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Breast cancer is one of the most deadly malignancies in women worldwide. Salvia
miltiorrhiza, a perennial plant that belongs to the genus Salvia, has long been used in
the management of cardiovascular and cerebrovascular diseases. The main anti-breast
cancer constituents in S. miltiorrhiza are liposoluble tanshinones including
dihydrotanshinone I, tanshinone I, tanshinone IIA, and cryptotanshinone, and water-
soluble phenolic acids represented by salvianolic acid A, salvianolic acid B, salvianolic
acid C, and rosmarinic acid. These active components have potent efficacy on breast
cancer in vitro and in vivo. The mechanisms mainly include induction of apoptosis,
autophagy and cell cycle arrest, anti-metastasis, formation of cancer stem cells, and
potentiation of antitumor immunity. This review summarized the main bioactive
constituents of S. miltiorrhiza and their derivatives or nanoparticles that possess anti-
breast cancer activity. Besides, the synergistic combination with other drugs and the
underlying molecular mechanisms were also summarized to provide a reference for future
research on S. miltiorrhiza for breast cancer treatment.
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INTRODUCTION

Breast cancer is one of the most common malignancies in women worldwide. It is the dominating
cause of cancer-related death after lung cancer decades ago (Freddie et al., 2018). However,
according to the statistics from International Agency for Research on Cancer recently, its incidence
has surpassed lung cancer and become the principal cause of cancer death in women (DeSantis
et al., 2019). The morbidity of breast cancer increased at a rate of 0.3%; nearly 2,611,000 women
were diagnosed in 2020 (Sung et al., 2021). The occurrence of breast cancer is often accompanied
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by gene mutation and/or amplification in tumor cells, such as
TP53 (41% of the tumor), PIK3CA (30%), MYC (20%), PTEN
(16%), CCND1 (16%), ERBB2 (13%), FGFR1 (11%), and
GATA3 (10%) (Nik-Zainal et al., 2016). Based on the
different molecular classifications, breast cancer can be
divided into three subtypes: hormone receptor-positive/
ERBB2-negative, ERBB2-positive, and triple-negative breast
cancer (TNBC) (Loibl et al., 2021). Even if in the early stage,
the progression of hormone-positive breast cancer could be
controlled by treatment with capecitabine, tamoxifen, steroidal
(exemestane), or non-steroidal (letrozole, anastrozole)
aromatase inhibitors (von Minckwitz et al., 2019), etc.
However, there are few therapeutic drugs for curing this
condition (Blum et al., 2017). Trastuzumab plus paclitaxel-
associated chemotherapy (mainly taxanes) is a first-line drug
for the treatment of metastatic human epidermal growth factor
receptor 2 (HER2)-positive breast cancer (Awada et al., 2016).
TNBC is arduous to treat due to its high malignancy degree.
Using atezolizumab monoclonal antibody improves a patient’s
quality of life and prolongs survival (Schmid et al., 2018).
Though chemotherapy, radiotherapy, and systemic
immunotherapy increase the survival of breast cancer
patients (Denkert et al., 2017; Waks and Winer, 2019),
tumors often metastasize to distal organs at the late stage.
Thus, it is still a challenge to cure metastatic breast cancer at
present (Cardoso et al., 2018; Harbeck et al., 2019).

Salvia miltiorrhiza (S. miltiorrhiza), a perennial plant of the
genus Salvia, has long been used in traditional Chinese medicine
(Guo et al., 2014). It is extensively used in the management of
cardiovascular and cerebrovascular disorders (Wang et al., 2018),
liver diseases (Tao et al., 2013), kidney diseases (Han et al., 2021),
diabetes (Zhang B. et al., 2021), and various cancers (Hung et al.,
2016). The extracts of S. miltiorrhiza root are mainly divided into
two categories, namely water-soluble compounds and liposoluble
compounds. The water-soluble compounds are mainly phenolic
acids represented by salvianolic acid A (Sal A), salvianolic acid B
(Sal B), salvianolic acid C (Sal C), and rosmarinic acid (RA). The
liposoluble diterpene quinolines are represented by tanshinones
such as dihydrotanshinone I (DHT), tanshinone I (Tan I),
tanshinone IIA (Tan IIA), and cryptotanshinone (CPT) (Han
et al., 2008). The structures of these active compounds are shown
in Figure 1.

Natural compounds from herbal medicine have gradually
become mainstream drugs due to their excellent efficacy and
slight side effects, as seen in the clinical application of paclitaxel in
breast cancer treatment (Diéras et al., 2020). The antitumor
effectiveness of the components of S. miltiorrhiza has been
gradually excavated in these years. Based on the published
literature, this review summarizes the main representative
components and their derivatives or nanoparticles,
pharmacological activities, and molecular mechanisms with a
focus on breast cancer treatment. In addition, the possible trends

FIGURE 1 | The anti-breast cancer bioactive constituents present in S. miltiorrhiza.
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and prospects are proposed, hoping to provide a reliable reference
for future research.

Main Compounds in Salvia miltiorrhiza With
Anti-Breast Cancer Activity
Dihydrotanshinone I
As one of the main effective ingredients of S. miltiorrhiza, DHT
has been extensively studied due to its anticancer, anti-
inflammatory, cardioprotective, and other pharmacological
activities (Chen et al., 2019). Previously, DHT has been
reported to induce apoptosis and G1-phase cell cycle arrest in
breast adenocarcinoma (Tsai et al., 2007). HuR is an RNA-
binding protein involved in activating tumor necrosis factor
(TNF), which is critical in tumor progression. Using a high
throughput screening technique, DHT was found to inhibit
the assembly of the HuR-RNA complex, leading to a post-
transcriptional regulation of TNF mRNA stability (D’Agostino
et al., 2015). Some investigators recently showed that DHT
inhibited the formation of breast cancer stem cells (CSCs) and
MCF-7 xenograft tumor growth in nude mice (Kim et al., 2019).
Meanwhile, DHT restrained the migration and clonogenicity of
highly invasive TNBC cells by inhibiting the transformation of
epithelial cells into mesenchymal cells (Kashyap et al., 2021).
Estrogen receptor (ER) p57 is a thiol oxidoreductase that
catalyzes protein folding in the endoplasmic reticulum. DHT,
as an ERp57 inhibitor, induced endoplasmic reticulum stress,
triggering unfolded protein response activation and apoptosis of
MDA-MB-231 cells (Shi et al., 2021).

