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INTRODUCTION

Radiomics is an evolving field that involves the use of 
high-throughput computing to extract a large number 
of quantitative features from medical imaging data (1, 
2). Recent studies have shown that radiomic features 
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(RFs) can serve as prognostic factors in lung cancer and 
nasopharyngeal cancer (2-4). In the study by Huang et 
al. (4), the radiomics signature enhanced performance in 
predicting disease-free survival when incorporated into a 
nomogram with clinicopathologic factors. However, these 
studies analyzed CT images acquired with a wide range of 
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parameter settings. 
Since RFs seem to show poor reproducibility across 

different CT protocols (5), there is concern over the 
generalizability of radiomics results and their application 
across multiple centers. In the phantom-based study 
conducted by Berenguer et al. (5), only 71 of 177 RFs were 
reproducible when extracted from CT images acquired using 
different parameters, including 2-, 3-, 5-, and 8-mm slice 
thicknesses. Although the results of phantom studies cannot 
necessarily be directly translated to the clinical setting, 
this study demonstrated the need for standardization of 
radiomics methodology. Such standardization may improve 
the reproducibility and diagnostic performance of RFs. 

The acquisition thickness of CT images is one aspect 
affecting reproducibility. He et al. (6) reported that thin-
slice (1.25 mm) CT-based radiomic signatures showed 
significantly better diagnostic performance than thick-slice 
CT (5 mm) signatures in the discrimination of benign and 
malignant solitary pulmonary nodules. These results imply 
that thin-slice CT contains more information for radiomics 
analysis; however, the acquisition of thin-slice CT images 
involves greater storage requirements for collection and 
management of the data. 

In an effort to reduce the variability of RFs resulting 
from differences in slice thickness and to obtain more 
information from CT images, we considered whether thick-
slice images (3 or 5 mm) could be converted to 1-mm slice-
thickness images using super-resolution (SR) reconstruction, 
and whether this would reduce the differences in RFs 
associated with different CT slice thicknesses (7). SR 
reconstruction is a post-processing technique that allows 
a high-resolution image to be produced from a sequence 
of low-resolution images, and its implementation with 
convolutional neural network (CNN) algorithms has been 
investigated in several medical imaging studies (8-11). 

Therefore, the aim of our study was to retrospectively 
assess the effect of CT slice thickness on the reproducibility 
of RFs of lung cancer, and to investigate whether CNN-
based SR algorithms can improve the reproducibility of RFs 
obtained from images with different CT slice thicknesses. 

MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
Review Board of our center, which waived the requirement for 
patients’ informed consent (approval number: 2018-1283).

Study Population
A retrospective search of the electronic medical records 

of our hospital for the period between July 2017 and 
December 2017 was performed by one radiologist (who had 
2 years of experience in chest CT). A total of 445 patients 
who had undergone preoperative chest CT before surgical 
resection of primary lung cancer were identified.

The study population was enrolled on the basis of the 
following criteria: 1) identical CT parameter settings; 
contrast-enhanced CT images reconstructed with a B50f 
kernel and slice thicknesses of 1, 3, and 5 mm; and 2) lung 
cancers measuring up to 3 cm in the greatest diameter on 
CT. Exclusion criteria for this analysis were endobronchial 
or cavitary lesions, poor-quality CT images, and lesions that 
were difficult to clearly delineate because of accompanying 
lung parenchymal collapse or obstructive changes. 

Among the 319 lung cancers identified as meeting 
the study criteria, 148 were solid and 171 were ground-
glass nodules (GGNs), as classified by two radiologists 
in consensus. Subsequently, 50 nodules were randomly 
selected from each of the solid and GGN groups by using a 
pseudo-random number generating algorithm (Fig. 1). The 
final study population of 100 patients (mean age, 62.2 ± 
10.6 years; range, 29–77 years) was enrolled (Table 1).

