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Methane is the simplest alkane and can be used as an alternative energy source for oil and
coal, but the greenhouse effect caused by its leakage into the air is not negligible, and its
conversion into liquid methanol not only facilitates transportation, but also contributes to
carbon neutrality. In order to find an efficient method for converting methane to methanol,
CH4 oxidation catalyzed by Fe(IV)-Oxo-corrolazine (Fe(IV)-Oxo-Cz) and its reaction
mechanism regulation by oriented external electric fields (OEEFs) are systematically
studied by density functional calculations. The calculations show that Fe(IV)-Oxo-Cz
can abstract one H atom from CH4 to form the intermediate with OH group
connecting on the corrolazine ring, with the energy barrier of 25.44 kcal mol−1. And
then the product methanol is formed through the following rebound reaction.
Moreover, the energy barrier can be reduced to 20.72 kcal mol−1 through a two-state
reaction pathway. Furthermore, the effect of OEEFs on the reaction is investigated. We
found that OEEFs can effectively regulate the reaction by adjusting the stability of the
reactant and the transition state through the interaction of electric field-molecular dipole
moment. When the electric field is negative, the energy barrier of the reaction decreases
with the increase of electric intensity. Moreover, the OEEF aligned along the intrinsic Fe‒O
reaction axis can effectively regulate the ability of forming the OH on the corrolazine ring by
adjusting the charges of O and H atoms. When the electric field intensity is −0.010 a.u., the
OH can be directly rebounded to the CH3· before it is connecting on the corrolazine ring,
thus forming the product directly from the transition state without passing through the
intermediate with only an energy barrier of 17.34 kcal mol−1, which greatly improves the
selectivity of the reaction.
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1 INTRODUCTION

Compared with oil or coal, methane is an environment-friendly
energy, but it is also a greenhouse gas, and its greenhouse effect is
much larger than that of carbon dioxide (Chong et al., 2016;
Huang et al., 2018; Denning et al., 2021; Huang et al., 2021;
Sánchez-López et al., 2021). A quarter of the greenhouse effect
caused by man-made greenhouse gases is caused by the leakage of
methane into the atmosphere (Kemp et al., 2016). In 2021, the
United Nations called for a reduction in methane emission in the
atmosphere, aiming to reduce global methane emission by 30% by
the end of the century (Brenneis et al., 2022). Therefore, if an
efficient method can be found to convert methane into methanol
efficiently and economically, it can not only solve the difficulty of
methane transportation, but also provide a large number of cheap
raw materials for industrial production and reduce methane
pipelines leakage (Park et al., 2019; Yan et al., 2020; Januario
et al., 2021), thus providing feasible methods for methane
emission reduction.

The high valentmetal-oxygen systems have been characterized as
key intermediates of heme and non heme enzymes (Solomon et al.,
2000; Ogliaro et al., 2001; Meunier et al., 2004; Shaik et al., 2005;
Rittle and Green, 2010; Visser et al., 2013; Adam et al., 2018; Huang
and Groves, 2018; Dubey and Shaik, 2019; Ehudin et al., 2019;
Cummins et al., 2020; Shaik and Dubey, 2021), which can effectively
hydroxylate aliphatic hydrocarbons (Altun et al., 2007; Hazan et al.,
2007), epoxidation (Niwa and Nakada, 2012; Nayak et al., 2020),
halogenation (Liu and Groves, 2015), N-demethylation (Yang et al.,
2018), and dehydrogenation reactions (Kumar et al., 2009). In
particular, Fe(IV)-oxo porphyrin π-cation radical species, known
as Cpd-I in heme proteins such as cytochrome P450, can mediate
many key oxidative processes (Meunier et al., 2004; Shaik et al., 2005;
Cho et al., 2012; Zhang et al., 2017; Caddell Haatveit et al., 2019;
Caulfield et al., 2019). Corrolazines, formed by replacing the meso-
position carbon atoms of corroles with N atoms, are very similar in
structure to porphyrins, but have more π electrons than porphyrins,
and can better stabilize high-valent metals (Ramdhanie et al., 2001;
Goldberg et al., 2003; Fox et al., 2004; Lansky et al., 2005; Lansky and
Goldberg, 2006; Goldberg 2007; McGown et al., 2009; Prokop et al.,
2011; Pierloot et al., 2012; Baglia et al., 2015; Joslin et al., 2016; Jung
et al., 2016; Zaragoza et al., 2016; Ghosh 2017; Zhu et al., 2018; Dedić
et al., 2021; Wang et al., 2021; Zhu et al., 2021). As Fe is the active
center metal of methanemonooxygenase (Shteinman 2020; Freakley
et al., 2021), which can selectively convert methane to methanol
under natural environmental conditions. Fe-corrolazine is very likely
to catalyze the oxidation of methane to methanol under very mild
conditions. Therefore, it is necessary to study the oxidation of
methane catalyzed by Fe-Oxo-corrolazine.