Tanshinone I
Tan I is another main active component of S. miltiorrhiza. It has
significant inhibitory effects against numerous kinds of
malignancies such as colon cancer (Lu et al., 2016), human
endometrial cancer (Li Q. et al., 2018), breast cancer (Zheng
et al., 2020), liver cancer (Zheng et al., 2020), gastric cancer (Jing
et al., 2016), cervical cancer (Dun and Gao, 2019), and so on. In
addition, the compound has therapeutic effects on vascular
diseases (Wu Y. et al., 2019), arthritis (Wang et al., 2019),
mastitis (Yang et al., 2021), and diabetes (Wei et al., 2017).
Tan I was studied earlier compared with other main active
substances of tanshinones. It was reported that Tan I inhibited
the proliferation of MCF-7 and MDA-MB-231 cells in a dose-
and time-dependent manner (TN et al., 2008). Tan I also has a
potent inhibitory effect on migration and growth of MDA-MB-
231 xenografts (Nizamutdinova et al., 2008). Furthermore, Tan I
induced epigenetic modification of Aurora-A expression and
function in the MDA-MB-231 cells (Gong et al., 2012).
Another report revealed that Tan I suppressed the
proliferation and induced apoptosis of MCF-7 and MDA-MB-
453 cells (Wang et al., 2015). A recent study has demonstrated
that Tan I inhibited the growth of MDA-MB-231 and MCF-7
cells by inducing autophagy (Zheng et al., 2020).

Cryptotanshinone
CPT has been traditionally used in treating diabetes and
cardiovascular disorders (Wang et al., 2017; Maione et al.,

2018; Jia et al., 2019). Its anti-breast tumor effect has been
gradually explored recently, becoming one of the hot research
subjects (Wu et al., 2020a). CPTwas shown to induce apoptosis of
MCF-7 cells (Park et al., 2012) and inhibited the growth of
xenograft tumors derived from subcutaneously transplanted
MCF-7 cells in athymic nude mice (Zhou et al., 2014).
Furthermore, CPT had inhibitory effects on the proliferation
of ZR-75-1, MCF-7, MDA-MB-231, andMDA-MB-435 cells, and
delayed the growth of ZR-75-1 breast cancer xenografts (Li S.
et al., 2015). However, in another study, CPT significantly
suppressed the growth of ER-positive MCF-7 cells, but had no
inhibitory effect on the growth of ER-negative MDA-MB-231
cells (Pan et al., 2017). In addition, CPT induced apoptosis in
SKBR-3 ER-negative but G protein-coupled estrogen receptor
(GPER)-positive breast cancer cells (Shi et al., 2019). Further
study confirmed that CPT did restrain SKBR-3 cell growth in a
time- and dose-dependent manner (Shi et al., 2020). According to
recent studies, the inhibitory effect of CPT on the proliferation
and migration of MCF-7 cells is much higher than on those of
MDA-MB-231 cells, suggesting its effect was associated with ER
expression (Chen et al., 2020).

Tanshinone IIA
Tan IIA is a lipophilic and the most widely explored component
present in S. miltiorrhiza. Its derivative sodium Tan IIA sulfonate
has been comprehensively used in the clinic (Ji et al., 2017; Li
et al., 2017; Mao et al., 2019). Tan IIA showed numerous
pharmacological effects such as anti-atherosclerosis (Lu et al.,
2021), protection of cardiomyocytes and cardiac function (Gao
et al., 2019; Zhang et al., 2019), improvement of diabetic
osteoporosis (Ma et al., 2019; Zhang et al., 2020), repair of
acute blunt skeletal muscle injury (Wang et al., 2020) and tibia
cartilage dysplasia (Yang et al., 2019), protection against oxidative
stress-induced myocardial cell injury (Yang G. et al., 2020),
reduction of endometriosis (Chen and Gong, 2020) and
traumatic brain injury (Huang et al., 2020), anti-allergy (Heo
and Im, 2019), prevention of nonalcoholic fatty liver (Gao et al.,
2021), mastitis (Yang et al., 2021), arthritis (Wang et al., 2019),
and cerebral ischemia (Tang et al., 2019). As per the anti-
tumorigenic potential of Tan IIA, it inhibited the growth of
colorectal cancer (Xue et al., 2019; Liu et al., 2021), gastric
cancer (Xu Z. et al., 2018), cervical cancer (Tong et al., 2020),
laryngeal cancer (Xu H. et al., 2018), nasopharyngeal cancer
(Wang et al., 2021), and ovarian cancer (Li N. et al., 2018).

Initially, Tan IIA was found to inhibit the proliferation of
MDA-MB-231 cells (Su and Lin, 2008). Subsequently, its
inhibitory effect on the proliferation and xenograft tumor
growth of breast cancer MCF-7 cells were reported; its
inhibitory effect was superior to tamoxifen, a clinical drug
used for breast cancer treatment (Lu et al., 2009).
Furthermore, Tan IIA induced mitochondrial dysfunction and
apoptosis in MDA-MB-231 cells by targeting the PI3K/Akt
pathway (Won et al., 2010). Further studies demonstrated that
Tan IIA had a significant inhibitory effect on the growth of
tumors derived from MDA-MB-231 cells implanted into the
SCID female mice model (Su et al., 2012). The anti-
proliferative effect of Tan IIA was also confirmed in another
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breast cancer BT-20 cells, as evidenced by increased the sub-G1
phase cells (Yan et al., 2012). Moreover, Tan IIA could
significantly inhibit breast CSCs formation and conspicuously
control the tumor growth in an MCF-7 xenograft mouse model
(Lin et al., 2013). In another study, the anti-carcinogenic effect of
Tan IIA was compared in MCF-7 and MDA-MB-231 cells. It
showed that the inhibitory effect of Tan IIA on the growth of
MCF-7 cells was superior to that of that of the latter cell line
(Vanessa et al., 2014). Moreover, Tan IIA improved hypoxia-
induced adriamycin resistance in breast cancer cell lines (Fu et al.,
2014). It inhibited breast cancer cell growth and angiogenesis in
xenograft nude mice under hypoxia and aerobic conditions (Li G.
et al., 2015). Tan IIA exerted an anti-androgen effect, and thereby
inhibited the growth and induced the apoptosis of T47D breast
cancer cells (Zhao et al., 2015).

