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Abstract

Reproducibility of results obtained using ribonucleic acid (RNA) data across labs remains a major hurdle in cancer research.
Often, molecular predictors trained on one dataset cannot be applied to another due to differences in RNA library preparation
and quantification, which inhibits the validation of predictors across labs. While current RNA correction algorithms reduce these
differences, they require simultaneous access to patient-level data from all datasets, which necessitates the sharing of training data
for predictors when sharing predictors. Here, we describe SpinAdapt, an unsupervised RNA correction algorithm that enables the
transfer of molecular models without requiring access to patient-level data. It computes data corrections only via aggregate statistics
of each dataset, thereby maintaining patient data privacy. Despite an inherent trade-off between privacy and performance, SpinAdapt
outperforms current correction methods, like Seurat and ComBat, on publicly available cancer studies, including TCGA and ICGC.
Furthermore, SpinAdapt can correct new samples, thereby enabling unbiased evaluation on validation cohorts. We expect this novel
correction paradigm to enhance research reproducibility and to preserve patient privacy.
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Introduction
The advent of high-throughput gene expression profiling
has powered the development of sophisticated molecular
models to capture complex biological patterns. To ensure
the generalization of molecular patterns across inde-
pendent studies, molecular predictors require validation
across platforms and laboratories. However, the transfer
of predictors across laboratories still remains a technical
obstacle. Batch-specific effects that dominate the biolog-
ical signal exist between different technologies, labora-
tories and even library preparation protocols within the
same laboratory [1]. Furthermore, often these interinsti-
tutional datasets are siloed due to human subject privacy
concerns. There is an unmet need for a technology that
enables the transfer of molecular predictors across labs
in a privacy-preserving manner such that sample-level
patient data are not transferred.

Correction of batch-specific biases in ribonucleic acid
(RNA) expression datasets has been an active field of
research in the past two decades. Numerous methods are

proposed to correct batch effects, and these mostly
fall into two categories: batch integration and batch
correction. Batch integration entails joint embedding
of batch-biased expression data in a shared embedding
space where batch variations are minimized [2, 3]. Batch
correction removes batch biases in the gene expres-
sion space, harmonizing batch-biased dataset(s) to a
reference dataset. For batch correction, we refer to the
reference dataset as the target and the batch-biased
dataset as the source.

Machine learning models in clinical research are often
developed using RNA expression data [4] and need to be
validated on external datasets with acquisition biases.
We therefore consider the model immutable and avoid
further training or fine tuning of the existing model to
new datasets. Batch correction methods enable valida-
tion of existing immutable predictive models on external
datasets that are corrected to the reference set. This is
achieved by setting the training dataset as the reference
dataset. Thereby, batch correction avoids the necessity to
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retrain the model for every validation dataset. Further-
more, data-leakage is a cause of overfitting in machine
learning, and hence, we propose to extend the definition
of batch correctors to include the capability to apply the
learned correction on unseen data (transform).

In contrast, batch integration methods have no refer-
ence set by definition. Therefore, the paradigm of vali-
dating immutable predictors cannot be executed using
batch integration. Some examples of batch integration
include methods based on gene-wise linear models like
Limma [5], mutually nearest neighbors (MNNs) like MNN
Correct [6] and Scanorama [7], mutually nearest clusters
like ScGen [8], pseudoreplicates like ScMerge [9] and
multibatch clusters like Harmony [10]. Batch correction
methods can correct a source library to a target reference
library, like Combat [11], Seurat3 [12] and the proposed
SpinAdapt algorithm, and thus can be used for transfer-
ring molecular predictors across expression datasets.

Prior integration and correction methods require full
sample-level access for integration or correction of
datasets. Therefore, the transfer of molecular predictors
between laboratories necessitates the transfer of patient-
level training data for the molecular predictor. This
data access requirement can inhibit the transfer of
models between laboratories, given the transfer of data
may not be possible due to data ownership, GDPR or
similar regulations. To overcome these challenges, we
present SpinAdapt, a method that enables the transfer
of molecular predictors between laboratories without
disclosure of the sample-level training data for the
predictor, thereby allowing laboratories to maintain
ownership of the training data and protect patient
privacy. Instead of sharing sample-level data, privacy-
preserving aggregate statistics of the training data are
shared along with the molecular predictor. Our approach
is based on the concept of matrix masks from privacy
literature [13], where the sample-level data and matrix
mask are kept private, while the output of the matrix
mask is shared publicly.

This study demonstrates the transfer and validation of
diagnostic and prognostic models across transcriptomic
datasets, using SpinAdapt, while drawing comparisons
with other batch correction methods. The common task
of integration (homogenization) across multiple tran-
scriptomic datasets is also evaluated for multiple can-
cer types, comparing various integration methods. In
our experiments, SpinAdapt outperforms other batch
correction methods in the majority of these diagnos-
tic, prognostic and integration tasks without requiring
direct access to sample-level data. Therefore, SpinAdapt
may also be preferable for sharing molecular predictors
across labs where the training dataset can be shared and
data privacy is not an issue.

Results
Algorithm overview
We aimed to develop a framework for transfer and
validation of molecular predictors across platforms,

laboratories and varying technical conditions. Further-
more, we aimed to remove the requirement of sharing
training data in order to evaluate and validate predictors
across labs. To this end, we developed SpinAdapt that
enables the validation of predictors while preserving data
privacy (Figure 1A). Data factors, which are aggregate
statistics of each dataset, neither convey protected
health information nor allow reconstruction of sample-
level data (Supplementary Note), and thus can be shared
externally. SpinAdapt learns corrections between data
factors of each dataset, which is followed by application
of corrections on the biased expression dataset (source).
Note that our framework also enables the correction of
new data samples, which has important implications as
discussed later.

