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The endemic human pathogenic fungus Histoplasma capsulatum is a major fungal pathogen
with a broad variety of clinical presentations, ranging from mild, focal pulmonary disease to
life-threatening systemic infections. Although azoles, such as itraconazole and voriconazole,
and amphotericin B have significant activity against H. capsulatum, about 1 in 10 patients
hospitalized due to histoplasmosis die. Hence, new approaches for managing disease are
being sought. Over the past 10 years, studies have demonstrated that monoclonal antibod-
ies (mAbs) can modify the pathogenesis of histoplasmosis. Disease has been shown to
be impacted by mAbs targeting either fungal cell surface proteins or host co-stimulatory
molecules. This review will detail our current knowledge regarding the impact of antibody
therapy on histoplasmosis.
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INTRODUCTION
The most commonly encountered endemic mycoses in the Amer-
icas are due to Histoplasma capsulatum, Blastomyces dermatitidis,
Paracoccidioides brasiliensis, and Coccidioides immitis/posadasii
(Lockhart et al., 2009; Prado et al., 2009). As is the case in other
endemic fungi, H. capsulatum infection is typically acquired by
inhalation of fungal propagules after disturbances of contami-
nated soil or excreta (Guimaraes et al., 2006). The clinical man-
ifestation of the disease range from asymptomatic infection or
a mild influenza-like illness to a disseminated sepsis form that
may involve virtually any tissue (Meloan, 1952; Goodwin and Des
Prez, 1978; Fojtasek et al., 1994; Bradsher, 1996). These man-
ifestations depend mainly on the magnitude of exposure (i.e.,
the number of fungal particles inhaled), the immunological sta-
tus of the host (i.e., patients with AIDS or individuals receiving
steroids or chemotherapy), and the virulence of the infective strain,
indicating that environmental and genetic factors influence the
manifestation of disease (Goodwin et al., 1981; Kauffman, 2007).
The vast majority of infected persons have either no symptoms
or a very mild illness that is never recognized as being histo-
plasmosis (Wheat et al., 2007). In fact, 95–99% of the primary
infections are not recognized or detected in immunologically
normal hosts in endemic areas (Saliba and Beatty, 1960; Isbis-
ter et al., 1976; Goodwin et al., 1981). Although the majority
of symptomatic infections follow primary exposures to H. cap-
sulatum, reactivation of latent infection can result in significant
disease, particularly in the setting of immunosuppression (Kauff-
man, 2007). Furthermore, reactivation disease can be developed
in liver transplant recipients with disease originating from latent
infections in the transplanted organs (Limaye et al., 2000). Addi-
tionally, reactivation histoplasmosis has increasingly occurred in
patients receiving anti-cytokine therapies, especially inhibitors of

INF-γ and TNF-α (Deepe, 2005; Deepe et al., 2005; Scheckelhoff
and Deepe, 2005).

As infection with H. capsulatum is not a mandatory reportable
event, the actual incidence of clinically significant histoplasmosis
is not known. Epidemiological studies have estimated that 500,000
individuals acquire H. capsulatum annually in the USA and over
80% of young adults in endemic areas have been infected with
the fungus (Edwards et al., 1969). A national survey of hospital
discharge diagnoses from 2002 identified 3,370 patients hospital-
ized for histoplasmosis in the USA with a crude mortality rate
of 8% (Chu et al., 2006). Notably only 14% of the patients were
immunocompromised and this percentage was similar in those
who died. Given the nature of the survey, it only represented a
“fraction of the burden of all morbidity and mortality” (Chu et al.,
2006) related to H. capsulatum. This study also documents that
hospital charges for the identified patients were well over $100
million. Hence, histoplasmosis is a significant and costly cause of
morbidity and mortality in otherwise healthy individuals and in
immunodeficient patients. Despite the potency of current anti-
fungal drugs, they nevertheless fail to prevent mortality in nearly
1 in 10 patients hospitalized with histoplasmosis.

