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Abstract: Multimedia wireless communications have rapidly developed over the years. Accordingly,
an increasing demand for more secured media transmission is required to protect multimedia
contents. Image encryption schemes have been proposed over the years, but the most secure and
reliable schemes are those based on chaotic maps, due to the intrinsic features in such kinds of
multimedia contents regarding the pixels’ high correlation and data handling capabilities. The novel
proposed encryption algorithm introduced in this article is based on a 3D hopping chaotic map
instead of fixed chaotic logistic maps. The non-linearity behavior of the proposed algorithm, in
terms of both position permutation and value transformation, results in a more secured encryption
algorithm due to its non-convergence, non-periodicity, and sensitivity to the applied initial conditions.
Several statistical and analytical tests such as entropy, correlation, key sensitivity, key space, peak
signal-to-noise ratio, noise attacks, number of pixels changing rate (NPCR), unified average change
intensity randomness (UACI), and others tests were applied to measure the strength of the proposed
encryption scheme. The obtained results prove that the proposed scheme is very robust against
different cryptography attacks compared to similar encryption schemes.

Keywords: image encryption; information security; correlation; equalization; chaotic map; multimedia

1. Introduction

Multimedia data such as text, audio, video, and image play a very important role in
information security. One of the most important types of multimedia content is digital
images due to their military applications, authentication of biometrics, medical science,
and personal albums. In order to protect privacy and maintain the security of private
images against unauthorized use or vulnerable attacks while passing through a public
network, we need a trustable image encryption process. Many encryption schemes have
been proposed, standardized, and widely adopted since the 1970s. These encryption
schemes can vary between data encryption standard (DES) and advanced encryption
standard (AES) techniques [1,2]. In 1963, Edward Lorenz applied chaos theory in computer
systems [3]. Afterward, the cryptography schemes based on chaos theory were the primary
choice for most cryptographers when proposing new encryption algorithms. Logistic
map-based algorithms together with higher dimensional chaos functions lead to more
secure encryption schemes against cryptanalytic attacks [4–9].

Recently, many low-dimensional chaotic systems have been developed [10–12]. These
researchers proposed an encryption scheme with good chaos performance. Although these
systems have low complexity, they are based on a fixed chaotic map which results in these
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low-dimensional systems becoming vulnerable to brute force attacks. Some encryption
algorithms depending on logistic maps have been proposed in [13–21]. The digital image
encryption schemes are mainly based on two processes, namely, position permutation,
value transformation, or a combination of both processes. Position permutation is simply
executed by fixing the pixel values and permuting the image position. On the other
side, value transformation is accomplished by fixing the image position and assigning
new values for the pixels. Due to its applicability and simplicity in implementation, the
position permutation process is considered a primitive operation in most image encryption
schemes. The encryption algorithms based on permutation-only processes show poor
resistance against cipher text-only attacks and/or known/chosen-plaintext attacks and
are only used in moderate or low-level security applications. The main purpose of the
value transformation technique is to establish linear independency relations among several
variables. Such operations can be accomplished simply through an XOR operation. The
main advantage of the value transformation process is the non-reversibility manner, i.e., to
reverse the value transformation operation we need the two arguments’ initial values used
to create such a process, which is impossible to achieve.

In order to maintain the optimal security performance, several researchers proposed
encryption schemes based on both processes, starting with position permutation, then
applying value transformation. Most of the proposed algorithms to generate new pixel
value during the value transformation process were depending on a fixed 3D chaotic map.
To further increase the security of such image encryption schemes, we suggest a new
encryption cryptosystem to generate a logistic parameter hopped 3D chaotic map that is
used to generate the new pixel values during the value transformation process. We applied
our proposed digital image encryption scheme to previously analyzed well-known images
to compare our tests results with previous encryption schemes. The obtained results for
our encryption scheme showed better performance results compared to other encryption
schemes based on a fixed 3D chaotic map in terms of several types of attacks.

The rest of the article is organized as follows: Related image encryption schemes
depending on 3D chaotic maps are briefly covered in Section 2; Section 3 explains the
proposed image encryption cryptosystem that depends on a logistic parameter hopped
3D chaotic; Statistical tests used to evaluate the performance of our encryption scheme
and simulation results are presented in Section 4; And, finally, Section 5 concludes the
proposed algorithm.