SpinAdapt corrections are learned using a regularized
linear transformation between the data factors of source
and target, which comprise the principal component
analysis (PCA) basis, gene-wise means and gene-wise SDs
of source and target, respectively (Methods, Figure 1B).
The linear transformation is the solution of a non-convex
objective function, which is optimized using an effi-
cient computational approach based on projected gradi-
ent descent. Once the transformation has been learned, it
can be applied on the source dataset for correction, fol-
lowed by the application of the target-trained predictor
on the corrected source dataset (Figure 1C). Therefore,
the learning module requires access only to the data
factors of each dataset to learn the correction for the
source dataset.

Since the learning step (Figure 1B) is separated from
the transform step (Figure 1C), the transform step can
be applied to new prospective data that were held out
in the learning step. The ability to transform data that
are held out from model training is deemed necessary for
machine learning algorithms to avoid overfitting, which
is ensured in this case by keeping the test data for the pre-
dictor separate from training of any data model. Includ-
ing predictor test data in batch correction model training
can lead to information leakage and overly optimistic
performance metrics. To avoid this, the evaluation data
in transform step (transform) are kept independent of
the train data in the learning step (fit). This fit-transform
paradigm is extended by SpinAdapt to transcriptomic
datasets.

The training step of the algorithm is based on the
idea of aligning the PCA basis of each dataset. To
demonstrate the concept, we apply SpinAdapt on a
transcriptomic dataset of paired patients, employing
TCGA-BRCA cohort consisting of 481 breast cancer
patients, where RNA was profiled both with RNA-seq
and microarray. We assigned the RNA-seq library as
target and the microarray as source. The application
of SpinAdapt aligns the PCA basis of source to target,
which resulted in the alignment of embeddings as well
as gene expression profiles across the paired datasets
(Figure 2A). The paired patients were composed of four
cancer subtypes: Luminal A (LumA), Luminal B (LumB),
Her2 and Basal. When the corrected source dataset is
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Figure 1. Privacy-preserving transfer of molecular models between a target lab and a source lab. (A) A target dataset with a trained classifier and
protected RNA data provides its privacy-preserving RNA factors and a molecular classifier to SpinAdapt. A source dataset used for validation provides
its own privacy-preserving RNA factors to SpinAdapt. Given the factors, SpinAdapt returns a correction model to source, where the source data is
corrected. Target classifier without modification can then be validated on source-corrected. (B) Source and target factors are calculated as the principal
components of RNA data. Next, SpinAdapt learns a correction model from source to target eigenvectors (factors). (C) Evaluation of the SpinAdapt
correction model on the held-out prospective source data. Finally, the target-trained classifier is applied to the corrected source data.

visualized with the target library in a two-dimensional
space with Uniform Manifold Approximation and
Projection (UMAP), we observe each of the four subtypes
to be harmonized across the two libraries as compared
with before correction (Figure 2B). The subtype-wise
homogenization is achieved without the use of subtype
labels in the training step, demonstrating that alignment
of basis in the PCA space achieves efficient removal of
technical biases in the gene expression space. We also
conduct a simulation experiment to explore SpinAdapt
for removal of batch effects, where batch effect is
simulated between synthetic datasets (source and target)

and the source dataset is corrected using SpinAdapt (see
results in Supplementary Figure 6 available online at
https://academic.oup.com/bib).

Transfer of diagnostic predictors
We demonstrate the transfer of multiple distinct tumor
subtype classifiers on four pairs of publicly available
cancer datasets (bladder, breast, colorectal and pancre-
atic), covering 4076 samples and three technological plat-
forms (RNA-seq, Affymetrix U133plus2 Microarray and
Human Exon 1.0 ST Microarray) (Supplementary Table 1

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
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Figure 2. Batch correction performance on paired 481 TCGA-BRCA patients profiled with RNA-seq (target) and microarray (source). (A) Scatter plots of
gene expression values in target with uncorrected source expression, target basis with corrected source basis, target embeddings with corrected source
embeddings and finally gene expression values in target with corrected source expression, where all corrections are performed using SpinAdapt. (B)
Source expression dataset before and after correction, plotted with the reference target library (visualized in 2D with UMAP embeddings). The samples
are labeled by cancer subtype and the paired samples are connected with a solid line. Left panel shows cancer subtypes before correction. Right panel
shows subtype homogeneity and matching of the paired samples across datasets after SpinAdapt correction.

available online at https://academic.oup.com/bib). Cumu-
latively, we validated the transfer of 17 tumor subtypes
across the four experiments, drawing comparisons of
SpinAdapt with other batch correction methods like
ComBat and Seurat. For each dataset pair and tumor
subtype, we trained a one-versus-rest tumor subtype
classifier on the target dataset. The hyperparameters for
each subtype classifier were chosen in a cross-validation
experiment on the target dataset, while the source
dataset was held out from classifier training (Methods).

A common approach for validating target-trained clas-
sifiers across datasets is to correct all source data to tar-
get and then evaluate the classifier on corrected source
dataset. However, such an approach requires the batch
correction (adaptation) model to train on the source
dataset, which is also the test set for the classifier. Train-
ing the adaptation model on the test set may lead to

information leakage, which may lead to overly optimistic
performance results. The risk of overfitting on the test
set has been sparingly discussed in the batch correction
literature. We propose a validation framework that holds
out a subset of the source data from training of both
the adaptation model and subtype classifier. Since the
source subset is completely held out from training of
both models, it can be used as the test set for the subtype
classifier without the risk of information leakage.