Salvianolic Acids
Salvianolic acids are water-soluble components in S. miltiorrhiza.
It principally includes Sal A, Sal B, Sal C, and RA. The efficacies of
the first three in the treatment of cardiovascular diseases have
been confirmed in the clinic (Wu et al., 2020b). Interestingly, the
functions of these three components are similar to some extent
but distinct from one another. Sal A was found to be effective in
treating pulmonary hypertension (Chen et al., 2016), reducing
renal injury (Zhang H. et al., 2018), ameliorating allergy (Heo and
Im, 2019), cerebral ischemia (Song et al., 2019), and improving
diabetic peripheral neuropathy (Xu et al., 2020). Sal B exerted
protective activity against liver and oral mucosa fibrosis (Jiang
et al., 2013; Chen et al., 2016), TNBC (Sha et al., 2018), cardiac
arrest (Ji et al., 2020), intervertebral disc degeneration (Dai et al.,
2021), and neurodegenerative disease (Zhao et al., 2019), as well
as improved glucolipid metabolism in high fat diet-induced
obesity (Bai et al., 2021). Sal C was shown to inhibit SARS-
COV-2 infection (Yang C. et al., 2020) and protect against liver
injury (Wu C. et al., 2019). All the three salvianolic acids could
protect against myocardial infarction (Yu et al., 2017). RA as a
precursor of phenolic acid also possesses pharmacological
activities including antiviral, antibacterial, anti-inflammatory,
and antioxidant effects (Petersen and Simmonds, 2003).

In regards to the anti-carcinogenic activities of salvianolic
acids, Sal A remarkably inhibited the proliferation and induced
apoptosis of MCF-7 cells. It also showed a significant tumor
growth inhibitory effect in an MCF-7 xenograft tumor model. At
the same time, it had less influence on the body weight of mice
than adriamycin treatment (Cai et al., 2014). Furthermore, Sal A
sensitized human breast cancer cells (MCF-7/PTX) to paclitaxel
and inhibited migration and invasiveness of human breast cancer
cells (Zheng et al., 2015). It was suggested that Sal A acts as an
arginine methyltransferase inhibitor, thereby potentiating the
anti-tumor effect of adriamycin in drug-resistant breast cancer
xenografts (Li et al., 2016). Interestingly, Sal A found in another
plant Thymus carnosus Boiss also showed growth inhibitory
activity in MCF-7 and BT474 cells (Martins-Gomes et al.,
2018). There was a similar case in which Sal B could induce
apoptosis of MCF-7 cells in a certain time- and dose-dependent
manner (Quan et al., 2019). Sal B exerted its antitumor activity at
least partially by promoting ceramide accumulation and

ceramide-mediated apoptosis which was attributable to its
inhibition of glucosylceramide and GM3 synthases expression,
independently of ERα. It was pointed out that Sal B could act as a
promising therapeutic candidate against TNBC (Sha et al., 2018).
Furthermore, Sal B remarkably reduced the tumor volume and
increased the median survival rate in mice injected with Ehrlich
solid cancer cells. It decreased the levels of oxidative stress marker
(malondialdehyde) and increased plasma levels of antioxidant
marker (glutathione, GSH) (Katary et al., 2019). Interestingly, it
was demonstrated that RA could dose-dependently inhibit the
migration of MDA-MB-231BO bone-homing, MCF-7, MDA-
MB-231, and MDA-MB-468 breast cancer cells (Xu et al., 2010;
Juskowiak et al., 2018; Messeha et al., 2020; Yahia Darwish et al.,
2020). In addition, RA significantly improved the therapeutic
effect of paclitaxel in an Ehrlich’s ascites carcinoma suspension-
induced breast cancer mouse model (Mahmoud et al., 2021).

Anti-breast Tumor Mechanisms of the Main
Compounds of Salvia miltiorrhiza
Induction of Apoptosis
Programmed cell death or apoptosis of cancer cells has been the
mainstream of cancer research for the past decades (Carneiro and
El-Deiry, 2020). At the present stage, the primary apoptosis
research focuses on the mitochondrial pathway (Han et al.,
2018) which is regulated by pro-survival members (Bcl-2, Bcl-
xl, Bcl-w, etc.) and pro-apoptotic proteins (Bax, Bak, Bad, Bim,
etc.). The release of cytochrome c from mitochondria induces
caspase activation, promoting apoptotic body formation and cell
apoptosis (Martinou and Youle, 2011).