CNN-Based SR Technique
For development and validation of the model, CT data 

were collected from 100 patients without lung cancers. 
These 100 CT datasets were evenly divided into four 
categories according to the radiation dose (standard or 
low-dose) and the use of contrast enhancement (contrast-
enhanced or not). Eighty-eight patients were randomly 
selected (22 from each category) to train the CNN model, 
with the remaining 12 patients (three from each category) 
being used to validate the model performance. 

The SR algorithm for CT slice thickness is aimed at 
improving the resolution only in the depth direction, 
which can be interpreted as spatial information in the 
coronal and sagittal planes. The SR network is divided into 
preprocessing, non-linear mapping, and reconstruction 
parts (Fig. 2). The preprocessing part deals with variance 
from input images with different scales, and the non-linear 
mapping and reconstruction parts deal with the differences 
between the input images at low resolutions (3 or 5 mm) 
and the target image (1 mm). Further details are provided in 
the Supplementary Materials and Supplementary Table 1. To 
assess whether the CNN-based SR algorithm is better than 
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Table 1. Baseline Characteristics of Study Population (n = 100)

Characteristic GGN (n = 50) Solid (n = 50) P
Age, years, mean ± SD 60.4 ± 10.4 64.0 ± 10.6 0.092
Sex (%) 0.007

Male 11 (22.0) 24 (48.0)
Female 39 (78.0) 26 (52.0)

Tumor size, mm, mean ± SD 16.3 ± 5.3 20.7 ± 6.9 0.001
Pathology (%)

Minimally invasive adenocarcinoma 7 (14.0)
Invasive adenocarcinoma 40 (80.0) 37 (74.0)
Mucinous invasive adenocarcinoma 3 (6.0) 6 (12.0)
Squamous cell carcinoma 4 (8.0)
Small cell lung cancer 2 (4.0)
Pleomorphic carcinoma 1 (2.0)

Location (%)
Right upper lobe 14 (28.0) 12 (24.0)
Right middle lobe 1 (2.0) 6 (12.0)
Right lower lobe 13 (26.0) 15 (30.0)
Left upper lobe 14 (28.0) 12 (24.0)
Left lower lobe 8 (16.0) 5 (10.0)

GGN = ground-glass nodule, SD = standard deviation

445 patients underwent resection for
primary lung cancer between 

July 2017–December 2017 with preoperative CT

Eligibility criteria:
• Size < 3 cm on CT
• Identical CT protocol

- Available all 1, 3, 5 mm slice-thickness
- B50f kernel
- Contrast-enhancement

Exclusion criteria:
• Endobronchial lesion (n = 3)
• Cavitary lesion (n = 12)
• Poor image quality (n = 3)
•  Difficult to differentiate lung nodule from atelectasis, 
obstructive pneumonitis (n = 2)

n = 339

n = 319

Solid
n = 148

Sold
n = 50

GGN
n = 171

GGN
n = 50

Random selection

Fig. 1. Flow diagram for patient inclusion. GGN = ground-glass nodule
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Fig. 2. Development of CNN algorithm for image conversion.
A. Network consists of preprocessing, non-linear mapping, and reconstruction parts. Preprocessing part deals with variance from input images with 
different scales, and non-linear mapping and reconstruction parts deal with differences between input images at low resolution (3 or 5 mm) and target 
image (1 mm). B. Ground-truth image, converted image, and difference map are presented. In difference map, green indicates zero, blue represents 
negative values, and red indicates positive values. When comparing original 1-mm and SR 3-mm images, most of lung parenchyma and small vascular 
structures show near-zero difference. Regions showing residual differences are present in pulmonary nodule, large vascular structures, fissure, and 
border between lung parenchyma and pleura (root-mean-square error: 30.83 HU). C. Comparison between original 1-mm and SR 5-mm images shows 
slightly more prominent differences in background lung parenchyma, including vascular structures, with speckled error regions remaining along margin 
of lung nodule (root-mean-square error: 37.65 HU). SR 3 mm refers to images converted from original 3-mm slice thickness, SR 5 mm refers to images 
converted from original 5-mm slice thickness. CNN = convolutional neural network, SR = super-resolution, 3D = three-dimensional

Input 3D image
in depthwise Reconstruction

part (upsampling)Preprocessing part Non-linear mapping part 1

Long concatenation unit

64 ch.