Recently, Sason Shaik et al. (Hirao et al., 2008; Gorin et al.,
2012; Fried and Boxer, 2015; Li et al., 2015; Akamatsu et al., 2017;
Che et al., 2018; Ciampi et al., 2018; He et al., 2018; Yu and Coote,
2019; Shaik et al., 2020; Shaik et al., 2004b; Kraskov et al., 2021; Yu
et al., 2021; Zhang et al., 2021; de Visser et al., 2022) found that
oriented external electric fields (OEEFs) can be used as a new type
of catalyst to catalyze reactions by stabilizing transition states
through the interactions between OEEFs and the molecular
dipole moments, and even can increase the selectivity of

reactions through adjusting the direction of OEEFs. Through
theoretical calculations, our group also found that the OEEFs can
modulate the reaction process through the interactions with the
dipole moment of the reaction molecules (Wang et al., 2019).

Herein, we systematically study the reaction process of the
oxidation of methane to methanol catalyzed by Fe(IV)-Oxo-
corrolazine, and discuss the regulation of its reaction mechanism
catalyzed by OEEFs, which provides a theoretical basis for the direct
and efficient conversion of methane to methanol.

2 COMPUTATIONAL DETAILS

All the calculations were performed in Gaussian16 package
(Frisch et al., 2016), using the B3LYP-D3(BJ) (Stephens et al.,
1994; Grimme et al., 2010; Grimme et al., 2011) hybrid functional
with the LANL2TZ (Roy et al., 2008) basis set coupled with the
effective core potential for Fe atom and the all-electron 6–31++G
(d,p) (Hariharan and Pople, 1973) basis set for other atoms. The
structures of reactant (RC), transition state (TS), intermediate
(INT) and product (P) were fully optimized without any
symmetry constraints. Then the natures of these optimized
structures were assessed by frequencies calculation, for RC,
INT, and P with only real frequencies, and for TS with only
one imaginary frequency. Moreover, all TS species were further
verified by intrinsic reaction coordinate (IRC) calculations. The
calculated output file was analyzed by Multiwfn to obtain the spin
density (Lu and Chen, 2012).

As shown in Figure 1, using the keyword “Field = M ± N″, the
two OEEFs, Fz1 and Fz2 along the Fe‒O axis and O‒H axis
respectively, were applied to regulate the CH4 oxidation reaction
catalyzed by Fe(IV)-Oxo-Cz. The positive direction of the electric
field vector follows the Gaussian 16 convention, i.e., the direction
from negative charge to positive charge is Fz > 0. The electric field
intensity ranges from −0.010 a.u to +0.010 a.u. for Fz1 and Fz2 (1
a.u. = 51.4 V Å−1).