An early study showed that DHT induced apoptosis of breast
cancer cells via a mitochondrial-related apoptosis pathway. This
was achieved by reducing the level of anti-apoptotic protein Bcl-xl
and mitochondrial membrane potential and increasing
cytochrome c release. In addition, DHT triggered the cleavage
of Caspase-9, Caspase-3, and Caspase-7. Meanwhile,
pretreatment of cells with a pan-caspase inhibitor blocked
DHT-induced apoptosis, corroborating the involvement of the
Caspase-3-dependent pathway (Tsai et al., 2007). CPT induced
apoptosis by stimulating CHOP-mediated endoplasmic
reticulum stress, promoting ROS production and PARP
cleavage (Park et al., 2012). CPT could interact with GPER,
thereby blocking the PI3K/Akt signal transduction pathway
(Shi et al., 2019). Furthermore, the apoptosis-promoting effect
of CPT in SKBR-3 cells was reversed by silencing GPER (Shi et al.,
2020). In addition, CPT inhibited STAT3, p-STAT3Ser727,
p-STAT3Tyr705, c-Myc, and Bcl-2 expression in spontaneous
Tientsin Albino two breast cancer mice (Du et al., 2020).
Likewise, Tan I induced apoptosis of MCF-7 and MDA-MB-
231 cells through activation of Caspase-3, down-regulation of
Bcl-2, and up-regulation of Bax (TN et al., 2008). Similarly, Tan
IIA induced apoptosis of MDA-MB-231 cells through up-
regulation of Bax and Caspase-8 and inhibition of Bcl-2 (Su
and Lin, 2008). It showed a similar pro-apoptotic effect in MCF-7
cells. Tan IIA induced apoptosis of MCF-7 and MDA-MB-231
cells by up-regulating Caspase-3, Bax, and down-regulating Bcl-2
(Vanessa et al., 2014) and P53 (Lu et al., 2009). The expression
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levels of p65 and Caspase-3 in the tumor tissues of Tan IIA-
treated MDA-MB-231 xenografts were significantly lower than
those of the tumor control group (Su et al., 2012). In addition,
Tan IIA induced apoptosis of BT-20 breast cancer cells. The
mechanism involves endoplasmic reticulum stress which was
accompanied by increased expression of Caspase-12,
GADD153, cleaved-Caspase-3, p-JNK, p-p38, Bax, and CHOP
with concomitant decreases in Bcl-2, Bcl-xl, and p-ERK (Yan
et al., 2012).

As for salvianolic acids, Sal A inhibited the expression of Bcl-2
and p-Akt, promoted PTEN and Bax expression, and induced
Caspase-3, Caspase-9, and PARP cleavage, leading to apoptosis in
MCF-7 cells (Cai et al., 2014). Sal B up-regulated the expression of
Caspase-3, Caspase-9, and Bax, and reduced the expression of
Bcl-2 to promote apoptosis in MCF-7 cells (Quan et al., 2019). Sal
B inhibited Bcl-xl, Survivin, and p-ERK expression, and
promoted activation of Caspase-3 and Caspase-8 in MCF-7
and MDA-MB-231 cells. It also inhibited the expression of
glucosylceramide and GM3 synthase, induced ceramide

accumulation, and ceramide-mediated apoptosis in breast
cancer cells. In the MDA-MB-231 xenograft mouse model, Sal
B reduced the expression of PCNA, Bcl-xl, and Survivin (Sha
et al., 2018). RA up-regulated the expression of BNIP3 in MDA-
MB-231 and MDA-MB-468 cells. Noteworthily, the efficacy of
RA in MDA-MB-231 cells was weak, as exhibited with an up-
regulation of HRK, TNFRSF25, and BNIP3, and down-regulation
of TNFRSF11B (Messeha et al., 2020). Another study indicated
that RA and/or paclitaxel inhibited tumor growth in breast cancer
models by increasing the levels of P53 and caspase-3 and
inhibiting the Bcl2/Bax ratio (Mahmoud et al., 2021). Their
regulatory effects on apoptosis are shown in Figure 2.

Induction of Autophagy
Autophagy is the self-regulatory behavior of cells. It is activated to
promote cell survival and tumor growth when the nutrition is
deficient. Conversely, autophagy leads to cell death in the late
stage (White, 2015; Levy et al., 2017). The dual nature of
autophagy has attracted much attention in the scientific

FIGURE 2 | Induction of apoptosis by bioactive constituents of S. miltiorrhiza. CPT induces apoptosis through GPER/PI3K/Akt and STAT3 activation, c-Myc and
Bcl-2 inhibition, PARP and Caspase-3 cleavage, and CHOP-mediated endoplasmic reticulum stress. DHT induces apoptosis through inhibiting Bcl-xl, promoting
cytochrome C release, activating Caspase-3, Caspase-7, and Caspase-9 cleavage. Tan I inhibits Bcl-2,increases Bax, and Caspase-3 expression. Tan IIA induces
apoptosis by inhibiting p53, p-ERK, Bcl-2, and PI3K/Akt pathway and increasing Bax, Caspase-3, p-p38, p-JNK expression, and CHOP-related endoplasmic
reticulum stress. Sal A inhibits Bcl-2 and p-Akt, promotes PTEN and Bax expression, andmeanwhile induces Caspase-3, Caspase-9, and PARP cleavage. Sal B inhibits
Bcl-2, Bcl-xl, Survivin, and p-ERK expression, promotes Caspase-3, Caspase-8, and Caspase-9 activation, while it inhibits glucosylceramide and GM3 synthase
expression, inducing ceramide-mediated apoptosis in breast cancer cells. RA induces apoptosis through down-regulating BNIP3 and Bcl2/Bax ratio and up-regulating
P53, and caspase-3 expression.
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community (Thorburn et al., 2014). Tan I can to induce
autophagy in breast cancer cells. It induced phosphorylation of
AMPKα and its downstream ULK1 in MDA-MB-231 breast
cancer cells (Zheng et al., 2020). Differently, Tan IIA induced
autophagy in MDA-MB-231 cells by activating LC3-II expression
(Yun et al., 2014). Their regulatory effects on autophagy are
shown in Figure 3. So far, there is no report of salvianolic acids on
autophagy.

Induction of Cell Cycle Arrest
Since the advancement of molecular biology and modern genetics
in the 1980s, the research process on malignant cells is no longer
limited to the induction of apoptosis in cancer cells (Petroni et al.,
2020). Cell cycle regulators such as Cyclin D, Cyclin E, Cyclin-
dependent kinase 4 (CDK4), and CDK6 are discovered
continuously. Recently, three inhibitors of CDK4 and CDK6
have been approved by US Food and Drug Administration
(FDA) for the clinical application for hormone receptor-
positive breast cancer patients (Fry et al., 2004; O’Leary et al.,
2016; Gao et al., 2020).