2. Related Work

In different encryption schemes, a variety of strategies and different chaotic algorithms
are adopted. Xiaoling Huang et al. [22] offered an encryption algorithm depending on the
permutation–diffusion operation. The chaotic map output was revised through a middle
parameter influenced by secret keys yielding to a temporal delay. Xu, L et al. [23] intro-
duced a bit-level image encryption algorithm depending on piecewise linear chaotic maps
(PWLCM). The authors transformed the plain image into two identical binary sequences.
The two sequences generated were diffused mutually through a new diffusion strategy.
Finally, they applied bits permutation through swapping the binary sequences by means of
the chaotic map.

El-khamy, S.E. et al. [24] proposed a new chaotic image encryption algorithm de-
pending on permutation and substitution in the Fourier domain. The authors achieved
a large degree of randomization by applying a Fractional Fourier transform. Baker map,
together with a generated key depending on a modified logistic map, was used for the
permutation process yielding to an increase in the space of the encryption key. Dongdong
Lin et al. [25] offered an image encryption cryptosystem based on information entropy.
The authors evaluated the security metric validity and security properties of the algorithm.
They identified some unsecured issues, commonly generated in such algorithms, and how
to avoid them.
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Chengqing Li et al. [26] reevaluated the image scrambling encryption algorithm se-
curity. They stated that the internal correlation remaining in the cipher image disclosed
corresponding information about the plain image. Finally, they concluded that the scram-
bling elements could be used to support plain text attacks. Chunhu Li et al. [27] presented
an image encryption algorithm depending on the three-dimensional (3D) chaotic logistic
map. A chaos-based key stream was generated through a modified 3D chaotic logistic map.
The proposed encryption scheme included diffusion and confusion properties. Several se-
curity tests were applied to measure the performance of the proposed scheme in measuring
the cryptographic application suitability.

3. Parameter Hopped 3D Chaotic Map Image Encryption Scheme

The proposed image encryption scheme is shown in Figure 1a and based on the param-
eter hopped 3D chaotic map. The image encryption scheme is generated through five main
steps, namely parameter hopped 3D chaotic map generation, histogram equalization, row
rotation, column rotation, and exclusive-OR (XOR) logic operation. Figure 1b represents
the flowchart of the proposed algorithm.

Figure 1. (a) Parameter hopped 3D chaotic map for image encryption scheme. (b) Flowchart of the
proposed algorithm.
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3.1. Logistic Parameter Hopped 3D Chaotic Map Generation
3.1.1. Generation of Initial Conditions

In this section, we describe our proposed algorithm to generate a pseudorandom bit
sequence based on a logistic parameter hopping 3D chaotic map. The varying parameters
for the 3D hopping chaotic map are ai, bi and ci, and are generated through (1)–(4) under
the specified initial conditions.

ai+1 = amax − ki(amax − amin) (1)

bi+1 = bmax − ki(bmax − bmin) (2)

ci+1 = cmax − ki(cmax − cmin) (3)

ki+1 = h0 ki(1− ki), f or i = 1, 2, 3, . . . . (4)

where h0 = 4 and k1 = 0.01 are the condition to make this equation chaotic. Here the
above equations exhibit the chaotic behavior for 3.53 < ai+1 < 3.81, 0.0001 < bi+1 < 0.022
and 0.0001 < ci+1 < 0.015 with initial values of a1 = 3.7900, b1 = 0.0185, c1 = 0.0125
and its maximum and minimum values with amax = 3.81− 0.0001 , amin = 3.53 + 0.0001 ,
bmax = 0.022, bmin = 0.0001 cmax = 0.015 and cmin = 0.0001.

3.1.2. Generation of 3D Parameter Hopping Logistic Map

The 3D parameter hopping logistic map is generated through (5)–(7) as follows [28]:

xi+1 = ai+1 xi(1− xi) + bi+1 yi
2xi + ci+1zi

3 (5)

yi+1 = ai+1 yi(1− yi) + bi+1 zi
2yi + ci+1xi

3 (6)

zi+1 = ai+1 zi(1− zi) + bi+1 xi
2zi + ci+1yi

3 (7)

where a1 = 3.7900, b1 = 0.0185, c1 = 0.0125, x1 = 0.2350, y1 = 0.3500, and z1 = 0.7350.
Figure 2a shows the chaos phenomena of the 3D parameter hopping logistic map

depending on the varying parameters ai, bi and ci of the 3D hopping chaotic map. Figure 2b
displays the bifurcation diagram of the 3D hopping parameters x, y and z obtained from
Equations (5)–(7) with initial values of a1 = 3.7900, b1 = 0.0185, c1 = 0.0125, x1 = 0.2350,
y1 = 0.3500 and z1 = 0.7350. It is clear that the bifurcation diagram of the proposed chaotic
map has an enhancement in the parameter range of hopped chaotic sequence compared
with the fixed chaotic parameters used in [28].