FIGURE 1 | Definitions of two OEEFs Fz1 is along the Fe‒O axis
perpendicular to the corrolazine ring, and Fz2 is along the O‒H axis.
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3 RESULTS AND DISCUSSION

3.1 CH4 Oxidation Catalyzed by
Fe(IV)-Oxo-Corrolazine Under the
Field-Free Condition
3.1.1 Structure and Electronic Properties of
Fe(IV)-Oxo-Cz
The geometry structures of Fe(IV)-Oxo-Cz in doublet, quartet
and sextet states were optimized and their relative energies and
selective structure parameters are collected in Table 1. As seen
from Table 1, the quartet state is lower in free energies than the
double and sextet states by 10.25 and 40.05 kcal mol−1,
respectively (absolute energies in Supplementary Table S1).
Moreover, the calculated Fe‒O bond length in quartet state is
1.615 Å, which is close to the experimentally determined value of
1.640 Å (Cho et al., 2012). Therefore, the quartet state is the
ground state, and due to the stronger interaction between the Fe
atom and the O atom, the Fe atom deviates upward from the
corrolazine ring, as shown in Figure 2. Furthermore, the spin
densities and NPA charges for the different spin states of Fe(IV)-
Oxo-Cz were calculated (see Supplementary Tables S2, S3). For
the quartet state, the Fe‒O moiety only occupied two single
electrons, and the remaining one single electron was occupied by
the corrolazine ring as shown in Figure 2. And the single electron
occupyingmolecular orbitals (SOMO) of the quartet state Fe(IV)-
Oxo-Cz is shown in Figure 3. Two single electrons are in the
orthogonal π orbitals of the Fe‒O moiety and the other mainly

distributes on the corrolazine ring, which is exactly the same as
the electronic configuration of Cpd-I (Huang and Groves, 2017;
Zaragoza et al., 2017), reflecting the potential enzymatic catalytic
activity of Fe(IV)-Oxo-Cz.

3.1.2 CH4 Oxidation Catalyzed by
Fe(IV)-Oxo-Corrolazine Under the Field-free Condition
Based on the quartet ground state structure of Fe(IV)-Oxo-Cz,
the reaction between Fe(IV)-Oxo-Cz and CH4 in quartet state in
the absence of OEEF was studied. As illustrated in Figure 4;
Table 2, the terminal O of Fe‒O first abstracts a hydrogen atom of
CH4, and the bond length of Fe‒O bond increases from 1.615 Å
of the reactant complex (RC) to 1.725 Å of the transition state
(TS1), while the distance between O atom and H atom decreases
significantly from 2.393 Å of RC to 1.187 Å of TS1 to yield O‒H
bond, with the energy barrier of 25.44 kcal mol−1. With the
progress of the reaction, the Fe‒O bond length grows
gradually and the O‒H bond length further decreases, yielding
the intermediates (INT) of Fe(IV)‒OH and CH3·. Then the
product (P) CH3OH is produced through the rebound
reaction where the newly formed OH is rapidly rebounded to
the CH3· from Fe-corrolazine. (Cummins et al., 2020; Huang and
Groves, 2017; Shaik et al., 2004a). And in this step, the reaction
barrier is only 1.98 kcal mol−1, and the reaction energy of
40.93 kcal mol−1 will promote the reaction to the right.

Moreover, considering that the reaction may proceed at
different potential energy surfaces, we further calculated the
double state potential energy surface. As shown in Figure 4
and Supplementary Table S4, the TS1 of the double state is lower
than that of the quartet state, indicating that the reaction is a two-
state reaction and the reaction is easier to carry out (Schröder
et al., 2000; Stuyver et al., 2020). However, considering that the
quartet state of RC is the ground state, and the quartet state of P is
much more stable than the double state, and that when the OEEF
with Fz1 = −0.010 a.u. is applied, the energy order of the quartet
and double states of reactant dose not changed and there is no
energy crossing points along the reaction pathway, so we further

TABLE 1 | Selected Bond Lengths (Å), Mulliken spin density of Fe, and relative
energies (ΔG, kcal·mol−1) of Fe(IV)-Oxo-Cz, in doublet, quartet and sextet
states.