Specifically, the validation framework proceeds by
creating two mutually exclusive sets from source
(Source A and Source B). We first fit the adapta-
tion model between Source A and target, transform
Source B using the adaptation model, followed by
prediction on transformed Source B using the target-
trained classifier (Supplementary Figure 1A available
online at https://academic.oup.com/bib). Similarly,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
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we fit the adaptation model between Source B and
target, followed by transformation and prediction on
Source A (Supplementary Figure 1B available online at
https://academic.oup.com/bib). Finally, we concatenate
the held-out predictions on Source A and Source B,
followed by performance evaluation using F-1 score
(Methods). SpinAdapt’s performance was evaluated
using this framework, so the test set is always held out
from training modules. Existing correction methods, like
ComBat and Seurat3, have currently not implemented
a transformation method for out-of-sample data that is
held out from their training. Therefore, these methods
had to be trained on the classifier test set in the
aforementioned framework (Methods).

We repeated the above experimental framework 30
times and reported the mean F-1 score for each tumor
subtype. SpinAdapt significantly outperformed Seurat3
on 7 out of the 17 tumor subtypes, including pancreatic
subtypes: progenitor, aberrantly differentiated endocrine
exocrine (ADEX), immunogenic, colorectal subtypes:
CMS3, breast subtypes: LumA, bladder subtypes: Squa-
mous and Stroma. SpinAdapt also significantly outper-
formed ComBat on 11 out of the 17 subtypes, including
pancreatic subtypes: progenitor, ADEX, immunogenic,
colorectal subtypes: CMS1, CMS2, CMS3, breast subtypes:
Her2, bladder subtypes: luminal papillary (LumP), lumi-
nal unstable (LumU), luminal nonspecified (LumNS) and
Stroma. SpinAdapt was not significantly outperformed
by either Seurat or ComBat for any subtype (Figure 3A–D,
Supplementary Figure 2, Supplementary Tables 2 and 4,
available online at https://academic.oup.com/bib,
Methods).

Integration analysis
Dataset integration, an RNA homogenization task that
requires access to sample-level data, is commonly
adopted for single-cell RNA homogenization. To evaluate
the trade-off between privacy preservation and full data
access, we compared SpinAapat to Seurat, Combat,
Limma [5], Scanorama [7] and ComBat-seq [14] for the
integration of bulk-RNA datasets in the four dataset
pairs used previously (Supplementary Table 1 available
online at https://academic.oup.com/bib). ComBat-seq
was evaluated on dataset pairs with RNA-seq data
only. For high integration performance, we want to
maximize dataset mixing while maintaining subtype-
wise separability (no mixing of tumor subtypes) within
integrated datasets.

To evaluate the various integration methods, we
employ UMAP transform in conjunction with the average
silhouette width (ASW) and local inverse Simpson’s
index (LISI) (Methods). For each of the four cancer
dataset pairs, the silhouette score is computed for each
integrated sample in source and target, and then the
average silhouette score is reported across all samples
(Methods, Figure 4A, Supplementary Table 3 available
online at https://academic.oup.com/bib). Even though
SpinAdapt did not have access to sample-level data

when learning the transformation between source
and target, it significantly outperformed each of the
other methods for colorectal cancer and breast cancer
(P < 10–5 and P < 10–6, respectively). For pancreatic cancer,
SpinAdapt outperformed ComBat, Limma, Scanorama
and ComBat-seq (P < 0.05 for each method). For bladder
cancer, Scanorama outperformed SpinAdapt (P < 10–5),
whereas SpinAdapt outperformed ComBat and Limma
(P < 10–6) (Supplementary Table 5 available online at
https://academic.oup.com/bib). Even though the inte-
gration performance of SpinAdapt can be improved via
direct access to samples, it significantly outperforms
most of the competing methods in each experiment.

To analyze batch mixing and subtype-wise separation
independently, we also employ the LISI metric for inte-
gration evaluation. For good integration performance,
we sought high batch diversity and low subtype diversity
in local sample neighborhoods, which associates with
high batch LISI (bLISI) and low tissue LISI (tLISI) score,
respectively. For each of the four cancer datasets, we
report the average bLISI and tLISI scores across all
integrated samples in source and target (Methods,
Supplementary Figures 4, 9 and 10 available online at
https://academic.oup.com/bib).

Transfer and validation of prognostic predictors
Finally, we demonstrate the transfer of Cox regression
models across distinct datasets for three cancer types
(breast, colorectal and pancreatic; Supplementary Table
5 available online at https://academic.oup.com/bib).
Specifically, a Cox proportional hazards (PH) model is
trained on the target dataset using a gene signature
determined through application of an ensemble method
on the target dataset (Methods). The risk thresholds for
the survival model are determined based on the upper
and lower quartiles of the distributions of log partial
hazards of the target dataset such that samples with
a predicted log partial hazard >75% percentile of said
distribution are predicted to be high risk, and samples
with a predicted log partial hazard <25% percentile of
said distribution are predicted to be low risk. These model
prediction thresholds were fixed across all evaluations.

We then compare multiple batch correction (adapta-
tion) methods for transfer of the prognostic models from
target to the source dataset. For each cancer type, the
source dataset is adapted to the target using SpinAdapt,
Seurat and ComBat. The target-trained Cox PH model
is used to generate predictions (log partial hazards) on
all samples from the source dataset, both for the uncor-
rected source dataset and the three correction methods.
The risk thresholds determined on the target dataset are
used to classify samples from the source dataset as low
risk, high risk or unclassified based on their predicted log
partial hazards values.