Figure 2. Cont.
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Figure 2. Chaotic Test: (a) chaotic behavior; (b) bifurcation diagram of hopped chaotic parameters x,
y and z.

The generated values and histogram generation of hopped chaotic sequence x, y and z
obtained through (1)–(7) are depicted in Figure 3. Figure 3a,c,e shows the generated values
for x, y and z with initial values of a1 = 3.7900, b1 = 0.0185, c1 = 0.0125, x1 = 0.2350,
y1 = 0.3500 and z1 = 0.7350, while, Figure 3b,d,f represents the histogram for each obtained
value of x, y, and z, respectively. Obviously, the histogram of the generated chaotic sequence
has non-uniform distribution that may have an effect on the security of the system.

Figure 3. Values x, y and z and histogram generation. (a) Generated value of x, (b) histogram of x,
(c) generated value of y, (d) histogram of y, (e) generated value of z, and (f) histogram of z.
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3.2. Histogram Equalization

The generated histograms displayed in Figure 3 are non-uniformly distributed. To
further increase the security of the generated histograms, we apply an equalization process
for x, y, and z through (8)–(10) as follows where η2, η4 and η6 are large random numbers
and they are chosen to be equal and greater than 100,000 for simplicity, while M and N
are chosen to be equal to the image dimension (256 × 256). It is clear from Figure 4b,d,f
that after applying the above constraints, we obtain the equalized histogram for xnew, ynew
and znew.
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xnew = (integer(x× η2))modN (8)

ynew = (integer(y× η4))modM (9)

znew = (integer(z× η6))mod256 (10)

3.3. Row Rotation

For a gray image of M×N dimensions, the row rotation is executed by applying an
offset value η1, then selecting M elements of chaos sequence x beginning from the offset
value η1, and finally applying the chaos value x obtained through Equation (5) to rotate the
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row. To increase the security of the generated sequence, the row rotation could be right or
left rotation according to the chaos value (odd or even).

3.4. Column Rotation

The column rotation is similar to the row rotation and can be applied by selecting
N elements of chaos sequence y, choosing η3 to be an offset value, then starting from η3
and applying the chaos value y obtained from Equation (6). Now, we have an encrypted
image with row and column rotation but with the same histogram of the original image.
To overcome histogram attacks, we need to apply one more step to change the value of the
image pixel as described in the following point.

3.5. XOR Operation

A final step in the encryption process is to XOR the generated sequence obtained
through row and column rotations to get new pixel values other than the original ones. The
XOR operation is done by converting the M×N image to a new 1 ×MN image, then using
an offset value η5, XOR the chaos sequence z starting from η5 and select M × N elements
to finally get a well-secured encrypted image.

4. Statistical Tests Analysis and Simulation Results
4.1. Simulation Setup

The simulations were implemented in MATLAB R2015b (MathWorks, Natick, MA,
USA) on a computer with Windows 10, Intel Duo Core I5 @2.53 GHz, 8 GB DDR3 RAM.
The proposed cryptosystem was applied to a group of four gray images Lena, Deblur,
Mandrill, and Peppers each with a dimension of 256 × 256 as shown in Figure 5a. The
proposed 3D mapping encryption algorithm described in the previous section was applied
by using the system parameters and initial values given in Table 1, which resulted in an
encrypted version for the four selected images as shown in Figure 5b. Then we decrypted
the cipher image to get the original image by using the correct key as shown in Figure 4c.

Figure 5. Simulation results for all images. (a) Original gray images, (b) encrypted gray images, and
(c) recovered gray images.
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Table 1. Simulation and test parameters.