States dFe‒N1 dFe‒N2 dFe‒N3 dFe‒N4 dFe‒O ΔG spin density

Doublet 1.895 1.895 1.892 1.892 1.568 10.25 0.905
Quarte 1.904 1.904 1.902 1.902 1.615 0 1.259
Sextet 1.910 1.910 1.899 1.899 1.612 40.05 1.253

FIGURE 2 | Structure (A) and spin densities (B) of the quartet Fe(IV)-Oxo-Cz.
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study the effect of OEEFs on the reaction in quartet state in detail.
For comparison, we also selected the representative external
electric fields −0.010, −0.004, −0.002, +0.002, +0.004, and
+0.010 a.u. for the calculations of the double state reaction, as
shown in Supplementary Tables S5, S6.” As shown in
Supplementary Table S7, the OEEF does not change the rate-
determining step of the reaction.

3.2 OEEFs Regulating the Reaction
Mechanism
3.2.1 The Effect of OEEF on the Stabilities of the RC
and TS1
In order to explore the regulation mechanism of OEEFs in the
reaction, we first systematically studied the effect of OEEFs on

the TS1 of the reaction. As shown in Figure 5A, due to the
application of OEEFs, the relative energies of the reaction TS1
change significantly. For Fz > 0, the structure of TS1 is
stabilized by OEEFs, and its relative energy decreases with
the increase of the electric field intensity. While for Fz < 0,
OEEFs in different directions have different effects on the
TS1. For Fz1, when it is in the range of 0 ~ −0.002 a.u., the TS1
is destabilized by the OEEF, and its relative energy increases
with the increase of the electric field intensity. However, as the
electric field intensity further increases more than -0.002 a.u.
the TS1 is stabilized by the OEEF again, and its relative energy
decreases with the increase of the electric field intensity. For
Fz2, the TS1 is always stabilized by the OEEF, and its relative
energy decreases with the increase of the electric field
intensity.

To explore the essential reason for the stability change of
the TS1 effected by OEEFs, the dipole moments in z
orientation of the TS1 of Fe(IV)-Oxo-Cz and CH4 at
different electric field intensities are analyzed. As shown in
Figure 5B, for Fz1 > 0, the dipole moment in z1 direction of the
TS1 increases from -1.06 D in the electric field free to -8.58 D
in Fz1 = +0.010 a.u. Therefore, the TS1 is stabilized by the
applied OEEFs originating from the attractive interaction
between the increased dipole moment in z1 direction and
the OEEF. When the OEEF is reversed to Fz1 < 0, the
interaction between the dipole moment and the OEEF
becomes complex. For −0.002 a.u. < Fz1 < 0, the OEEF
decreases the dipole moment of in z1 direction of the TS1,
and the repulsion between Fz1 and the dipole moment of the
TS1 destabilizes the TS1. However, when Fz1 becomes more
negative, it flips the orientation of the molecular dipole of the
TS1. Therefore, the increasing OEEF increases the dipole
moment in z1 orientation of the TS1, thus again stabilizing
the TS1 originating from the attraction between the increased
dipole moment and Fz1. For Fz2, the orientation of molecular
dipole moment in z2 direction is opposite to the direction of
the OEEF, and the dipole moment always increases with the
increase of electric field intensity, thus always stabilizing the
TS1 of the retion originating from the attractive interaction
between the increased dipole moment in z2 direction and
the OEEF.

Similar to the TS1, the RC of the reaction of Fe(IV)-Oxo-Cz
and CH4 are also effected by the OEEF remarkably. As shown in
Figure 6, for Fz1 and Fz2 > 0, the dipole moment in z orientation

FIGURE 3 | The single electron occupying molecular orbitals of the quartet Fe(IV)-Oxo-Cz.

FIGURE 4 | The predicted reaction pathway of CH4 oxidation catalyzed
Fe(IV)-Oxo-Cz in the electric field free.