The performance of the prognostic models is quan-
tified by computing the c-indices as well as the 5-year
log-rank P-value and 5-year hazard ratio (HR) of the
combined predicted high-risk and low-risk groups of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
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Figure 3. (A–D) Subtype prediction performance on held-out source subsets. We train subtype predictors on target data and evaluate them on source
data. Source data is split into two disjoint subsets such that the correction model is trained on one subset and the predictor performance is evaluated
on the other held-out subset. Seurat and ComBat do not support a fit-transform paradigm, and therefore, they are trained and evaluated on each of
the disjoint subsets. For each subtype, the vertical bar represents the mean F-1 score and the error bar represents the standard error over 30 repetitions
of the experiment. SpinAdapt either ties or outperforms Seurat and ComBat on: pancreatic cancer, colorectal cancer, breast cancer and bladder cancer
subtypes. Significance testing by two-sided paired McNemar test (Methods).

source samples for each cancer type and each adaptation
method (Figure 5, Supplementary Table 7 available
online at https://academic.oup.com/bib). SpinAdapt
demonstrates high survival prediction accuracy for all
datasets (c-index, log-rank P-value, HR): colorectal (0.63,
4e-2, 4.24), breast (0.66, 1e-5, 3.2) and pancreatic (0.65,
2e-6, 3.51), in contrast with uncorrected source dataset:
colorectal (0.52, 4e-1, 0.54), breast (0.62, 7e-4, 2.2) and
pancreatic (0.50, 7e-1, 1.29). Furthermore, SpinAdapt
outperforms Seurat: colorectal (0.51, 7e-1, 0.85), breast
(0.59, 2e-2, 2.0) and pancreatic (0.62, 2e-1, 2.66) as well
as ComBat: colorectal (0.56, 2e-1, 0.57), breast (0.61, 3e-
4, 2.4) and pancreatic (0.62, 7e-5, 2.64) in terms of all
performance metrics for all cancer types.

Discussion
In the traditional paradigm of sharing data models
across laboratories, the discussion presumes simulta-
neous transfer of molecular models and the associated
training datasets. Therefore, all existing RNA correction
methods require concurrent access to patient-level
samples across all datasets. However, some health care
organizations may prefer to not share patient-level
data, and they would require a common trusted broker
to have simultaneous access to their private datasets.
Such trusted brokers are quite common in transactional

domains such as banking where privacy and trust play
a major role. Recently, the use of cryptography and
distributed computing has allowed the emergence of
a secure, trustless financial transaction system that
eliminates the use of such brokers [15]. Similar trust
limitations still exist between health-care organizations
that actively limit data sharing due to privacy and
security concerns.

To allow the validation of models in a privacy-
preserving setting, we identified three key desirable
capabilities for a batch correction model: (i) the ability
to work in a privacy-preserving setting; (ii) correct
all datasets with respect to a reference set, which is
used to train an immutable molecular model and (iii)
transform/correct unseen samples after the correction
model has been learned. SpinAdapt eliminates the need
for a trusted broker, as it only operates on privacy-
preserving aggregate statistics of each dataset and
allows the application of a target model on privately
held source data. The key idea of the algorithm is
to match gene-wise means, variances and gene–gene
covariances between a reference and other datasets.
Despite an inherent trade-off between performance and
privacy, SpinAdapt shows state-of-the-art performance
on diagnostic, prognostic as well as integration tasks,
outperforming similar correction algorithms that require
access to private sample-level data. By only sharing data

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
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factors of the training dataset alongside the RNA-based
data model, SpinAdapt allows external validation and
reuse of pretrained RNA models on novel datasets. The
ability to share RNA models without the necessity of
sharing model training data would improve research
reproducibility across laboratories and pharmaceutical
partners that cannot share patient data.

This paper demonstrates the application of SpinAdapt
for transfer of diagnostic and prognostic models across
distinct transcriptomic datasets, profiled across various
laboratories and technological platforms, entailing RNA-
Seq as well as various microarray platforms. Since the
correction paradigm does not require sample-level data
access, SpinAdapt enables correction of new prospective
samples not included in training. The ability to correct
held-out data is deemed necessary for validation frame-
works, where the validation data need to be completely
held out from training of any data models including
classifiers, regressors or batch correctors to avoid overfit-
ting. SpinAdapt enables rigorous validation of molecular
predictors across independent studies by holding out the
validation data from training of the predictor as well as
the batch corrector.

Methods
Datasets
Gene expression dataset pairs are generated across
various cancer types (bladder, breast, colorectal and
pancreatic) pertaining to microarray platforms and RNA-
sequencing (Supplementary Table 1 available online at
https://academic.oup.com/bib). Bladder cancer datasets
pertain to Seiler and TCGA cohorts [16], which are down-
loaded from GSE87304 and ICGC under the identifier
BLCA-US, respectively. Colorectal cancer datasets are
downloaded from GSE14333 [17] and ICGC under the
identifier COAD-US, which are subsets of cohorts A and
C, respectively, described in the ColoType prediction [18].
Breast cancer datasets pertain to TCGA [19] and SCAN-
B cohorts [20], where the former are downloaded from
ICGC under the identifier BRCA-US and the latter are
obtained from GSE60789. Pancreatic cancer datasets are
generated using the Bailey and TCGA cohorts [21], which
are downloaded from ICGC under the identifiers PACA-
AU and PAAD-US, respectively.

The subtype labels for patients across various can-
cer types are generated using well-accepted subtype
annotations (Supplementary Table 1 available online at
https://academic.oup.com/bib). Bladder cancer subtypes
are labeled as luminal papillary (LumP), luminal non-
specified (LumNS), luminal unstable (LumU), stroma-
rich (Stroma), and basal/squamous (Ba/Sq), generated
using a consensus subtyping approach [16]. Breast cancer
subtypes are labeled as LumA, LumB, HER2-enriched
(Her2) and Basal-like (Basal) [22]. Colorectal cancer
subtypes are labeled as CMS1, CMS2, CMS3, CMS4, as
published by the Colorectal Cancer Subtyping Consor-
tium [23]. Pancreatic cancer subtypes are generated

using expression analysis and are labeled as squamous,
pancreatic progenitor, immunogenic and ADEX [24].