Offset Parameters Value Function

η2, η4, η6 100,000 Histogram Equalization
η1 500 Offset value for Row Rotation Vector
η3 600 Offset value for Column Rotation Vector
η5 700 Offset value for XOR Operation Vector

4.2. Statistical Analysis

Statistical attacks are a common type of image encryption attack due to the high
correlation properties for adjacent pixels within an image. Such kinds of attacks could
be avoided through randomly redistributing the pixels within the image and assigning
a new value for each pixel. Figure 5 shows the histogram of the images under tests for
both the original and encrypted versions. The encrypted images histograms are shown in
Figure 6b,d,f and are uniformly distributed in terms of the pixel values compared to those
in Figure 6a,c,e.Such uniformity distribution of the pixel values gives a good indication for
the strength of the proposed encryption scheme.

Figure 6. Histogram analysis for both original and encrypted images. (a,c,e,g) histogram of original
images. (b,d,f,h) histogram of encrypted images.
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4.3. Key Sensitivity Analysis

Key sensitivity is a reliable test to measure the encryption cryptosystem strength for
a digital image. The better the encryption algorithm, the more sensitive (against even a
slight change in a single key) it should be. Table 2 depicts the parameters and initial values
used to measure the key sensitivity of our proposed cryptosystem. Even with a variation
in one bit in a single parameter between the encryption correct key (K1) and wrong key
(K2) for the same image, we realized a difference in the resulting histogram obtained in
both cases such as that shown in Figure 7.

Table 2. List of the keys used for key sensitivity analysis.

Correct Key K1 Wrong Key K2

x1= 0.2350 x1= 0.2350+10−17

y1= 0.3500 y1= 0.3500
z1= 0.7350 z1= 0.7350

a1 = 3.7900 a1 = 3.7900
b1 = 0.0185 b1 = 0.0185
c1 = 0.0125 c1 = 0.0125

η2 = η4 = η6 = 100, 000 η2 = η4 = η6 = 100, 000
η1= 500 η1= 500
η3= 600 η3= 600
η5= 700 η5 = 700

Figure 7. Key sensitivity analysis for deblur image. (a) Encrypted image using correct key. (b) His-
togram of encrypted image using correct key. (c) Encrypted image using wrong key. (d) Histogram
of encrypted image using wrong key.
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4.4. NPCR and UACI Randomness Tests

Two of the most common tests used to measure the image encryption algorithm
against differential attacks are NPCR and UACI. Mao and Chen [5,21], first introduced
both randomness tests in 2004.

NPCR :F(C1, C2) = ∑
ij

D(i, j)
M× N

× 100% (11)

UACI :U(C1, C2) =
1

M× N ∑
ij

|C1(i, j)− C2(i, j)|
T

× 100% (12)

where, D(i, j) =
{

0 i f C1(i, j) 6= C2(i, j)
1 i f C1(i, j) = C2(i, j)

(13)

To measure the differential attacks, a randomly pixel of a plain image was chosen and
a slight change in the pixel value occurred to get a new plain image. Then, the encryption
algorithm was applied on both images to produce the cipher images C1 and C2 of the
original and new images, respectively. NPCR and UACI are calculated and listed in Table 3.
Sufficiently high NPCR/UACI values for both cipher images are usually considered as
a strong resistance to differential attacks. The results depicted in Table 3 demonstrate
that a slight variation in the original image caused no effect on the existing cryptosystem.
However, a significantly larger difference was recognized for our proposed method, i.e.,
high sensitivity of the proposed cryptosystem even for a slight variation in the original
image. The comparison of NPCR and UACI for the proposed and different algorithms on
Lena image is demonstrated in Table 4.

Table 3. Differential analysis for various test images.

Sensitivity Analysis Images

Lena Deblur Peppers Mandrill

NPCR (%) 99.6490 99.6231 99.5941 99.6063
UACI (%) 33.5965 33.4190 33.5651 33.4729

Table 4. Comparison of the plain image sensitivity analysis in the Lena image.