Resblock Concatenation ConcatenationResblock

x 3

x 5 64 ch.128 ch. 128 ch.

Long concatenation unit

Non-linear mapping part 2

A

B

C

-250                           0                           250
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the conventional simple interpolation algorithm, a trilinear 
interpolation algorithm was applied to convert slice 
thickness.

CT Acquisition
Chest CT images were obtained with SOMATOM Definition 

AS and Sensation-16 scanners (Siemens Healthineers, 
Forchheim, Germany), with settings of 120 kVp and 
150–200 mAs, a pitch of 0.875–1, and collimation of 
1–1.25 mm. Images were reconstructed using a B50f 
kernel with slice thicknesses of 1, 3, and 5 mm. All CT data 
were acquired in the supine position at full inspiration. 
Scan coverage was from the lung base to the level of the 
thoracic inlet. Intravenous contrast media (100 mL) was 
injected at a rate of 3 mL/sec, and scanning started after a 
delay of 50 seconds.

Lung Nodule Segmentation and Radiomics Analysis
Tumor segmentation was performed on 1-, 3-, and 5-mm 

images using commercial software (AVIEW, Coreline Soft, 
Seoul, Korea). For each tumor, the software automatically 
drew regions of interest covering the entire range of the 
tumor on the axial CT images. Then, one radiologist manually 
adjusted the boundary regions on each section (12, 13). 
Two radiologists confirmed the masks for the final regions 
of interest in consensus. A total of 718 RFs consisting of 
tumor shape, intensity, texture, and wavelet features were 
extracted automatically, as previously described (2).

Since variability in tumor segmentation can also induce 
differences in the RFs, the mask boundaries on the 
original 3- and 5-mm slice-thickness images were adjusted 
with reference to the masks of the original 1-mm slice-
thickness images. For the same reason, the masks of the 
original 1-mm images were copied to the converted 1-mm 
images.

Statistical Analysis
Root-mean-square errors (RMSEs) were obtained as a 

quantitative measurement to assess differences between 
the original 1-mm and converted 1-mm images. The 
reproducibility of each individual RF was calculated using 
concordance correlation coefficients (CCCs) (14), with a 
CCC of ≥ 0.85 indicating a reproducible RF (15). The CCCs 
of RFs were compared using a paired t test or Wilcoxon 
test to assess significant differences in the reproducibility 
of RFs in all possible pairings from the original images 
(1 mm vs. 3 mm; 1 mm vs. 5 mm; and 3 mm vs. 5 mm). 

Subsequently, the CCCs of RFs obtained before and after 
the image conversion were compared. The performance of 
the CNN-based SR algorithm and that of a simple trilinear 
interpolation algorithm were compared in terms of CCCs. 
RFs between nodule types were also compared using an 
independent t test or Mann-Whitney tests. Sixteen shape 
features were excluded from this analysis because they had 
identical shapes, as they were copied from the original 
1-mm mask.

All statistical analyses were performed using MedCalc 
statistical software (version 18.2.1; MedCalc Software, 
Ostend, Belgium). Data are presented as mean ± standard 
deviation. P < 0.05 was considered to indicate statistical 
significance.

RESULTS

Global Performance of the CNN-Based SR Algorithm
The RMSEs were 38.2 ± 3.8 HU between images with an 

original 1-mm slice thickness and those converted from an 
original 3-mm slice thickness, and 47.1 ± 4.0 HU between 
the original 1-mm slice-thickness images and those 
converted from an original 5-mm slice thickness (Fig. 2). 