Preprocessing
For each cancer type, we only keep patients with both
expression data and subtype annotation labels available.
Molecular subtypes with less than five patients in any
cancer cohort are removed. For the microarray expres-
sion datasets (GSE14333 and Seiler; Supplementary Table
1 available online at https://academic.oup.com/bib),
multiple probe sets may map to the same gene. The
expression values were averaged across such probe
sets to get gene expression value. Furthermore, for
each cancer type, we remove genes with zero variance,
and we only keep genes common between source and
target, which are sorted in alphabetical order. Finally,
we normalized the RNA-seq datasets using the variance
stabilizing transform from DeSeq2, whereas microarray
data were not normalized beyond their publication.

Benchmarking methods
For Seurat, we used the default package parameters,
except when the number of samples in either dataset is
<200, where the default value of k.filter does not work.
Therefore, when the number of samples in either dataset
is <200, we set the k.filter parameter as 50. For ComBat,
a design matrix is created using the batch labels, and the
method is implemented using the SVA package version
3.34.0. Similarly, Limma is implemented using limma
package version 3.42.2. For Seurat and Scanorama, we
deployed package versions 3.2.2 and 1.6, respectively.
Finally, for ComBat-seq, we employed SVA with package
version 3.38.

Parameters for SpinAdapt
For any given pair of source and target datasets, let
p be the number of genes, ns be the number of sam-
ples in source, and nt be the number of samples in
target. Across all experiments performed in this study,
the parameters in SpinAdapt (Algorithm 1) are set as
follows: α = 0.01, λ = (2/3) ∗ min(ns, nt), and variancenorm

is set to True when the source is microarray but False
otherwise. However, for integration analysis of source
and target datasets, we always set variancenorm = True.

Algorithm 1 SpinAdapt algorithm

function Main(Xt, Xs, Xsh(optional), Ft, α, λ, variancenorm)
1. Compute data factors for source:

Us, ms, ss = Factors (Xs).
2. Compute data factors for target:

Ut, mt, st = Factors (Xt).
3. Fit (train) SpinAdapt correction model:

A ← SpinAdapt.Fit (Us, Ut, α, λ).
4. Transform source dataset:

Xsc ←SpinAdapt.Transform
(Xs, Xsh(optional), A, Us, ms, ss, Ut, mt, st, variancenorm).

5. Apply target-trained predictor Ft:
ysc ← Ft(Xsc).

6. Return predictions ysc.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
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Evaluation methods for transfer of diagnostic
models
For each of the 17 cancer subtypes (Supplementary Table
1 available online at https://academic.oup.com/bib), we
train a one-versus-rest random forest classifier on the
target dataset such that the classifier learns to discrim-
inate the selected subtype against all other subtypes in
the target. Specifically, all target samples annotated with
the selected subtype are given a positive label, while the
rest of the target samples are assigned a negative label.
The hyperparameters for the random forest classifier
are learnt in a 3-fold cross-validation experiment on the
target dataset.

We compare multiple batch correction (adaptation)
methods for transfer of the subtype classifier from target
to the source dataset. The transfer requires adaptation of
the source dataset to the target reference. For unbiased
performance evaluation of a batch correction method,
the test set for the classifier and the training set for
the correction method need to be disjoint, and thus, the
correction model does not train on the classifier test
set. We propose a framework for validating transfer of
classifiers across datasets that avoids such information
leakage.

The validation framework randomly splits the source
dataset into two mutually exclusive subsets: Source A
and Source B. First, the adaptation model is trained from
Source A to target (fit), and applied to Source B (trans-
form). The target classifier generates predictions on
corrected Source B (Supplementary Figure 1A available
online at https://academic.oup.com/bib). Second, the
adaptation model is fit from Source B to target, followed
by transformation of Source A and generation of predic-
tions on corrected Source A (Supplementary Figure 1B
available online at https://academic.oup.com/bib). Finally,
the classification performance is quantified by comput-
ing F-1 scores for all samples in the held-out corrected
source-A and source-B subsets. We repeat the entire
procedure for 30 times, choosing a different partitioning
of source into source-A and source-B, and we report the
mean F-1 score for each subtype over the 30 iterations.

We evaluate SpinAdapt using the aforementioned
framework for validating transfer of subtype classifiers.
However, since Seurat and ComBat cannot transform
out-of-sample data, they can only correct samples
included in training of these correction methods.
Therefore, for these two methods, we train the correction
model on the classifier test set, followed by application
of target-trained classifier on the corrected test set.
Specifically, for ComBat and Seurat, we fit-transformed
source-A to target, fit-transformed source-B to target and
computed F-1 scores for all samples in the transformed
source-A and source-B subsets. As before, we repeat the
procedure for 30 times using the same data splits as
used for SpinAdapt validation, which enabled pairwise
performance comparisons between SpinAdapt, Seurat
and ComBat.

For each subtype, we performed the two-sided, paired
McNemar test to identify if the differences between any
pair of adaptation methods are statistically significant
[25]. Due to the rarity of positives for a selected subtype
in each dataset, we perform the McNemar test only
on samples with positive ground truth. Each positive
sample is assigned a correct or incorrect classification
label. Then, for each pair of correction methods, the
McNemar test statistic is evaluated on the disagreements
between correction methods on the positive samples. We
report the median P-value across the 30 repetitions of the
validation framework (Supplementary Table 4 available
online at https://academic.oup.com/bib).

Evaluation methods for dataset integration
A common task for RNA-based algorithms is dataset
integration (batch mixing). There is an inherent trade-off
between batch mixing and preservation of the biological
signal within integrated datasets. To quantify preserva-
tion of the biological signal, we quantify subtype-wise
separability (no mixing of tumor subtypes) in the inte-
grated datasets. Therefore, for high data integration per-
formance, we want to minimize subtype mixing while
maximizing batch mixing.