DHT could block breast cancer MCF-7 and MDA-MB-231 in
the G1 phase. Further studies showed that it reduced the levels of
Cyclin D1, Cyclin D3, and Cyclin E, which was accompanied by
suppressed CDK4 kinase activity. In contrast, DHT up-regulated
the CDK inhibitors p21 and p27 expression (Tsai et al., 2007).
CPT played an anti-proliferative role in blocking cell cycle G1
phase progression through down-regulating Cyclin A, Cyclin B,
Cyclin D, and CDK2 expression in SKBR-3 cells (Shi et al., 2020).
Like DHT, CPT inhibited CDK1 and CCNA2 gene expression in
MCF-7 breast cancer cells (Chen et al., 2020). Tan I treatment
inhibited the expression of Cyclin D, CDK4, Cyclin B, and
p-Cdc2, leading to cell cycle G0/G1 arrest in MCF-7 cells and
S, G2/M phase arrest in MDA-MB-231 cells (Gong et al., 2012). It
also induced S phase arrest in MDA-MB-453 and MCF-7 cells
through up-regulation of CDK inhibitors p21Cip1 and p27Kip1

(Wang et al., 2015). In addition, Tan IIA was shown to inhibit

breast cancer T47D cell proliferation by inducing G0/G1 arrest
(Zhao et al., 2015). RA induced S phase arrest through regulation
of TNF, GADD45A, and BNIP3 expression (Messeha et al., 2020).
Their regulatory effects on the cell cycle are shown in Figure 4A.

Inhibition of Metastasis
Though chemotherapy kills cancer cells, it is disappointed that
some cancer cells may remain in tumor tissue and develop
metastasis ultimately. Among various metastasis, breast-to-
lung metastasis is the main reason for a patient death.
Therefore, targeting metastasis is regarded as a practical
therapeutic approach (Holm et al., 2016; Padmanaban et al.,
2019; Wellenstein et al., 2019).

CPT exerted an inhibitory effect on the metastasis of MCF-7
and MDA-MB-231 cells by interfering with CDK1 and CCNA2
gene expression (Chen et al., 2020). In another study, the
inhibitory effect of Tan I on breast cancer metastasis was
confirmed in MDA-MB-231 xenograft nude mice. Tan I
effectively inhibited TNF-α and VEGF expression, which
further suppressed ICAM-1 and VCAM-1 expression in
human umbilical vein endothelial cells (Nizamutdinova et al.,
2008). In addition, the migration and invasion ability of MCF-7
human breast cancer cells (MCF-7/PTX) resistant to paclitaxel
was remarkably hindered by Sal A treatment, which was
associated with inhibition of Transgelin 2 expression (Zheng
et al., 2015). Their regulatory effects on cancer metastasis are
shown in Figure 4B.

Regulation of Cancer Immunity
The role of different immune cells in regulating cancer
progression is becoming increasingly prominent (Wagner
et al., 2019). The interaction between tumor and immune cells
accounts for immunosuppression and poor prognosis (Bruni
et al., 2020). Recently, immunotherapeutic drugs such as PD-
1/PD-L1 and CTLA-4 are widely developed and used in clinical
cancer treatment (Riley et al., 2019). The effects of bioactive

FIGURE 3 | Induction of autophagy by bioactive constituents in S. miltiorrhiza. Tan I induces autophagy by up-regulating phosphorylation of AMPKα and its
downstream ULK1 expression. Tan IIA induces autophagy by activating LC3-II expression.
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constituents of S. miltiorrhiza on cancer immunity are not fully
investigated yet. One study showed that CPT enhanced perforin
production in CD4+ T cells by inducing the phosphorylation of
JAK2 and STAT4 this modulates the immune response to Th1
type, leading to inhibition of tumor growth (Zhou et al., 2014).
The regulatory effects on cancer immunity are shown in
Figure 5A.

Inhibition of Cancer Stem Cells
Breast CSCs initiate cancer cell growth in specific niches of the tumor
microenvironment. The cellular andmolecular components of CSCs

support signaling pathways that sustain cancer cell survival, self-
renewal dormancy, and reactivation (Ingangi et al., 2019). CSCs
exhibit genetic, epigenetic, and cellular adaptations that confer
resistance to classical therapeutic approaches. They are known to
mediate metastasis and recurrence (Prager et al., 2019).
Concurrently, CSCs are able to promote tumor migration by
regulating epithelial-mesenchymal transformation. Due to their
high drug efflux capability and anti-cancer drug resistance (Lytle
et al., 2018; Lambert and Weinberg, 2021), the identification of
potential CSCs targets has turned into a new therapeutic option for
breast cancer (Han et al., 2020).

FIGURE 4 | The mechanisms by which S. miltiorrhiza bioactive constituents induce breast cancer cell cycle and metastasis. (A) DHT inhibits expression of Cyclin
D1, Cyclin D3, Cyclin E, and CDK4, in contrast, while increasing p21 and p27 expression, leading to G1 arrest. CPT inhibits levels of Cyclin A, Cyclin B, Cyclin D, and
CDK2 expression, resulting in arrest at G1 arrest. Tan I inhibits levels of Cyclin A, Cyclin B, Cyclin D, Cyclin E, and CDK4, leading to cell cycle G1, S, or G2/M phase arrest.
(B) Sal A inhibits Transgelin 2 expression. Tan I inhibits ICAM-1, VCAM-1, TNF-α, and VEGF expression. CPT inhibits CDK1 andCCNA2 gene expression, resulting
in the suppression of breast cancer metastasis.

FIGURE 5 | The mechanisms by which S. miltiorrhiza bioactive constituents modulate breast cancer immunity and CSC manifestation. (A) CPT enhances perforin
production in CD4+ T cells by up-regulating phosphorylated JAK2 and STAT4, promoting immune response differentiates to Th1 type. (B) DHT-activated NOX5
expression promotes ROS generation which inhibits IL-6/STAT3 signaling pathway. Tan IIA inhibits the expression levels of IL-6 expression, STAT3 phosphorylation, and
NF-κB p65 nucleus translation, leading to breast CSCs death.
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It was documented that DHT strikingly suppressed breast
cancer CSCs and mammosphere formation (Kim et al., 2019).
Meanwhile, DHT down-regulated stemness markers such as
CD44high/CD24low and aldehyde dehydrogenase and the self-
renewal-related genes including Nanog, SOX2, OCT4, C-Myc,
and CD44. DHT induced calcium and ROS production.
Furthermore, DHT-activated NOX5 inhibited IL-6/STAT3
signaling and promoted CSCs death (Kim et al., 2019). Tan
IIA was proven to possess potential activity to target CSCs
in vitro and in vivo. It dramatically hindered the
mammosphere formation and reduced expression levels of IL-
6, STAT3 phosphorylation, and NF-κB p65 nucleus translation,
suggesting the modulation of the IL-6/STAT3/NF-κB signaling
pathway (Lin et al., 2013). Their regulatory effects on breast CSCs
are shown in Figure 5B.