Effect of Slice Thickness on RFs
The mean CCCs for the shape features were more than 0.85 

in all three pairings, which we regarded as an acceptable 
difference for tumor segmentation. The mean CCCs for all 
classes of features (except for the shape features) between 
1- and 3-mm, 1- and 5-mm, and 3- and 5-mm images were 
0.41 ± 0.23, 0.27 ± 0.21, and 0.65 ± 0.22, respectively, 
with all three pairings showing significant differences (p < 
0.001 for all comparisons). Tumor intensity features showed 
the best reproducibility, while the CCCs for the wavelet 
features were the lowest in all three pairings. 

In terms of nodule type, GGNs showed better 
reproducibility than solid nodules in all RF classes and in all 
slice-thickness pairings (p < 0.001 for 1 mm vs. 3 mm and 
1 mm vs. 5 mm, and p = 0.002 for 3 mm vs. 5 mm). Table 
2 presents the CCCs for the RF classes according to slice 
thickness.

The majority of RFs failed to reach the cut-off value for 
reproducibility in the original images, with 25, 7, and 151 
out of 702 RFs (3.6%, 1.0%, and 21.5%, respectively) 
being considered as reproducible in comparisons between 1- 
and 3-mm, 1- and 5-mm, and 3- and 5-mm slice-thickness 
images, respectively. 
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Reproducibility of RFs after Image Conversion Using the 
CNN-Based SR Algorithm

Image conversion from slice thicknesses of 3 and 5 mm 
to 1 mm significantly improved reproducibility in all three 
pairings when all classes of features were pooled (mean 
CCCs increased from 0.27–0.65 to 0.45–0.72; p < 0.001 for 
all comparisons). This improvement was also observed in 
the subgroupings based on the classes of RFs and nodule 
types (Table 2). The CCCs between 1- and 3-mm slice-
thickness images improved from 0.75 ± 0.17 to 0.97 ± 
0.05, 0.62 ± 0.19 to 0.84 ± 0.15, and 0.38 ± 0.22 to 0.54 
± 0.37 for tumor intensity, texture, and wavelet features 
respectively (p < 0.001 for all comparisons). The CCCs 
between 1- and 5-mm slice-thickness images improved 
from 0.60 ± 0.21 to 0.92 ± 0.11, 0.42 ± 0.18 to 0.72 ± 
0.19, and 0.25 ± 0.19 to 0.41 ± 0.34 for tumor intensity, 
texture, and wavelet features respectively (p < 0.001 for all 
comparisons).

The CCCs between 3- and 5-mm slice-thickness images 
also significantly increased, although the pre-conversion 
values were higher than the CCCs between 1- and 3-mm 
slice thicknesses (0.90 ± 0.06 to 0.96 ± 0.05, 0.76 ± 0.16 

to 0.88 ± 0.13, and 0.63 ± 0.22 to 0.71 ± 0.21 for tumor 
intensity, texture, and wavelet features, respectively; p 
< 0.001 for all comparisons). Only the CCC for the tumor 
intensity features of GGNs was not significantly higher after 
image conversion (0.91 ± 0.17 to 0.93 ± 0.05, p = 0.303).

In accordance with this increase in the mean CCCs, the 
numbers of reproducible RFs also increased (Table 3, Fig. 
3). Almost all tumor intensity features became reproducible 
(18, 16, and 18 out of 19 RFs for 1 mm vs. 3 mm, 1 mm 
vs. 5 mm, and 3 mm vs. 5 mm, respectively) after image 
conversion. In addition, the number of reproducible 
features in the texture class, which was particularly low in 
the comparisons between 1-mm vs. 3-mm and 1-mm vs. 
5-mm slice-thickness images, significantly increased after 
image conversion (3 to 40, 0 to 17, and 23 to 45 out of 
59 RFs for 1 mm vs. 3 mm, 1 mm vs. 5 mm and 3 mm vs. 5 
mm, respectively).