To compare SpinAdapt with other batch integration
methods, we assess the goodness of batch mixing and
tissue type separation. First, we employed the ASW to
quantify batch mixing and tissue segregation. The sil-
houette score of a sample is obtained by subtracting
the average distance to samples with the same tissue
label from the average distance to samples in the nearest
cluster w.r.t. the tissue label and then dividing by the
larger of the two values [26]. Therefore, the silhouette
score for a given sample varies between −1 and 1, such
that a higher score implies a good fit among samples with
the same tissue label and vice versa. In other words, a
higher AVW implies mixing of batches within each tissue
type or/and separation of samples from distinct tissue
types.

To explicitly quantify batch mixing and tissue seg-
regation, independently, we employ the LISI. The LISI
metric assigns a diversity score to each sample by
computing the effective number of label types in the
local neighborhood of the sample. Therefore, the notion
of diversity depends on the label under consideration.
When the label is set to batch membership, the resulting
metric is referred to as bLISI since it measures batch
diversity in the neighborhood of each sample. When
the label is set to tissue type, the resulting metric is
referred to as tLISI since it measures tissue type diversity
in sample neighborhood. For good integration, we sought
sample neighborhoods with high batch diversity and low
subtype diversity, which correlates with high bLISI and
low tLISI score, respectively. For each integration method
and cancer dataset, we report average bLISI and tLISI
scores across all samples in source and target datasets
(Supplementary Table 3, Supplementary Figures 4, 9 and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data


Multiomic prediction model validation | 9

10 available online at https://academic.oup.com/bib).
When comparing methods using average bLISI, which
measures dataset mixing, Seurat outperforms SpinAdapt
on breast and bladder cancer datasets (P < 10−3), whereas
SpinAdapt outperforms ComBat, Limma and Scanorama
on colorectal and pancreatic cancer datasets (P < 10−3)
(Supplementary Tables 3 and 5 available online at
https://academic.oup.com/bib). SpinAdapt also outper-
forms ComBat-seq on both breast and pancreatic cancer
datasets (P < 10−4). When comparing methods using
average tLISI, SpinAdapt significantly outperforms all
other methods on colorectal (P < 10−7) and pancreatic
(P < 0.05) cancer datasets, while significantly outper-
forming Seurat, ComBat, Limma and Scanorama on
breast cancer dataset (P < 10−13), implying SpinAdapt
best preserves molecular structures for dataset inte-
gration (Supplementary Tables 3 and 5 available online
at https://academic.oup.com/bib). When comparing
methods using tLISI on the bladder cancer dataset,
SpinAdapt outperforms Seurat, ComBat and Limma
(P < 10−6), whereas Scanorama outperforms SpinAdapt
without significance.

The various integration metrics, including silhouette,
bLISI and tLISI scores are computed on the UMAP
embeddings of the integrated datasets for each can-
cer type (Supplementary Table 1 available online at
https://academic.oup.com/bib). Specifically, the scores
in each experiment are computed on the first 50
components of the UMAP transform, where the UMAP
embeddings are computed using default parameters of
the package. The ASW, bLISI and tLISI scores are reported
along with the standard errors (Supplementary Table 3
available online at https://academic.oup.com/bib). For
each metric, significance testing between methods
is performed by a two-sided paired Wilcoxon test
(Supplementary Table 5 available online at https://acade
mic.oup.com/bib).

Evaluation methods for transfer of prognostic
models
For each of the four cancer datasets (colorectal, breast
and pancreatic, Supplementary Table 6 available online
at https://academic.oup.com/bib), we trained a Cox PH
model on the target dataset using a gene signature deter-
mined through an ensemble method performed on the
target dataset. The ensemble method for feature selec-
tion uses four ranked lists of genes, based on different
statistical tests or machine learning models: chi-square
scores, F-scores, random forest importance metrics and
univariate Cox PH P-value. We tested the predictive val-
ues of various permutations of genes of increasing length
(n = 10, 50, 75, 100, 200, 300, 500 genes) as signatures of a
Cox PH model trained and tested on random splits of the
target dataset, in a 5-fold cross-validation setting, where
50% of the target dataset was assigned to the training
set and the remainder was assigned to the test set. The
best-performing signature was determined based on the
c-index determined on the five random test sets. We then

used this signature to train a final Cox PH model on the
target dataset.

Visualization
We employ the UMAP transform to visualize the batch
integration results for each cancer type (Figures 2
and 4, Supplementary Figure 3 available online at
https://academic.oup.com/bib). Specifically, we perform
visualization in each experiment using the first two
components of the UMAP embeddings, where the
number of neighbors are set to 10 and the min_dist
parameter is set to 0.5. These parameters are fixed
for all visualizations in the study that employ UMAP
embeddings.

Algorithm details
SpinAdapt inputs source and target expression datasets
for training, corrects the batch-biased source expres-
sion data, even when the source data is held out from
training, followed by evaluation of the target-trained
predictor on the corrected source data. The algorithm,
as outlined in Algorithm 1, can be broken down into
several main steps: computation of source and target
data factors from source and target datasets in Steps 1
and 2, respectively, estimation of a low-rank affine map
between source and target PCA basis in Step 3, adaptation
(correction) of the source dataset in Step 4, and finally,
evaluation of the target-trained predictor on adapted
source dataset in Step 5. Notably, Step 4, Algorithm 1
can adapt source dataset Xsh that is held-out from the
training source dataset Xs. Steps 1 and 2 are executed
using Algorithm 2, whereas Steps 3 and 4 are executed
using Algorithms 3 and 4, respectively. These steps are
explained next in further detail.

Algorithm 2 Compute data factors, gene-wise means and
variances

function Factors(Xe):
1. Define ne := number of columns in Xe, p := number of rows in Xe,
de := min(ne, p).