Sensitivity Analysis Proposed [29] [30] [31] [32]

NPCR (%) 99.6490 0.996097 0.995964 0.996124 0.996107
UACI (%) 33.5965 0.334557 0.334762 0.334591 0.334436

4.5. Correlation Properties Analysis and Tests

The correlation values between two neighboring pixels in the original image was high
and near to 1 for horizontal, vertical, and diagonal positions. Cryptanalysts usually exploit
correlation to cause cipher break. To avoid such ciphered image attacks, adjacent pixels
must be de-correlated, with low value and close to 0. The correlation formula is given by:

corr(p, s) =

N
∑

i=1

(
pi − 1

N

N
∑

j=1
pj

)(
si − 1

N

N
∑

j=1
sj

)
√√√√ N

∑
i=1

(
pi − 1

N

N
∑

j=1
pj

)2
N
∑

i=1

(
si − 1

N

N
∑

j=1
sj

)2
(14)

In Equation (14), N represents the total number of adjacent pixel and (pi, si) are the
adjacent pixels’ values. The correlation between two pixels for both original and ciphered
images are depicted in Table 5, and Figure 8, respectively. Consequently, the proposed
cryptosystem achieved zero-correlation and had a high privilege against correlation attacks.
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The comparison of correlation coefficient for the proposed algorithm and other algorithms
for Lena image is demonstrated in Table 6.

Table 5. Correlation coefficient for various test images.

Image
Position

Horizontal Vertical Diagonals

Lena 0.9807 0.9626 0.9276
Encrypted Lena 0.0013 0.0022 0.0028

Deblur 0.9915 0.9946 0.9528
Encrypted Deblur −0.0039 0.0035 −0.0020

Mandrill 0.9324 0.9379 0.9740
Encrypted Mandrill 0.0057 0.0059 −0.0034

Peppers 0.9541 0.9544 0.7066
Encrypted Peppers 0.0011 −0.0039 −0.0028

Figure 8. Correlation analysis of Lena image. (a) The vertical correlation, (b) vertical correlation for encrypted image,
(c) horizontal correlation, and (d) horizontal correlation for encrypted image.

Table 6. Comparison of correlation coefficient for Lena image.

Schemes
Position

Horizontal Vertical Diagonals

Proposed 0.0013 0.0022 0.0028
[29] 0.0020 0.0035 0.0027
[30] 0.0068 −0.0054 0.0010
[31] −0.0039 0.0035 −0.0020
[32] −0.0047 0.0040 −0.0034
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4.6. Peak Signal-to-Noise Ratio (PSNR)

PSNR is defined by the quality estimator for image after compression or some modifi-
cation like mean square error (MSE). Equations (15) and (16) represent the calculation of
the PSNR and MSE respectively

PSNR = 20 log10

(
Pmax√
MSE

)
(15)

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

((C(i, j)− P(i, j)))2 (16)

where, Pmax is the highest pixel value of the gray image and its value is 255. P(i, j) and
C(i, j) are the pixel value at a certain point (i, j) in the original image and the encrypted
image, respectively. As long as the PSNR value is small, the resulted encryption algorithm
will be more robust. The values of MSE and PSNR for the input tested images are listed in
Table 7. The results of PSNR show that the proposed algorithm is very robust.

Table 7. MSE and PSNR for various test images.

Images MSE PSNR

Lena 9832.1 8.2043
Deblur 8213.8 8.9853

Mandrill 9910.5 8.1698
Peppers 7505.5 9.3770

4.7. Noise Attack

During data transmission procedure, the opponent tries to decrypt the encrypted
data. When the opponent fails to decrypt the ciphered data, he uses active or passive
attacks to prevent the receiver from decrypting the encrypted data. Noise attack is one of
most common ways used to distort the communication between the sender and receiver.
Therefore, salt and pepper noise attacks were used with different intensity to measure the
effect on the decrypted image. The results are provided in Figure 9. It may be visible that
the proposed cryptosystem paper can be robust against the salt and pepper noise attack.

Figure 9. Salt and pepper noise attack results. (a) Intensity value 0.01, (b) Intensity value 0.05, (c) Intensity value 0.1.

4.8. Entropy Analysis and Test Results

The entropy H of a message source S is obtained through the following formula:

H(S) = −
N−1

∑
i=0

P(Si) log2 P(Si) (17)
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where P (Si) denotes the probability of (Si). Assuming the message source (S) emitting
256 pixel values of equal probability, the resulting entropy would be near to 8. The obtained
entropy represents a truly random source and with an ideal value of the message source S.
The uniform distribution indicates greater entropy information. An encrypted image with
information entropy less than the ideal value would result in a high risk for the possibility
of certainty, which means real image security is threatened. The obtained information
entropy values through our proposed encryption scheme as seen in Table 8 refers to ideal
values close to 8. The information entropy test results obtained for our proposed encryption
scheme would give a good indication of the strength of the proposed algorithm against
security threats.