For the wavelet features, both the mean CCC and the 
effect of image conversion varied among the subclasses of 
wavelet features, depending on the combination of high- 
or low-frequency components (Supplementary Table 2). The 
mean CCC tended to be better when more low-pass filters 

Table 2. CCCs between Different Slice Thicknesses before and after SR Application

RF Classes
1 mm vs. 3 mm 1 mm vs. 5 mm 3 mm vs. 5 mm

Original SR P Original SR P Original SR P

Total
Shape 0.93 ± 0.06 0.86 ± 0.12 0.92 ± 0.09
Tumor intensity 0.75 ± 0.17 0.97 ± 0.05 < 0.001 0.60 ± 0.21 0.92 ± 0.11 < 0.001 0.90 ± 0.06 0.96 ± 0.05 < 0.001
Texture 0.62 ± 0.19 0.84 ± 0.15 < 0.001* 0.42 ± 0.18 0.72 ± 0.19 < 0.001 0.76 ± 0.16 0.88 ± 0.13 < 0.001*
Wavelet 0.38 ± 0.22 0.54 ± 0.37 < 0.001* 0.25 ± 0.19 0.41 ± 0.34 < 0.001 0.63 ± 0.22 0.71 ± 0.21 < 0.001*
Tumor intensity + 
  texture + wavelet

0.41 ± 0.23 0.58 ± 0.37 < 0.001* 0.27 ± 0.21 0.45 ± 0.34 < 0.001* 0.65 ± 0.22 0.72 ± 0.21 < 0.001*

GGN
Shape 0.91 ± 0.08 0.83 ± 0.15 0.88 ± 0.15
Tumor intensity 0.79 ± 0.17 0.97 ± 0.05 < 0.001* 0.68 ± 0.19 0.89 ± 0.11 < 0.001* 0.91 ± 0.17 0.93 ± 0.05 0.303*
Texture 0.63 ± 0.23 0.80 ± 0.20 < 0.001 0.44 ± 0.22 0.66 ± 0.21 < 0.001* 0.74 ± 0.19 0.82 ± 0.17 0.001*
Wavelet 0.39 ± 0.23 0.54 ± 0.38 < 0.001* 0.26 ± 0.21 0.40 ± 0.33 < 0.001* 0.63 ± 0.22 0.67 ± 0.23 < 0.001*
Tumor intensity + 
  texture + wavelet

0.42 ± 0.25 0.56 ± 0.37 < 0.001* 0.29 ± 0.22 0.44 ± 0.34 < 0.001* 0.65 ± 0.22 0.69 ± 0.23 < 0.001*

Solid
Shape 0.94 ± 0.05 0.88 ± 0.10 0.95 ± 0.05
Tumor intensity 0.58 ± 0.19 0.92 ± 0.19 < 0.001 0.40 ± 0.19 0.87 ± 0.22 < 0.001 0.83 ± 0.06 0.95 ± 0.09 < 0.001
Texture 0.51 ± 0.19 0.82 ± 0.15 < 0.001* 0.31 ± 0.16 0.68 ± 0.22 < 0.001 0.71 ± 0.14 0.87 ± 0.13 < 0.001
Wavelet 0.35 ± 0.23 0.53 ± 0.36 < 0.001* 0.22 ± 0.20 0.41 ± 0.34 < 0.001* 0.59 ± 0.26 0.71 ± 0.23 < 0.001*
Tumor intensity + 
  texture + wavelet

0.37 ± 0.23 0.57 ± 0.36 < 0.001* 0.24 ± 0.20 0.44 ± 0.34 < 0.001* 0.60 ± 0.25 0.73 ± 0.23 < 0.001*

*p values are derived from paired t test or Wilcoxon test. CCC = concordance correlation coefficient, RF = radiomic feature, SR = super-
resolution
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were applied.
When all features were pooled, the total number of 

reproducible features markedly increased from 16 to 197, 5 

to 89, and 114 to 196 out of 624 RFs for 1 mm vs. 3 mm, 1 
mm vs. 5 mm, and 3 mm vs. 5 mm, respectively. 