Others
Estrogen and progesterone are known to increase breast cancer
risk (McTiernan et al., 2005). Estrogen-induced ER
transactivation and its target gene expression could be
effectively reversed by CPT treatment; CPT might principally
inhibit breast cancer cell growth in an ERα-dependent manner (Li
S. et al., 2015). The inhibitory effect of CPT on MCF-7 breast
cancer cell proliferation was associated with mTOR inhibition
and dependent on ER expression (Pan et al., 2017). Hypoxia-
induced adriamycin resistance and epithelial-mesenchymal
transition in breast cancer cell lines. Intriguingly, Tan IIA
treatment inhibited HIF-1α expression while TWIST silencing
abolished its effect on cell viability (Fu et al., 2014). Tan IIA
inhibited angiogenesis of breast cancer; it repressed HIF-1α
expression followed by VEGF inhibition. In addition, the
mTOR/p70S6K/RPS6/4E-BP1 signaling pathway was
suppressed by Tan IIA possibly by inhibiting p-mTOR,
p70S6K (Thr421/Ser424), RPS6 (Ser235/236, Ser240/244), and
4E-BP1 (Thr37/46) expression (Li G. et al., 2015). Sal B was
shown to reduce the tumor volume in an Ehrlich solid breast
cancer model. It reduced levels of plasma malondialdehyde,
VEGF, TNF-α, MMP-8 and Cyclin D1, increased those of
plasma glutathione, Caspase-3, and P53 (Katary et al., 2019).

DRUG COMBINATION OF THE MAIN
COMPOUNDS IN SALVIA MILTIORRHIZA
FOR BREAST CANCER TREATMENT
With the prolongation of the chemotherapy cycle, breast cancer
cells are increasingly tending to acquire drug resistance.
Meanwhile, a high cumulative dosage of chemotherapeutic
drugs augments toxic side effects, ultimately leading to
treatment failure. Moreover, CSCs have a self-renewal
capacity. which hampers tumoricidal chemotherapy drugs. As
a result, recurrent tumors not only are resistant to the initial
treatment but also acquire a more aggressive phenotype than
before (Miller-Kleinhenz et al., 2018). Combined medication is
the use of two or more drugs to intervene in the disease, so as to
synergize the therapeutic effect by regulating different signal
pathways or target proteins (Yin et al., 2014). The

pathogenesis of complex diseases such as cancer, diabetes, and
cardiovascular diseases depends on complex molecular pathways
and their interactions (Loscalzo et al., 2007). With the limitation
of the therapeutic benefits brought by single target or single-drug
therapy, the combination therapy has developed rapidly in the
management of many diseases including breast cancer (Al-
Lazikani et al., 2012; Iyengar, 2013).

It was reported that Sal A remarkably promoted PTEN
expression through Transgelin 2, followed by inactivating
PI3K/Akt signaling and increasing apoptosis, conferring
enhanced the chemosensitivity of breast cancer cells to
paclitaxel. It provided a clinical basis for the combined
administration of Sal A with paclitaxel in breast cancer
treatment (Cai et al., 2014). Co-administration of CPT
(15 mm) with monomethylarsonous acid (1 mm) was found to
enhance an anticancer effect against MCF-7 cells, CPT increased
cancer cell sensitivity to monomethylarsonous acid treatment.
The combination of monomethylarsonous acid and CPT up-
regulated the expression of mitochondrial pro-apoptotic proteins,
Bax and Bak, and provoked endoplasmic reticulum stress-
induced by PARP-1 and Caspase-9, thereafter triggering
apoptosis in MCF-7 cells (Zhang et al., 2015). Sal A was
suggested as an inhibitor of arginine methyltransferase 1.
Combination of Sal A (10 or 30 mg/kg) with adriamycin
(8 mg/kg) inhibited the growth of adriamycin-resistant MCF-7
cells by sensitizing the cells to the anti-cancer drug (Li et al.,
2016). ATP-binding cassette (ABC) transporters such as P-gp,
BCRP, and MRP1 are important mediators that efflux drugs from
tumor cells, resulting in drug resistance (Nobili et al., 2020). Tan
IIA reduced the expression of P-gp, BCRP, and MRP1, and
promoted adriamycin accumulation in adriamycin-resistant
MCF-7 as well as parental cells. It effectively repressed the
manifestation of breast CSCs and enhanced the
chemosensitivity to adriamycin. Therefore, Tan IIA (0.02 mg/
L) combined with adriamycin (2 μg/ml) was suggested as a
sensitizer in breast cancer treatment (Li and Lai, 2017; Li
et al., 2019). Similarly, Tan IIA (1–20 mm) inhibited the
expression of the higher microtubule-associated protein Tau
and resulted in increased sensitivity of MCF-7 cells to
paclitaxel (5–100 mm) (Lin et al., 2018). At the same time,
Tan IIA (0.5–10 μm) synergistically enhanced the antitumor
effect of the Hsp90 inhibitor 17-AAG (0.001–50 μm) against
MCF-7 cells by inhibiting total protein kinase C activity (Lv
et al., 2018). The synergistic effect of fulvestrant (250 mg/kg,
weekly, s. c.) and Tan IIA (30 mg/kg, every other day, injected via
tail vein) combination against ER-positive breast cancer was
verified in a preclinical ZR-75-1 tumor model. The
combination exhibited a distinct antitumor effect than the
monotherapy of fulvestrant or Tan IIA at the early time point,
as monitored by 18F-FES PET/CT imaging (He et al., 2019). The
nuclear translocation of β-catenin accumulation was related to
drug resistance in breast cancer. Tan IIA not only dramatically
inhibited nuclear translocation of β-catenin in adriamycin-
resistant MCF-7 cells upon adriamycin treatment but also
suppressed its expression in MCF-7 cells to some extent. Thus,
the chemosensitivity of breast cancer cells to adriamycin (2 μg/
ml) could be restrained by Tan IIA (20 μg/ml) by inhibiting β-
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catenin nuclear translocation (Li et al., 2021). In another report,
gene expression of MDM2 p53 binding protein homolog and zinc
finger E-box binding homeobox 1 were used to assess tumor
activity compared to DOX alone in MCF-7 cells. The
combination of RA (1.5, 15, 50 μm) and DOX (0.2 μm)
significantly increased the expression of zinc finger E-box
binding homeobox 1 gene and decreased that of MDM2 p53
binding protein homolog gene (Juskowiak et al., 2018).
Interestingly, the combination of RA (100 mg/kg/day, p. o.)
and paclitaxel (10 mg/kg/three times weekly, i. p.) showed
anti-inflammatory and antiangiogenic effects, and the
apoptosis rate was higher than that of the monotherapy. The
tumor size treated with RA and paclitaxel combination showed a
significant reduction. Hence, RA may increase the sensitivity of
breast cancer cells to paclitaxel through the NF-κB-p53-caspase-3
pathway (Mahmoud et al., 2021). The synergistic effects of CPT,
Sal A, Tan IIA, and RA for breast cancer treatment are shown in
Table 1.