Table 8. Entropy analysis for encrypted test images.

Entropy Test Results

Image Original Encrypted

Lena 7.4498 7.9984
Deblur 7.4223 7.9890

Mandrill 7.4390 7.9887
Peppers 7.4300 7.9894

4.9. Local Shannon Entropy

Local Shannon Entropy (LSE) is a new performance test to adjust the exact randomness
by selecting the non-overlapping blocks inside the cipher image. This performance can
be measured by computing the mean of the entropy analysis calculated in the previous
section on each block in the cipher image. LSE can be expressed by

Hk,l(S) = −
k

∑
i=0

H(Si)

k
(18)

where, S1, S2 . . . . . . Sk are particular k image blocks while l is the amount of pixels for each
block. Table 9 illustrates the LSE values for the cipher image.. The results show that the
LSE value for the proposed algorithm is nearer to the optimum value (≈8). Therefore, the
proposed cryptosystem has high randomness.

Table 9. Local Shannon Entropy.

Image Proposed System [29] [30] [31] [32]

Lena 7.907462 7.902838 7.903975 7.904512 7.904671
Deblur 7.907321 7.903369 7.903520 7.902741 7.905962

Mandrill 7.908132 7.903750 7.903028 7.902728 7.906211
Peppers 7.909584 7.902970 7.903511 7.902972 7.906520

4.10. Time Efficiency

Time efficiency is running on a computer with Windows 10, Intel Duo Core I5
@2.53 GHz, 8 GB DDR3 RAM (Dell, Round Rock, TX, USA). The time is calculated on
both encryption and decryption process. The test is applied on proposed images of size
256 × 256 pixels. Table 10 records the time efficiency of the proposed system and different
encryption schemes. The results show that the proposed algorithm is sufficiently fast
compared with other schemes, and meets real-time performance necessities.

Table 10. Time Efficiency.

Algorithms Proposed System [29] [30] [31] [32]

Time 0.15827 3.60724 2.65247 1.42729 0.88924
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To summarize the performance analysis, Table 11 shows the analysis of the proposed
algorithm compared with different schemes on the Lena image.

Table 11. Summarize of Performance Analysis.

Performance Analysis Proposed System [29] [30] [31] [32]

NPCR (%) 99.6490 0.996097 0.995964 0.996124 0.996107
UACI (%) 33.5965 0.334557 0.334762 0.334591 0.334436
Horizontal 0.0013 0.0020 0.0068 −0.0039 −0.0047

Vertical 0.0022 0.0035 −0.0054 0.0035 0.0040
Diagonals 0.0028 0.0027 0.0010 −0.0020 −0.0034

Shannon Entropy 7.907462 7.902838 7.903975 7.904512 7.904671
Time 0.15827 3.60724 2.65247 1.42729 0.88924

5. Conclusions

The main contribution described in this article is the proposal of a novel non–linear
algorithm based on a logistic parameter hopped 3D chaotic map, using chaotic hopped
parameters instead of fixed parameters for the chaotic map as well as the equalized his-
togram to increase the security of image encryption. First, dimensional permutation for
the rows and columns of the image was obtained through our generated code. Secondly,
we assigned the generated random values for the pixels during the value transformation
stage. The steps required to build our encryption scheme involved starting with the code
generation, followed by the position permutation and shuffling the rows and columns,
then applying value transformation for the image pixels ending with the XOR operation.
Most of the previous encryption techniques were depending on chaotic maps that used
codebooks as a source for code generation. The modulated algorithm added more ran-
domness and scattering for the generated code, which was very difficult to predict. The
proposed encryption scheme was evaluated under several statistical tests such as: entropy
analysis test, key sensitivity test, correlation properties, peak signal-to-noise ratio, noise
attacks, and randomness tests including UACI and NPCR. The obtained test results were
compared to similar encryption schemes based on 3D chaotic maps to evaluate the strength
of our proposed scheme. The obtained results showed a significant improvement for the
system security and resistance against different types of crypto analytical threats compared
to other image encryption schemes based on similar algorithms.
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