Using simple interpolation, the overall reproducibility 

Fig. 3. Proportion of reproducible RFs (CCC ≥ 0.85) in different slice-thickness pairings before and after application of image 
conversion.
A. Majority of RFs failed to reach cut-off for reproducibility (CCC ≥ 0.85) in original images. After image conversion (B), proportion of 
reproducible RFs markedly increased in all three slice-thickness pairings. Similar tendency was observed using alternative cut-off values of 0.80 
and 0.90. CCC = concordance correlation coefficients, RF = radiomic feature, SR = super-resolution
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229

(36.7)

174

(27.9)

93

(14.9)

Solid

Tumor 

  intensity

  (n = 19)

1

(5.3)

1

(5.3)

1

(5.3)

17

(89.5)

16

(84.2)

15

(78.9)

1

(5.3)

1

(5.3)

1

(5.3)

15

(78.9)

15

(78.9)

13

(68.4)

10

(52.6)

8

(42.1)

1

(5.3)

17

(89.5)

16

(84.2)

16

(84.2)

Texture

  (n = 59)

2

(3.4)

0

(0.0)

0

(0.0)

42

(71.2)

34

(57.6)

18

(30.5)

0

(0.0)

0

(0.0)

0

(0.0)

19

(32.2)

14

(23.7)

10

(16.9)

17

(28.8)

11

(18.6)

3

(5.1)

42

(71.2)

39

(66.1)

37

(62.7)

Wavelet

  (n = 624)

28

(4.5)

15

(2.4)

5

(0.8)

206

(33.0)

183

(29.3)

143

(22.9)

8

(1.3)

6

(1.0)

2

(0.3)

117

(18.8)

83

(13.3)

65

(10.4)

151

(24.2)

98

(15.7)

54

(8.7)

260

(41.7)

215

(34.5)

147

(23.5)

Data in parentheses are percentages.
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of the RFs was significantly lower than that with the SR 
algorithm (p < 0.001 for all comparisons) and was partly 
worse than those in all three pairings of different original 
slice-thickness images (Supplementary Table 3).

DISCUSSION

In this study, we demonstrated that the variability in RFs 
between different CT slice thicknesses was significant in 
lung cancer, and this variability can be reduced by the use 
of our CNN-based SR algorithm.

Previous studies showed that a large proportion of 
RFs (106/177) were prone to change according to the 
acquisition parameters (5), and that the average number 
of stable RFs was only 53.4 out of 114 (46.8%) when 1.5- 
and 3-mm slice thicknesses were compared, even when all 
sequences were acquired on a single CT scanner (16). These 
results are in line with our study, which indicates that 
the overall reproducibility of RFs between different slice-
thickness images is not satisfactory (mean CCCs: 0.27–0.65). 
However, Lu et al. (17) reported that the mean CCCs of 
RFs were high (0.725–0.875) between pairings of different 
slice thicknesses (1.25, 2.5, and 5 mm) in 32 lung cancer 
patients. These discrepancies between our study and the 
study by Lu et al. (17) could mainly lie in differences in 
the numbers and composition of RFs, the status of contrast 
enhancement, and the CT vendor. We included a large 
number of wavelet features (624/702), which produced the 
lowest CCCs in the subgroup analysis, and used contrast-
enhanced images taken on a scanner from a different 
vendor. Therefore, further studies with different acquisition 
settings are required to verify our results.

As expected, the agreements between 1- and 5-mm 
slice thicknesses were the lowest, while the 3- and 5-mm 
slice-thickness pairing showed the highest agreement. 
This agreement trend implies that the more two datasets 
overlap, the higher the similarity between the images. 
Tumor intensity and texture features yielded acceptable 
agreement levels between 3- and 5-mm slice thicknesses; 
however, in this pairing showing the best agreement, 
there was still a large proportion of non-reproducible RFs 
(78.5%, 551/702), and this implies that comparisons of 
radiomics results derived from CT images with different slice 
thicknesses may be unreliable.

