrograph of Indian elephant (Elephas maximus) RBCs. Scale bar = 50 µm (Nikon Eclipse E800 Plan Apo ×40 0.95NA objective); (B)
Secondary electron SEM image of Indian elephant RBCs. Scale bar = 22 µm (Jeol JSM-6300f); (C) DIC optical micrograph of human (Homo sapiens) RBCs. Scale bar =
50 µm (Nikon Eclipse E800 Plan Apo ×40 0.95NA objective.); (D) Secondary electron SEM image of human RBCs. Scale bar = 22 µm (Jeol JSM-6300f); (E) Secondary
electron SEM image of washed RBCs from camel (Camelus dromedarius). Scale bar = 10 µm (JEOL JSM-6300f); (F) Secondary electron SEM image of washed
RBCs from alpaca (Lama pacos). Scale bar = 10 µm (JEOL JSM-6300f). The original images were published by Benga et al., 1999; Benga et al., 2000a.
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whole-blood haemoglobin concentration of 172 g/l whole blood,
a mean corpuscular haemoglobin concentration of 358 g/l RBC
and a mean corpuscular volume of 126 fl. The RBCs were isolated
by centrifugation, washed three times in medium S (150
mMNaCl, 5.5 mM glucose, 5 mM Hepes [4-(2-hydroxy-ethyl)-
1-piperazine ethanesulphonic acid)], pH 7.4. Finally, the
erythrocytes were suspended in medium S (supplemented with
0.5% bovine serum albumin) at a hematocrit of 30–50%. For light
microscopy, samples of RBCs were fixed for 90 min in 1% (w/v)
glutaraldehyde in with medium S, followed by three washes in
isotonic phosphate buffer, pH 7.2. The suspended cells were then
placed on a clean microscope slide, a cover slip was placed over
them and they were examined using a Nikon Eclipse 800
microscope (Nikon Corporation, Tokyo, Japan) using the
differential interference contrast (DIC) technique. Image
acquisition was performed using a charge-coupled device
(CCD) Imaging Sensicam (PCO Computer Optics, GmbH,
Kelheim, Germany) at 1280 × 1024 pixels. A stage micrometer

was used as a size reference. For scanning electron microscopy
(SEM) the samples were prepared as described above and
examined and photographed using a Philips XL30 scanning
electron microscope. The results are presented in Tables 1, 2.
The original results were published by Benga et al., 1992b; Benga
et al., 2000a.

The results of our comparative NMR studies of water
permeability of RBCs from humans and various animal
species were published in many papers (Benga et al.,
1992a; Benga et al., 1992b; Benga et al., 1993a; Benga
et al., 1993b; Benga et al., 1993c; Benga et al., 1993d;
Benga et al., 1993e; Benga et al., 1994a; Benga et al.,
1994b; Benga et al., 1995; Benga and Borza, 1995; Benga
et al., 1996; Benga et al., 1999; Benga et al., 2000a; Benga et al.,
2000b; Benga et al., 2002a; Benga et al., 2002b; Benga et al.,
2003; Benga et al., 2009; Benga et al., 2010a; Benga et al.,
2015). We express here (in Figures 4–6) only a brief overview
of our studies, previously published (Benga et al., 1992b;

TABLE 1 | Diameters of animal RBC compared with human RBC, measured by electron microscopy.

Species Number
of cells measured

Diameter (µm)

Observed Corrected

Bandicoot 40 4.66 ± 0.15 7.12 ± 0.22
(Isoodon macrourus)
Bilby 70 4.59 ± 0.23 7.01 ± 0.36

(Macrotis lagotis sagitta)
Tasmanian devil 24 4.43 ± 0.19 6.77 ± 0.29

(Sarcophilus harrisii)
Koala 45 5.63 ± 0.20 8.60 ± 0.31

(Phascolarctus cinereus)
Bennet’s wallaby 71 5.27 ± 0.15 8.05 ± 0.23

(Macropus rufogriseus)
Parma wallaby 108 5.23 ± 0.19 8.00 ± 0.29

(Macropus parma)
Swamp wallaby 108 5.61 ± 0.15 8.57 ± 0.23

(Wallabia bicolor)
Whiptail wallaby 37 5.48 ± 0.18 8.38 ± 0.27

(Macropus paryi)
Tammar wallaby 98 5.07 ± 0.12 7.76 ± 0.18

(Macropus eugenii)
Goodfellow’s tree kangaroo 37 4.82 ± 0.14 7.30 ± 0.21

(Dendrolagus goodfellowi)
Red kangaroo 75 5.46 ± 0.11 8.35 ± 0.17

(Macropus rufus)
Man 77 5.24 ± 0.18 8.00 ± 0.22

(Homo sapiens)

TABLE 2 | Diameter of elephant RBC compared with human RBC.

Species Technique Number of cells Diameter (µm) Corrected

Measured Observed

Elephant Light microscopy 26 9.3 ± 0.7
SEM 46 7.8 ± 0.6 9.3 ± 0.7

Man Light microscopy 29 8.0 ± 0.4
SEM 31 6.7 ± 0.4 8.0 ± 0.6
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Benga and Borza, 1995; Benga et al., 1999; Benga et al., 2000a;
Benga et al., 2003; Benga et al., 2010a; Benga et al., 2010b;
Benga, 2013; Benga et al., 2015).