Although H. capsulatum has previously been considered to
consist of three varieties, capsulatum, duboisii, and farciminosum
(Darling, 1906; Dodd and Thompkins, 1934; Medoff et al., 1987),
recent molecular work has shown that these distinctions are phylo-
genetically meaningless, but instead, there are genetically distinct
geographical populations or phylogenetic species (Kasuga et al.,
2003). H. capsulatum is a dimorphic fungal pathogen with two dis-
tinct morphological forms, filamentous and yeast, depending on
the nutritional factors and temperature (Maresca and Kobayashi,
1989). H. capsulatum is found in nature primarily as a saprophytic
mold, and exists in soils enriched with organic nitrogen sources
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such as animal excrements, or when grown in the laboratory at less
than 35˚C (Emmons, 1950, 1956a,b; Zeidberg et al., 1952; Alteras,
1966; Emmons et al., 1966; Disalvo et al., 1970; Smith, 1971a,b).
The mold form is composed of hyaline septate hyphae that pro-
duce two different asexual reproduction structures, macroconidia
and microconidia. The microconidia are the purported infectious
propagule, as their size, 2–6 μm, is well suited for deposition into
distal alveoli. Upon entry to a susceptible host, the microconidia
rapidly convert to the pathogenic single, budding yeast-like form,
which can also be cultivated in laboratory medium at 37˚C.

As a facultative intracellular parasite, the interaction of H. cap-
sulatum with macrophage cells is a critical component of the
host response to infection (Newman, 2005) and is a complex and
obscure phenomenon. Heat shock protein 60 (Hsp60) is the major
H. capsulatum surface ligand that engages CD11b/CD18 (CR3)
integrin on the surface of phagocytes resulting in phagocytosis
(Long et al., 2003; Habich et al., 2006). H. capsulatum yeasts have
critical interactions with inflammatory neutrophils, and with den-
dritic cells (DCs) in the lung and other organs. Indeed, recent new
evidence suggests that DCs may be the key antigen-presenting
cells that initiate cell-mediated immunity (Deepe et al., 2008).
H. capsulatum yeast cells must survive and/or subvert the hos-
tile antimicrobial environmental within phagocytes (Allendoerfer
et al., 1997), including fungicidal mechanisms such as reactive
oxygen species and products of the nitric oxide synthase (NOS)
pathway (Eissenberg and Goldman, 1987). The yeast form actively
inhibits phagolysosomal fusion, thereby preventing exposure to
the acidic hydrolytic enzymes of the lysosomes. H. capsulatum
also prohibits accumulation of vacuolar ATPase, which is impor-
tant for proton accumulation in phagosomes, and the fungus can
actively alkalinize phagosomal pH to 6.5 (Strasser et al., 1999).
Within the phagocytic cells, viable yeast may travel to hilar and
mediastinal lymph nodes where they gain access to the blood cir-
culation for dissemination to various organs, such as the liver and
spleen (Wheat and Kauffman, 2003).

The therapeutic approach to patients with histoplasmosis is
well documented in a 2007 “practice guideline” by the Infectious
Diseases Society of America (Wheat et al., 2007). Azole drugs,
such as itraconazole and voriconazole, and amphotericin B are
the drugs of choice for clinically significant disease. However, as
detailed above, these potent therapeutics fail to prevent mortality
in a significant proportion (∼10%) of hospitalized patients. Addi-
tionally, the antifungal agents are given for protracted periods or
even life-long in settings of ongoing immunocompromise. Hence,
new therapeutic approaches have been investigated. One of the
different avenues of study has been the application of antibodies
to modify the pathogenesis of histoplasmosis.

ANTIBODIES IN HISTOPLASMOSIS
Passive immunization with polyclonal antibodies is controversial
for mycoses (Louria and Kaminski, 1965). However, there is a
growing consensus that antibodies collaborate with phagocytic
cells and T cells for the enhancement of the immune response dur-
ing systemic mycosis (Yuan et al., 1997;Vecchiarelli and Casadevall,
1998; Huffnagle and Deepe, 2003). Moreover, experiments with
polyclonal sera have produced conflicting results that have raised
questions regarding antibody efficacy in fungal disease (Louria

and Kaminski, 1965; Mukherjee et al., 1992; Casadevall, 1998).
In the 1970s, adoptive transfer experiments of serum from mice
immunized with Hc ribosomes or live yeast cells failed to protect
mice infected with the fungus, whereas transfer of filtered spleen
or peritoneal cells from the immunized animals were protective
(Tewari et al., 1977).