To overcome this limitation, we developed the CNN-based 
SR algorithm to reduce the variability of the RFs. When 
the algorithm was designed, we chose 1 mm as a target 

slice thickness because measurements of subcentimeter 
lung nodules should be obtained using thin-slice CT (≤ 1.5 
mm), as recommended by the Fleischner Society (18), and 
thin-slice CT (1.25 mm) is more informative than 5-mm CT 
for discriminating between benign and malignant solitary 
pulmonary nodules (6).

Our CNN-based method was consistently effective 
in all subgroups from all three pairings of different 
slice thicknesses and showed a significant increase in 
reproducibility, except for the 3- and 5-mm slice-thickness 
comparison in the GGN group. Furthermore, the total 
number of reproducible RFs (CCC ≥ 0.85) was much higher 
in comparison with the original images, which provided 
only a small number of reproducible RFs across the various 
slice-thickness protocols. Therefore, the SR technique can 
be used to decrease the effect of slice thickness when 
RFs extracted from different slice-thickness images were 
compared with each other or analyzed together.

Another interesting finding of our study was that GGNs 
showed better reproducibility than solid nodules in all RF 
feature classes in all slice thicknesses, despite GGNs being 
vulnerable to slice thickness, as they appear faint and may 
be missed on thick-slice images. A possible explanation is 
that the volume-averaging effect changes the attenuation 
and its distribution of solid nodules more greatly than that of 
GGNs because the difference in attenuation between normal 
lung parenchyma and GGNs is smaller than that between 
normal lung parenchyma and solid nodules. However, other 
factors such as nodule shape or nodule size could influence 
the results. Matched case comparisons between solid 
nodules and GGNs may be necessary to confirm our results.

Our study has several limitations. First, our study 
included only contrast-enhanced images because 
preoperative CT for lung cancer was performed with 
contrast enhancement in routine practice. To compensate 
for this limitation, we used equal quantities of non-
contrast and contrast-enhanced CTs for the training set. 
Thus, we expect the SR technique to work effectively on 
non-contrast images as well. A second limitation was the 
variability in tumor segmentation itself. The boundaries of 
a nodule on 1-, 3-, and 5-mm slice-thickness images are 
not inherently the same. However, given that substantial 
agreement in the shape features was achieved between 
all three pairings of original images (mean CCC ≥ 0.85 
for all comparisons), the effects of the segmentation 
differences on the radiomics data were within acceptable 
ranges. Third, the shape features that were most sensitive 
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to slice thickness were excluded from the analysis, as the 
masks were drawn by referencing or copying the masks of 
the original 1-mm slice-thickness images, to ensure that 
the effect of slice thickness was evaluated independently 
of segmentation effects. When applying the SR technique 
in real practice, segmentation variability, as well as slice 
thickness, will affect the reproducibility of the extracted 
RFs. Therefore, in future studies, it will be necessary to 
investigate the effects of both of these through separate 
tumor segmentations. Fourth, the trilinear interpolation 
algorithm applied in our study is one of various 
interpolation methods and may not be the optimal method 
for slice-thickness reduction. Therefore, it might be hasty 
to mention that our CNN-based algorithm outperforms 
simple interpolation methods. Last, since our study is a 
feasibility study to investigate the effect of a CNN-based 
SR algorithm on the reproducibility of RFs, we did not 
assess whether the better reproducibility obtained with the 
SR technique will lead to improvements in the performance 
of radiomics-based tasks. Therefore, further studies are 
warranted to determine the clinical utility of our method. 

In conclusion, the reproducibility of RFs in lung cancer is 
significantly influenced by CT slice thickness, which can be 
improved by the application of CNN-based SR algorithms.
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https://doi.org/10.3348/kjr.2019.0212.
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