2. Compute empirical mean vector.
me ← 1

ne

∑ne
i=1Xe,i

3. Compute empirical variance vector.
se ← 1

ne−1
∑ne

i=1(Xe,i − me)
2

4. Compute empirical covariance matrix.
Ce ← 1

ne−1 ( Xe − me) ( Xe − me)
T

5. Compute eigenvectors of the empirical covariance matrix.
Ue ← Eigenvectors(Ce)

6. Retain top de eigenvectors.
Ue ← Ue[1 : de]

7. Return Ue, me, se

In Step 1, Algorithm 1, data factors are computed for
the source dataset Xs, where the data factors comprise of
the PCA basisUs, gene-wise means ms and gene-wise vari-
ances ss of the source dataset. The details for the compu-
tation of these data factors are outlined in Algorithm 2,
where the gene-wise means and variances are computed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac110#supplementary-data


10 | Ahmed et al.

Figure 4. Integration of source with target across the four dataset pairs. (A) Quantification of integration performance using silhouette score finds
SpinAdapt to provide significantly better integrations in breast, colorectal and pancreatic cancer datasets. Significance testing by two-sided paired
Wilcoxon test (Methods). (ns: P ≥0.05, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). Statistical significance is defined at P < 0.05. (B) UMAP plots for dataset
integration, labeling samples by cancer subtype. Top panel shows cancer subtypes in each dataset before correction. Subtype homogeneity is apparent
in the majority of integration tasks regardless of library size. Subtype mixing is visible in regions where multiple subtypes cluster together. Subtype
mixing is observed before and after correction in breast between luminal subtypes, in colorectal between CMS 2 and 4, in pancreatic between ADEX and
immunogenic and in bladder between luminal subtypes.

in Steps 2 and 3, whereas the PCA basis are computed
in Steps 4–6. Similarly, data factors are computed for the
target dataset in Step 2, Algorithm 1, where the data
factors entail the PCA basis Ut, gene-wise means mt and

gene-wise variances st for the target dataset Xt. The gene-
wise means and variances ms, mt, ss and st are used in
the correction step (Step 4, Algorithm 1), whereas the PCA
basis Us and Ut are used in the train and correction steps
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(Steps 3 and 4, Algorithm 1). The usage of statistics ss

and st in Step 4, Algorithm 1 is optional depending on the
Boolean value of variancenorm, as we explain later.

Notably, Algorithm 1 does not require simultaneous
access to sample-level patient data in source and target
datasets at any step. Computation of source data factors
in Step 1 needs access to Xs only, whereas computation
of target data factors in Step 2 needs access to Xt only.
Training in Step 3 only requires access to the PCA basis of
source and target datasets. Since the PCA basis cannot be
used for recovery of sample-level patient data, the basis
are privacy-preserving (Supplementary Note). Adapta-
tion in Step 4 requires access to the source expression
data Xs, linear map A, and the data factors of both
datasets, without requiring access to the target dataset
Xt.Algorithm details: glossary
We define the data structures employed in Algorithm 1,
with the dimensionality of each structure. The dimen-
sionality is stated in terms of p, the number of genes;
ns, number of samples in source dataset; nt, number of
samples in target dataset; ds, dimensionality of source
latent space; dt, dimensionality of source latent space.

Xs ∈ Rp×ns The train source dataset.
Xt ∈ Rp×nt The train target dataset.
Xsh ∈ Rp×nt The held-out source dataset.
Xs,i ∈ Rp The ith column of Xs.
Xt,i ∈ Rp The ith column of Xt.
ms ∈ Rp The empirical gene-wise mean of source

dataset.
mt ∈ Rp The empirical gene-wise mean of target

dataset.
ss ∈ Rp The empirical gene-wise variance of source

dataset.
st ∈ Rp The empirical gene-wise variance of target

dataset.
Cs ∈ Rp×p The empirical covariance of source dataset.
Ct ∈ Rp×p The empirical covariance of target dataset.
Us ∈ Rp×ds Principal component factors for source

dataset.
Ut ∈ Rp×dt Principal component factors for target

dataset.
A ∈ Rds×dt Transformation matrix.
Xsc ∈ Rp×ns The corrected output source dataset.
X(i, j) The ith row and jth column of any matrix X.
v(i) The ith entry of any vector v.
Ft Classifier trained on the target dataset.
The parameters α and λ correspond to step size and

regularization parameters for the iterative algorithm Fit
(Algorithm 3). The parameter variancenorm is a Boolean
variable, which determines if the adaptation step (Step 4,
Algorithm 1) entails variance normalization of the source
dataset (for details, see Algorithm 4).

Algorithm details: learning transformation
between PCA factors
In Step 3, Algorithm 1, we learn a low matrix-rank trans-
formation between PCA factors of the source dataset and

Algorithm 3 Learn transformation from source to target factors
(Fit)

function SpinAdapt.Fit(Us, Ut, α, λ)
k = 0
Initialize A(0)

repeat
a. {Gradient descent}

Â(k) ← A(k) − α∇g(A(k))

b. {Projection Step}
A(k+1) ← Pλ( Â(k))

c. k ← k + 1
until convergence
return A(k)

Algorithm 4 Adapt the source dataset (Transform)

function SpinAdapt.Transform
(Xs, Xsh(optional), A, Us, ms, ss, Ut, mt, st, variancenorm)

1. Select the dataset for transformation:
If Xsh is null:

Xo:= Xs.
Else:

Xo:= Xsh.
2. Gene-wise variance normalization:

If variancenorm is True:
For i = 1, 2, . . . , p

For j = 1, 2, . . . , ns

Xo(i, j) ← (
√

st(i) ( Xo(i, j) − ms(i) )/
√

ss(i) ) + ms(i).
3. Compute source PCA embeddings:

∼
Xs ← UT

s (Xo − ms).
4. Correct source PCA embeddings:

∼
Xsc ← AT

∼
Xs.