Recently, studies with monoclonal antibodies (mAbs) strongly
have suggested that divergent results obtained with polyclonal
antibodies preparations may be a result of the relative propor-
tions of protective, non-protective, and inhibitory antibodies in
immune sera (Dromer et al., 1987; Mukherjee et al., 1992) since
animal experiments with mAbs to the capsular polysaccharide of
Cryptococcus neoformans (Cn) have revealed the existence of pro-
tective, non-protective, and disease-enhancing mAbs. A protective
mAb may even have a reduced efficacy if administered in high
amounts, due to a prozone-like effect (Taborda and Casadevall,
2001; Taborda et al., 2003). In addition, protective efficacy of mAbs
is determined by several variables including pathogen inocu-
lum (Taborda et al., 2003), genetic background of both microbe
(Mukherjee et al., 1995b) and host (Lendvai and Casadevall, 1999;
Zaragoza et al., 2007), host immunological status (Yuan et al.,
1997), both epitope specificity and isotype of mAb (Mukherjee
et al., 1992, 1995a), timing of antibody administration (Casade-
vall, 1998; Casadevall et al., 1998), and route of infection (Briles
et al., 1992a,b).

The antibody response to infection with H. capsulatum has
been characterized. In humans, infection induces an increase in
IgM by 2 weeks, followed by rising titers of IgA and IgG (Chandler
et al., 1969). The IgG fraction contains complement-fixing and
precipitating antibodies (Chandler et al., 1969). Murine exper-
iments show that Histoplasma-specific serum immunoglobulin
levels peak by day 21 (Fojtasek et al., 1993). Studies on the inflam-
matory reactions in the lungs of mice infected with H. capsulatum
demonstrate that the number of B cells increase in the first week
of infection, albeit to a lesser degree than other myeloid cells lines
(Fojtasek et al., 1993; Cain and Deepe, 1998). Subsequently, the
number of B cells continues to increase as other myeloid lines
decrease (Cain and Deepe, 1998). The number of B cells in the
spleen does not significantly change until the end of the second
week of infection when all cell subsets nearly double (Fojtasek
et al., 1993). In histoplasmosis, the current paradigm for host
control of infection relies most heavily on activation of cellular
immunity, since, in the absence of effector cells, progressive disease
with dissemination occurs (Allendorfer et al., 1999). However, B-
lymphocytes can impact histoplasmosis. Depletion of CD4+ and
CD8+ T cells in B-lymphocyte knockout mice induced a markedly
higher H. capsulatum burden in organs when compared with T
cell depletion in wild-type animals in a secondary histoplasmosis
model (Allen and Deepe, 2006), corroborating previous studies
showing that antibodies can modify the pathogenesis of mycoses
(Pirofski and Casadevall, 1996; Casadevall, 1998; Casadevall et al.,
1998).

HISTOPLASMA CAPSULATUM FUNGAL CELL SURFACE:
TARGETS FOR ANTIBODY
The fungal cell wall is rich in targets for the immune system (Nim-
richter et al., 2005). As with most other pathogenic fungi, H.
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capsulatum possesses a rigid, polysaccharide composed cell wall
structure, with four different glycans: soluble galactomannan, α-
1,3-glucan, β-1,3-glucan, and a fibrillar chitin skeleton (Domer,
1971; San-Blas et al., 1978). Displayed on the surface are a variety
of proteins that have been associated with virulence or utilized
in diagnosis of the fungus (Figure 1). MAbs have been gener-
ated that bind H. capsulatum cell wall antigens, including melanin
(Nosanchuk et al., 2002), histone 2B (Nosanchuk et al., 2003),
Hsp60 (Guimaraes et al.,2009),M antigen (Guimaraes et al.,2008),
and a 70-kDa protein (Lopes et al., 2010).

HISTONE 2B
Immunization with heat-killed H. capsulatum yeast cells resulted
in the generation of a panel of IgM isotype mAbs that specifi-
cally bound cell surface expressed histone 2B (Nosanchuk et al.,
2003). Although the identification of histone 2B as a cell surface
antigen was surprising, histones are increasingly described on the
cell surface of diverse host cells as well as pathogens; such as the
cell surface of Mycobacterium leprae (Pessolani et al., 1993; Mar-
ques et al., 2000, 2001) and Mycobacterium smegmatis (Pethe et al.,
2001) that are associated with binding to host cells and, specifi-
cally in the case of M. leprae, cell invasion (Shimoji et al., 1999).
The administration of the IgM mAbs to H. capsulatum histone
2B was hindered by the large molecular weight of the mAbs and
the difficulty with their entry into the alveolar space. However,
co-incubation of mAb with H. capsulatum yeast cells prior to
infection of mice revealed that the mAbs reduced the severity of
disease. The protective effect was augmented by the administra-
tion of sub-inhibitory concentrations of amphotericin B, which
stimulates host immune responses by engaging TLR2 and CD14
(Sau et al., 2003). Overall, the IgM mAbs to histone 2B reduced
fungal burdens, decreased pulmonary inflammatory damage, and
prolonged murine survival.