TABLE 2 | Selected Bond Lengths (Å) and the relative electronic energies (ΔG,
kcal·mol−1) of species involved in the reaction of CH4 oxidation catalyzed for
the quartet of Fe(IV)-Oxo-Cz.

Complexes dFe‒O dO‒H dC‒H dC‒O ΔG

RC 1.615 2.393 1.092 3.478 0.00
TS1 1.725 1.187 1.353 2.540 25.44
INT 1.780 0.979 2.166 3.142 15.64
TS2 1.811 0.975 2.906 2.880 17.63
P 2.186 0.968 1.998 1.445 -40.93
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of the RC increases with the increase of OEEFs. Therefore, the RC
is stabilized by OEEFs, originating from the attraction between
OEEFs and the increased dipole moment in z orientation. For Fz1
and Fz2 < 0, the dipole moment in z orientation first decreases
with the increase of the electric field intensity in the initial part of
Fz < 0, and then increases with the increase of the electric field
intensity, which is more than -0.006 a.u. for Fz1 and -0.002 a.u. for
Fz2 resulting from the reverse of the molecular dipole in z
direction of the RC. Thus, the RC is first destabilized and then
stabilized by OEEFs resulting from the repulsion and attraction
between OEEFs and the increased dipole moment in z
orientation, respectively.

3.2.2 The Effect of OEEFs on the Energy Barrier of CH4

Oxidation Catalyzed by Fe(IV)-Oxo-Corrolazine
The effect of OEEFs on the energy barrier of the reaction of
CH4 oxidation by Fe(IV)-Oxo-Cz is further investigated. As
shown in Table 3; Figure 7, for Fz1 and Fz2 > 0, the energy
barriers of the reaction increase with the increase of electric
field intensity, because the dipole moments in z direction of
the RC and TS1 increase with the increase of electric field
intensity, and the dipole moments of the RC is always larger
than the TS1 in the electric intensity range, thus resulting in
its stronger stabilization by OEEFs. However, for Fz1 and Fz2
< 0, the stabilization of the TS1 by OEEFs is always stronger

FIGURE 5 | Plots of the relative energies (A) and the dipole moments (B) of the TS1 as a function of the applied OEEFs. The inset is the enlarged view at Fz1 and Fz2
= −0.005 a.u. to 0 a.u. black curve for Fz1 and blue curve for Fz2.

FIGURE 6 | Plots of the relative energies (A) and the dipole moments (B) of the RC as a function of the applied OEEFs.
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than that of the RC, originating from the stronger dipole
moment of the TS1, so the energy barriers of the reaction
decrease with the increase of electric field intensity, in which
the energy barriers decrease to 17.34 and 21.16 kcal mol−1 for
Fz1 = −0.010 and Fz2 = −0.010 a.u., respectively, thus greatly
promoting the reaction. Especially for Fz1, it can more
effectively regulate the reaction than Fz2, resulting from its
greater slope of energy barrier curve in Figure 7. Moreover, as
its direction is nearly perpendicular to the corrolazine ring,
Fz1 can be more easily aligned, thus making it easier to apply
in practice.

3.2.3 OEEFs Optimizing the Process of CH4 Oxidation
Catalyzed by Fe(IV)-Oxo-Corrolazine
As shown in Table 4, for Fz1 < 0, with the increase of electric
field intensity, the negative charge of O atom and the positive
charge of H atom in the TS1 decrease, while the O‒H distance
increases. Therefore, the ability of H to transfer to O to form
stable the OH groups on the corrolazine ring decreases, which
is the key process of forming the INT. When the intensity of
the electric field reaches -0.010 a.u., both the negative charge

of the O atom and the positive charge of the H atom reach the
smallest, and the OH distance is the largest. Therefore, before
the OH group forming on the corrolazine ring, it directly
returns to the C atom through the rebound reaction from the
P, as shown in Supplementary Figure S1, thereby simplifying
the process of the reaction without passing through the INT
to the product, thus avoiding the coupling between the
intermediates to generate other products (Cho et al., 2012),
greatly improving the selectivity of the reaction, and being
beneficial to industrial applications.