Oral chemotherapy is an important strategy to treat cancer.
However, due to the existence of the gastrointestinal drug barrier,
the bioavailability of the most effective drugs is circumscribed.
Although oral P-glycoprotein inhibitors such as cyclosporin solve
this problem to some degree, it destroys the immune system
(Zhang H. et al., 2021). In recent years, nanotechnology has
become a hotspot because it can faultlessly solve the problem of
the gastrointestinal barrier (Mei et al., 2013). Due to its low side
and high curative effects, the majority of patients are more likely
to receive nano-drug loading treatments and the compliance of
patients is relatively good (Luo et al., 2014).

In one study, the poly-N-(2-hydroxypropyl) methacrylamide
(pHPMA)-coated wheat germ agglutinin-modified lipid-polymer

hybrid nanoparticles were co-loaded with CPT and silibinin (S/
C-pW-LPNs). Compared with CPT alone, S/C-pW-LPNs
significantly increased 4T1 cell toxicity and inhibited cell
migration and invasion. It reduced the tumor number and
lung metastases in 4T1 tumor-bearing mice which were
attributed to the inhibition of tumor microenvironment
biomarkers such as MMP-9, TGF-β1, and CD31 (Figure 6)
(Liu et al., 2020).

Derivatives
Chemical modification is a commonmethod to obtain derivatives
with better antitumor activity. This confers increased
chemotherapy sensitivity to anti-cancer treatment, higher

TABLE 1 | The synergistic effects of active compounds in S. miltiorrhiza for breast cancer treatment.

Compounds Combined
compounds

Models Dosage Synergistic effects Results Ref.

CPT Monomethylarsonous
acid

MCF-7 cells 15 μm + 1 μm Promotes apoptosis Increased Bax, Bak, and
Caspase-9

Zhang et al.
(2015)

Sal A Doxorubicin MCF-7/DOX cells 10, 30 mg/kg +
8 mg/kg

Facilitates chemotherapy
sensitivity

Decreased protein arginine methyl
transferase 1 activity

Li et al. (2016)

Paclitaxel MCF-7/PTX cells 3, 6, 12 μM +
1,000 nM

Facilitates chemotherapy
sensitivity

Inhibited PI3K/Akt pathway Cai et al. (2014)

Tan IIA Doxorubicin MCF-7/DOX cells 0.02 mg/L +
2 μg/ml

Facilitates chemotherapy
sensitivity

Decreased β-catenin nuclear
translocation

Li et al. (2021)

Paclitaxel MCF-7 cells 1–20 mM +
5–100 μM

Facilitates chemotherapy
sensitivity

Decreased microtubule
associated protein

Lin et al. (2018)

17-AAG MCF-7 cells 0.5–10 μM +
0.001–50 μM

Enhances antitumor
efficacy

Inhibited total protein kinase C
activity

Lv et al. (2018)

Fulvestrants ZR-75-1 tumor
xenografts

30 mg/kg/d +
250 mg/kg/w

Enhances antitumor
efficacy

Decreased tumor growth He et al. (2019)

Doxorubicin MCF-7/DOX cells 20 μg/ml +
2 μg/ml

Facilitates chemotherapy
sensitivity and reduces
toxic side effects

Inhibited PTEN/Akt pathway (Li and Lai,
2017; Li et al.,
2019)

RA Doxorubicin MCF-7/DOX cells 1.5, 15, 50 mM +
0.2 μM

Facilitates chemotherapy
sensitivity

Inhibited MDM2 p53 binding
protein homolog gene and
increased zinc finger E-box
binding homeobox 1 gene

Juskowiak et al.
(2018)

Paclitaxel Ehrlich’s ascites
carcinoma-induced
Swiss albino mice

100 mg/kg/d +
10 mg/kg,
3 times/w

Enhances antitumor
efficacy

Decreased tumor growth Mahmoud et al.
(2021)

FIGURE 6 | The poly-N-(2-hydroxypropyl) methacrylamide (pHPMA)-
coated wheat germ agglutinin-modified lipid-polymer hybrid nanoparticles,
co-loaded with silibinin and CPT (S/C-pW-LPNs).
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cytotoxicity to hypoxic cancer cells, more stable characteristics,
improved therapeutic index and easy access to clinical setting
(Coleman et al., 1988; Shen et al., 2019).