The protective effect of these mAbs was associated with an
alteration in the intracellular fate of H. capsulatum (Nosanchuk
et al., 2003; Shi et al., 2008). The mAbs reduced the capacity of the
fungus to replicate intracellularly. Although H. capsulatum typi-
cally tightly regulates the phagosomal pH of macrophages, yeast
opsonized with mAb to histone 2B were unable to maintain a neu-
tral pH in their host macrophage cells. The inability to regulate the
pH resulted in fungal cell killing, increased processing of fungal
antigens and increased T cell activation (Shi et al., 2008).

HEAT SHOCK PROTEIN 60
As described above, Hsp60 is the surface protein that is the major
ligand that mediates attachment of H. capsulatum to macrophage
CR3 (CD11b/CD18; Long et al., 2003). Hsp60 is also an immun-
odominant antigen expressed on the surface of H. capsulatum
yeasts and is able to induce protective immunity upon vacci-
nation (Deepe et al., 1996; Deepe and Gibbons, 2002; Scheck-
elhoff and Deepe, 2002). Using recombinant Hsp60, we gener-
ated IgG isotype mAbs (Guimaraes et al., 2009). Interestingly,
IgG2a and IgG1 mAbs to Hsp60 were protective whereas a IgG2b
was disease-enhancing. Protection was characterized by a reduc-
tion of fungal burden, decreased tissue damage, and prolonga-
tion of survival. Cytokine analyses revealed that the protective
mAbs induced a strong Th1-type host response. Notably, the
IgG2b recognized the same region on the protein to which a
protective IgG1 also bound in a competitive manner, suggest-
ing that protection was regulated by isotype. This finding was
supported by data from mice treated with methamphetamine
that developed significant increases in their IgG2b levels and also
had accelerated and exacerbated histoplasmosis (Martinez et al.,
2009).

As with the mAbs to histone 2B, the protective mAbs to Hsp60
modified the intracellular fate of the yeast cells. Phagosomal

FIGURE 1 |Transmission electron micrograph of the surface of a

H. capsulatum yeast cell with overlaying cartoons depicting the

hypothetical structures of the H antigen, M antigen, heat shock

protein 60, 70 kDa antigen, C antigen, and histone 2B. The antigen
structures are based on molecular modeling as described in Guimaraes
et al. (2008).
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maturation was significantly increased in the presence of the pro-
tective mAbs and this correlated with a reduction in intracellular
yeast cell survival. In contrast, yeast cultured with the disease-
enhancing IgG2b mAb replicated at an enhanced rate compared
to controls.

Interestingly, the protective mAbs were noted to induce aggre-
gation of H. capsulatum yeast cells (Guimaraes et al., 2011a).
Agglutination of yeast cells caused by antibodies had been reported
previously for C. neoformans (Kozel and McGaw, 1979). How-
ever, agglutination was evaluated with IgG-opsonized strain 602
of C. neoformans, by using a monospecific antiserum to IgG
heavy chains, in order to confirm association of IgG antibod-
ies to the yeast and specifically determine that these molecules
were binding directly at the yeast surface. With H. capsulatum
we observed that agglutination occurred only when cells are
brought together due to a result of a Brownian movement dur-
ing which cellular collision permits interaction. However, the
surface of H. capsulatum yeast is typically negatively charged
due to the high amounts of α-1,3-glucans on the cell wall.
The negative charge increases the electrostatic potential sur-
rounding the cells leading to repulsion between cells. H. cap-
sulatum yeast aggregation was an effect of concentration, but
the magnitude of aggregation efficiency was dependent on the
dissociation constant of each mAb characterized. Additionally,
we used an optical tweezer to measure real-time interactions
between single cells in the presence of opsonins and found
a correlation of time for aggregation (characteristic time) and
binding constant, with the protective mAb being more effec-
tive than the non-protective mAb. Interestingly, blockade of
CR3 receptors resulted in an additional drop of phagocyto-
sis rate of larger aggregates, suggesting a cooperative function
of Fc and CR3 receptor for the phagocytosis of large parti-
cles. Overall, it is unclear what the impact of agglutination
potential of the antibodies is during infection. However, it is
possible that the antibodies may keep replicating cells aggluti-
nated, which can reduce the dissemination of the fungus, and
these clusters of cells may be more effectively targeted by host
responses.