4 CONCLUSION

Extensive density functional calculations have been carried out
to explore the CH4 oxidation reaction catalyzed by Fe(IV)-
Oxo-Cz and its regulatory mechanism by OEEFs. The
calculations show one H atom of CH4 is captured by
Fe(IV)-Oxo-Cz to form INT, in which OH group is
connecting on the corrolazine ring, and then the product
methanol is formed through the following rebound reaction.
And the energy barrier of the reaction is 25.44 kcal mol−1.
Moreover, the energy barrier can be reduced to
20.72 kcal mol−1 through a two-state reaction pathway. To
facilitate the reaction, we applied OEEFs Fz1 and Fz2 along
the Fe‒O axis and the O‒H axis to modulate the reaction,
respectively. When the positive OEEFs are applied, the energy
barrier of the reaction increases with the increase of the electric
field intensity. However, while flipping OEEFs to the negative
direction, the energy barrier of the reaction decreases with the
increase of the electric field intensity originating from the
interaction of electric field-molecular dipole moment, which

TABLE 3 | The dipole moments of the RC, TS1 and the energy barrier (ΔG, kcal·mol−1) of CH4 oxidation catalyzed by Fe(IV)-Oxo-Cz under different electric field intensities.

Fz1 (10−4 a.u.) −100 −80 −60 −40 −20 0 20 40 60 80 100

μz1 (RC) 1.76 0.66 −1.26 −2.23 −3.21 −3.89 −5.28 −6.31 −7.35 −8.40 −9.48
μz1 (TS1) 4.82 3.76 2.48 1.30 0.08 −1.06 −2.52 −3.87 −6.04 −7.29 −8.58
ΔGa1 17.34 18.89 19.74 21.85 23.77 25.44 26.85 27.95 28.36 28.84 29.31

Fz2 (10−4 a.u.) −100 −80 −60 −40 −20 0 20 40 60 80 100

μz2 (RC) 9.55 7.20 4.92 2.68 0.46 −1.74 −4.13 −6.24 −8.34 −10.44 −12.56
μz2 (TS1) 11.50 9.26 7.01 4.74 2.44 0.09 −2.32 −4.77 −7.23 −9.70 −12.18
ΔGa2 21.16 21.78 22.60 23.45 24.41 25.44 26.19 26.83 27.44 27.83 27.94

FIGURE 7 | Plots of the relative energy barrier (ΔGa, kcal·mol−1) of the
CH4 oxidation catalyzed Fe(IV)-Oxo-Cz.

TABLE 4 | The O‒H Lengths (Å), the NPA charges (|e|) of the O and H atoms of the
TS1 under different electric field intensities.

Fz1 (10–4 a.u.) −100 −80 −60 −40 −20 0

O −0.402 −0.426 −0.449 −0.471 −0.494 −0.517
H 0.317 0.325 0.334 0.343 0.351 0.361
dO‒H 1.309 1.281 1.255 1.232 1.210 1.187

Fz2 (10–4 a.u.) −100 −80 −60 −40 −20 0

O −0.463 −0.474 −0.484 −0.494 −0.505 −0.517
H 0.325 0.331 0.338 0.345 0.353 0.361
dO‒H 1.282 1.263 1.245 1.226 1.207 1.187
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can facilitate the reaction. Especially, the Fz1 is easier be
applied in practice because its direction is along the
intrinsic Fe‒O reaction axis approximately perpendicular to
the corrolazine ring, and it can effectively modulate the ability
of forming the OH on the corrolazine ring by adjusting the
charge of O and H atoms. When its intensity is −0.010 a.u., Fz1
can simplify the reaction path to directly form the reaction
product from the transition state without passing through the
intermediate, with only an energy barrier of 17.34 kcal mol−1,
in which the OH is directly rebounded to CH3· before it is
connecting on the corrolazine ring, thus greatly improving the
selectivity of the reaction.
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