As shown in Figure 4 and Figure 5 the RBC water
permeability (Pd and Ea,d) are species characteristics, as
there are no changes correlated with the marked alteration
in the habitat of the species introduced to Australia (rat,
rabbit, sheep, chicken) compared with their European
counterpart. Human RBCs have Pd values of ~4 ×
10–3 cm s−1 at 25 0C and ~7 × 10–3 cm s−1 at 37 0C with a

FIGURE 4 | Values of the membrane diffusional permeability (Pd) to water of RBCs of man and several animal species. The SD values are: Man: 25 0C: 0.50; 37 0C:
0.12; Mouse: 25 0C: 0.30; 37 0C: 0.81; Rat: 25 0C: 0.23; 37 0C: 0.21; Guinea pig (adult).25 0C: 1.31; 37 0C: 2.02; Guinea pig (preganant female): 25 0C: 1.31; 37 0C:
2.02; Guinea pig (fetus): 25 0C: 0.66; 37 0C:1.16; Rabbit: 250C: 0.68; 37 0C:1.77; Sheep: 25 0C: 0.54; 37 0C: 0.86; Australian sheep: 25 0C: 0.75; 37 0C:1.06; Domestic
chicken: 25 0C: 0.25; 37 0C: 0.21; Australian feral chicken: 25 0C: 0.37; 37 0C: 0.55; Horse 25 0C: 0.87; 37 0C: 0.75; Australian horse: 25 0C: 1.07; 37 0C: 1.02;
Cow: 25 0C: 0.54; 37 0C: 0.86; Dog: 25 0C: 0.20; 37 0C: 0.22; Cat 25 0C: 0.50; 37 0C:0.72.

FIGURE 5 | Values of the activation energy of water diffusion through the
RBC membrane of man and several animal species. The SD values are: Man:
2.9; Echidna: 6.2; All Marsupials: 1.9–2.0; Elephant: 0.6: Camel: 1,8: Chicken:
7.0. The original results were published previously (Benga et al., 1992b;
Benga and Borza, 1995; Benga et al., 1999; Benga et al., 2000a; Benga et al.,
2003; Benga et al., 2010a; Benga et al., 2010b; Benga, 2013; Benga et al.,
2015).

FIGURE 6 | Effects of PCMBS (inhibitor) of water channel proteins on
water diffusion through the RBC membrane of man and several animal
species. The highest value of inhibition is presented for each species. The
original results were published previously (Benga et al., 1992b;
Benga and Borza, 1995; Benga et al., 1999; Benga et al., 2000a; Benga
et al., 2003; Benga et al., 2010a; Benga et al., 2010b; Benga, 2013;
Benga et al., 2015).
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value of Ea,d~25 kJ mol−1. The chicken and echidna RBCs
have the lowest Pd values (~2 × 10–3 cm s−1) and the highest
values of Ea,d (over 30 kJ mol−1). This indicates that no
functional AQPs are present in chicken and echidna RBCs.
Large and less-active animals (cow, sheep, horse and
elephant) have lower values of Pd. In contrast, small and
active animals (mouse, rat, guinea pig, rabbit, small
marsupials) have Pd values significantly higher with lower
Ea,d values (from 15 to 22 kJ mol−1).

The original results were published previously (Benga et al.,
1992b; Benga and Borza, 1995; Benga et al., 1999; Benga et al.,
2000a; Benga et al., 2003; Benga et al., 2010a; Benga et al., 2010b;
Benga, 2013; Benga et al., 2015).

We measured the effects of various inhibitors on water
diffusion through the RBC membrane of man and several
animal species. As previously described, the water channels
are blocked by PCMBS: p-(Chloromercuri) benzenesulfonate.
As shown in Figure 3 PCMBS has no effects in case of chicken
RBCs. This indicates that no functional AQPs are present in
chicken RBCs.

Kuchel and Benga, (2003), Kuchel and Benga, (2005) provided
two new explanations for the physiological “raison d’etre” of AQPs in
RBC. The first is the “oscillating sieve explanation”: the high water
permeability of RBCmembrane favours the energy drivenmembrane
undulations (or oscillations) of the RBC membrane, a phenomenon
also called “flickering” (Morariu et al., 1966; Brochard and Lennon,
1975); these movements consume a minimum of energy in simply
displacing water. Suchmembrane undulations perform a valuable role
in movement of cells through capillaries. The second is the “water
displacement explanation”: when ions, such as Cl− and HCO3, and
solutes, such as glucose, are entering into the cells, the watermolecules
are displaced and exit rapidly the cell, thus obviating a change in cell
volume. The molecular volume of these ions and molecules are
significantly higher than that of water. Kuchel and Benga, (2003),
Kuchel and Benga, (2005) that AQPs in RBCs ensure the rate of
exchange of water across the membrane required in various
animals in relation to their physical activity, metabolic rate
and the mean rate of circulation of their blood. Whether there
is a correlation between the macroscopic whole-body activity
and the cellular-membrane fluctuations, and hence the
requirement (according to the above hypothesis) for
differences in water exchange rate, is as yet unknown, and
begs new investigations.

CONCLUSION

Many discoveries in cell biology have been based on RBCs.
Advances in molecular and structural biology in the past
40 years, have enabled the discovery with these cells, most
notably, of the water channel protein, called today aquaporin1
(AQP1). It appears that AQPs in RBCs ensure the rate of
exchange of water across the membrane required in various
animals in relation to their physical activity, metabolic rate
and the mean rate of circulation of their blood.
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