5. Map corrected source PCA embeddings to the gene expression
space:

Xsc ← Ut
∼
Xsc + mt.

6. Return Xsc.

PCA factors of the target dataset. We pose a non-convex
optimization problem to learn the transformation, and
then we present an effective computational approach to
solve it, as we explain next.

Objective function for step 3, Algorithm 1

The objective function is based on Frobenius norm
between transformed source PCA basis Us A and the
target PCA basis Ut, as follows

Ar
∗ = arg minA ‖ Us A − Ut ‖F, s.t. rank(A) ≤ λ, , (1)

where A represents the transformation matrix, λ rep-
resents the matrix-rank constraint and rank(A) repre-
sents the matrix-rank of A. In the main term, it can be
seen that the ith column of the transformation matrix
A determines what linear combination of the columns
of Us best approximates the ith column of Ut, where i =
1, 2, . . . , dt. Therefore, the intuition behind the main term
is to approximate each target factor using some linear
combination of source factors.
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Figure 5. Survival curves for the predicted low-risk and predicted high-risk groups in the validation source dataset (A) before correction and (B)
after correction using SpinAdapt, for each of the three cancer types (breast, colorectal and pancreatic). (C) Distribution of log-partial hazards
for the target-trained Cox model on the target dataset, validation source dataset and corrected validation source dataset for each of the three
cancer types.

The inequality constraint in Equation (1) is a matrix-
rank penalization term, which restricts the solution
space of A to matrices with matrix-rank is less than λ.
The rank constraint is reminiscent of sparse constraint
in sparse recovery problems, where the constraint
restricts the maximum number of non-zero entries in
the estimated solution, thereby reducing the sample
complexity of the learning task. Similarly, in Equation
(1), the constraint restricts the maximum matrix-rank of
A, making the algorithm less prone to overfitting, while
decreasing the sample requirement of learning the affine
map from source to target factors. However, the problem

posed in Equation (1) turns out to be non-convex and
thus hard to solve. We employ traditional optimization
techniques and derive an efficient routine for computing
Ar

∗, as follows in the next subsection.

Optimization solution for step 3, Algorithm 1

Let g(A) = ‖ Us A − Ut ‖F, and let Sλ = {A : A ∈
Rds×dt , rank(A) ≤ λ}. Then, the objective function in
Equation (1) can be rewritten as

Ar
∗ = argminA g(A), s.t.A ∈ Sλ. (2)



Multiomic prediction model validation | 13

Gradient descent can be used to minimize g(A) w.r.t.
A because the function is convex and differentiable. In
contrast, Equation (2) cannot be evaluated using gradient
descent, since the set of low-rank matrices Sλ is non-
convex. However, we note that the Euclidean projection
onto the set Sλ can be efficiently computed, which hints
that Equation (2) can be minimized using projected gradi-
ent descent, as we explain next. Let the Euclidean projec-
tion of a matrix A onto set Sλ be denoted by Pλ(A). Then,
mathematically we have Pλ(A) = arg minZ {‖A − Z ‖F : Z ∈
Sλ}. From the Eckart-Young Theorem, we know that Pλ(A)

can be efficiently evaluated by computing the top λ sin-
gular values and singular vectors of A. The closed-form
solution of Pλ(A) is given by the SVD transform Uλ�λVλ

T,
where columns of Uλcontain the top λ eigenvectors of
AAT, columns of Vλ contain the top λ eigenvectors of ATA
and entries of the diagonal matrix �λ are square roots
of the top λ eigenvalues of AAT. We are finally ready to
present an algorithm for solving Equation (2).

Pseudocode for SpinAdapt.Fit ( Algorithm 3)

We present the algorithm for executing Step 3,
Algorithm 1, which is essentially a solution to the
optimization problem in Equation (2). We propose the use
of the projected gradient descent algorithm to evaluate
Equation (2), which is an iterative application of the
following descent step:

A(k+1) = Pλ

(
A(k) − α∇g(A)

)

for k = 0, 1, 2, 3, . . . till convergence. Details are provided
in Algorithm 3 below.

Pseudocode for SpinAdapt.Transform ( Algorithm 4)

Finally, we present the algorithm for executing Step 4,
Algorithm 1, where the batch-biased dataset is corrected
using the transformation A. Details are outlined in
Algorithm 4, as follows. In Step 1, Algorithm 4, the held-
out source dataset Xsh is selected for correction, if
provided. If held-out evaluation data (Xsh) is not provided,
the train source dataset Xs is selected for correction.
In Step 2, if the input parameter variancenorm is set to
True, the variance of each gene in the source dataset is
matched to variance of the corresponding gene in the
target dataset. In Step 3, the PCA embeddings of each
source sample are computed. In Step 4, the computed
PCA embeddings are corrected, using the transformation
matrix A. In Step 5, the corrected PCA embeddings are
transformed to the gene expression space. Finally, the
corrected source gene expression profiles are returned
in Step 6.

Key Points

• We propose SpinAdapt, which is an unsupervised batch
correction algorithm that learns a correction model
between privacy-preserving aggregate statistics of the

reference and the other datasets, while enabling correc-
tion of prospective new samples.

• SpinAdapt has the following desired characteristics:
asymmetric correction to a reference, learning of the
correction model without concurrent access to patient-
level information across all laboratories and correction
of new samples.

• Despite an inherent trade-off between performance and
privacy, SpinAdapt outperforms other batch correction
algorithms for transfer of various diagnostic and prog-
nostic models across laboratories.

• SpinAdapt enables the application of existing published
models on independent validation studies. This is in con-
trast to the common practice of retraining and modifying
published algorithms for predicting on new independent
datasets.

• We demonstrate the application of SpinAdapt in multi-
ple omics domains: RNA, methylation and protein data,
quantified by varying platforms: microarrays, sequenc-
ing and mass spectrometry.
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