Acetyltanshinone IIA (ATA) is a derivative of Tan IIA with
higher water solubility and stronger pro-apoptotic activity in various
cancer cell lines. It showed a stronger anti-proliferative and ROS
production activity, especially in HER2 positive breast cancer cells.
ATA treatment-induced Bax translocation, cytochrome c release,
Caspase-3 activation, and apoptotic cell death, and inhibited
xenografted tumor growth (Tian et al., 2010). ATA also
effectively repressed the growth of ER-positive breast cancer cells.
Mechanistically, ATA might achieve its effect by reducing the ERα
mRNA level, and binding to ERα facilitating its degradation through
the ubiquitin-mediated proteasome-dependent pathway (Yu et al.,
2014). Further studies showed that ATA-induced apoptosis was
related to the down-regulation of receptor tyrosine kinase/EGFR/
HER2 and the downstream survival-promoting signal pathway.
ATA triggered oxidative and endoplasmic reticulum stress, and
AMPK activation, resulting in the inactivation of key enzymes
involved in lipid, and protein biosynthesis. Intraperitoneal
injection of ATA in MDA-MB-453 xenograft mice significantly
inhibited the tumor growth without weight loss and any other side
effects. In addition, ATA could inhibit tumor angiogenesis in vitro
(Guerram et al., 2015). A small-size microemulsion containing
sodium Tan IIA sulfonate (STS) and celastrol showed synergistic
cytotoxicity to cancer cells. After sequential release in the tumor
tissue, STS and celastrol-based microemulsion repaired abnormal

blood vessels, reduced fibroblasts, and tumor cells, and reduced
tumor size shrinkage (Qu et al., 2018). Except for modulation on
tumoral blood vessels, STS also decreased collagen, cancer-associated
fibroblasts, and Th2 type cytokines in vivo (Qin et al., 2020). The
imidazole derivative analog of Tan IIA (TA12) successfully resolved
the poor water solubility of Tan IIA. TA12 significantly inhibited the
proliferation, migration, and invasion of MDA-MB-231 cells. In a
zebrafish xenotransplantation model, TA12 also conspicuous
blocked the metastasis of cancer cells in blood vessels and
surrounding tissues through induction of ROS and DNA
damage, leading to S phase arrest. Therefore, TA12 is expected to
be an effective anti-metastasis agent (Wu et al., 2018). A synthetic
derivative of CPT (KYZ3) is an effective STAT3 inhibitor. The
antitumor activity of KYZ3 against TNBC cell lines was 22–24 folds
higher than that of CPT, while it had little effect in normal breast
epithelial MCF-10A cells. KYZ3 also inhibited TNBC cell metastasis
by directly reducing MMP-9 and STAT3 levels. KYZ3 suppressed
the tumor growth induced by subcutaneous implantation of MDA-
MB-231 cells in vivo (Zhang W. et al., 2018). The effects of Tan IIA
and CPT derivatives for breast cancer treatment are shown in
Table 2.

CONCLUSION AND PROSPECTIVE

Breast cancer has become the most lethal cancer in the world in
women. Its incidence is increasing year by year and ranked top

TABLE 2 | The effects of derivatives from S. miltiorrhiza bioactive constituents for breast cancer treatment.

Prototype Derivatives Structures Characteristics Results Ref.

Tan IIA ATA Higher water solubility, stronger pro-apoptotic
activity and antitumor efficacy

Increased Bax and cleavage Caspase-3
expression

Tian et al.
(2010)

Decreased ERα expression Yu et al. (2014)
Triggered oxidative and ER stress and
activated AMPK expression

Guerram et al.
(2015)

STS Stronger antitumor efficacy, gradient and
controlled release at the tumor site

Abnormal blood vessels remodeling and
reduced fibroblasts level

Qu et al. (2018)

Photothermal triggering technology Qin et al. (2020)

TA12 Higher water solubility, stronger pro-apoptotic
activity

Activated ROS production and DNA
damage leading to S arrest

Wu et al. (2018)

CPT KYZ3 Stronger antitumor efficacy Decreased STAT3 expression Zhang et al.
(2018b)
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one among women last year (Sung et al., 2021). Although the cure
probability of breast cancer types other than TNBC is gradually
increasing, advanced TNBC is still a largely incurable illness.

S. miltiorrhiza has traditionally been widely used in the
management of cardiovascular and cerebrovascular diseases.
With continuous exploration, its corresponding components
have been continuously identified. A large number of articles
on multicomponents from S. miltiorrhiza with regards to their
therapeutic potential against breast cancer studies have been
published. Their underlying mechanisms include promoting
apoptosis, autophagy, cell cycle arrest, inhibiting metastasis,
and regulating immunity. Various derivatives have been
designed to solve the problem including poor water solubility
and low efficacy. In addition, the problem of drug resistance in
breast cancer was alleviated by the combination of CPT, Sal A,
Tan IIA, or RA with the first-line drugs. Meanwhile,
nanotechnology improved the CPT delivery system, achieved
gradient release and precise targeting effect, and potentiated the
anti-breast cancer activity. Until now, the clinical efficacy of these
active ingredients compared with clinical drugs has not been
reported yet, but they showed a therapeutic effect on tumor
resistance, the reduction of side effects, and the optimization of
dosage form for breast cancer treatment. At the same time, it is
inevitable to find components like paclitaxel in plants such as S.
miltiorrhiza that have significant therapeutic effects on breast
cancer. Fortunately, Tan IIA was reported to be more effective
than tamoxifen, which is the first-line drug for breast cancer (Lu
et al., 2009).

Despite the progress in understanding the phytochemistry and
the anti-breast cancer pharmacology of S. miltiorrhiza. There are
still some issues that need deeper investigation. Firstly, most of the
current studies have been performed at cellular levels, whilst few
are based on models. The systematic evaluation has not been
closely investigated. Second, the exploration of the anti-breast
cancer mechanisms is still scarce. The molecular mechanism
types are mainly limited to apoptosis and cell cycle, which is far
from enough in-depth. For example, although CPT,DHT, Tan IIA,
and Tan I can induce apoptosis in breast cancer, it only includes
regulation of caspase and Bcl-2 family proteins.Whether they have
other potential targeted proteins merits further study. In addition,
there are few studies focused on breast cancer metastasis, especially

in relation to an application of immunotherapy, which are a hot
issue in recent years. Therefore, the clinical application of S.
miltiorrhiza active ingredients against breast cancer still deserves
further investigation.
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