We have also recently demonstrated that Hsp60 is involved
in the presentation of a diverse range of proteins on the fun-
gal cell surface, including proteins associated with oxidative stress
responses (Guimaraes et al., 2011c). Hence, the binding of Hsp60
by antibody may dysregulate the chaperone functions of the
protein. Disruption of this interactome, especially during stress
response conditions, could impact the capacity of the fungus to
cause disease.

M ANTIGEN
The M antigen is a glycoprotein that is well known as a diag-
nostic antigen for acute histoplasmosis as it induces the first
precipitins during disease (Pizzini et al., 1999). We have doc-
umented that live fungal cells secrete only small amounts of
the protein and interestingly, we demonstrated that the M anti-
gen was also expressed at the H. capsulatum cell surface and
that it functions as a catalase (Guimaraes et al., 2008). In the
course of this study, we produced three mAbs to the M antigen,

one IgM and two IgG2a isotype mAbs. Opsonization of H.
capsulatum with the IgM or IgG2a mAbs to the M antigen
enhances yeast cell phagocytosis by macrophages and two of the
three mAbs also promote host cell cidal activity (Figures 2A,B).
All three mAbs also altered the pathogenesis of experimental
murine histoplasmosis as mice challenged with opsonized yeast
cells uniformly survived a lethal challenge with H. capsulatum
(Figure 2C).

70 kDa ANTIGEN
In addition to the fact that the IgG2b mAb to Hsp60 was not
protective, we have demonstrated that an IgG1 mAb specific for a
70-kDa cell surface antigen was non-protective (Lopes et al., 2010).
The mAb was previously shown to be highly specific for H. capsu-
latum and is a candidate for use in the serological diagnosis and
management of histoplasmosis (Gomez et al., 1997, 1999). The
finding that the IgG1 to the 70-kDa antigen was non-protective
indicates that isotype is not the only determinant for a protec-
tive response, but that the antigen target can also influence the
outcome of disease.

DISCUSSION
The incidence of clinically relevant mycoses is rising, mainly due
to recent advances in modern medicine, including the use of
intravascular devices, broad spectrum antibiotics, organ trans-
plantation, the use of chemotherapeutic and anti-inflammatory
drugs, and the increasing number of individuals with HIV infec-
tion (Pfaller and Diekema, 2010). Given the difficulties in com-
bating severe fungal diseases with our current antifungal med-
ications, novel approaches, including administration of mAbs,
are being pursued. Studies with antibody and H. capsulatum
reveal that protective and non-protective antibodies exist. This
finding is also extremely relevant to vaccine development, as an
adverse outcome of vaccination might be the generation of disease-
enhancing antibodies, even if the latter are a subset of those
induced.

The protective mAbs to H. capsulatum identified to date medi-
ate protection by modifying the intracellular fate of the yeast
cells. H. capsulatum is remarkable for its capacity to tightly reg-
ulate the intracellular milieu of macrophage phagosomes. The
protective mAbs to histone 2B and Hsp60 enhance macrophage
fungistatic/fungicidal responses, subverted H. capsulatum’s ability
to modify the phagosomal environment, resulting in augmented
antigen processing and T cell activation, and control of the fun-
gal disease. The opsonization by the antibody on H. capsulatum
can also impact the fungus’ ability to traffic surface proteins.
Future research is needed to better characterize the fundamental
influences on protection of antibody in histoplasmosis, including
defining the importance of isotype on the protective efficacy, deter-
mining the role of the quantity of surface antigen on protection,
and the direct effect of antibody on H. capsulatum transcriptional
regulation.

In addition to exploring fungal antigens as targets for anti-
body therapy, we have examined the impact of antibody on host
cell co-stimulation as a new alternative for controlling the patho-
genesis of histoplasmosis. We determined that H. capsulatum
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FIGURE 2 | Monoclonal antibodies (mAbs) to the M antigen can modify

the pathogenesis of experimental histoplasmosis. The generation of the
mAbs is described in Guimaraes et al. (2008). The mAbs produced are mAb
7C7 (IgM isotype), mAb 6F12 (IgG2a), and mAb 8H2 (IgG2a). Using methods
described in Guimaraes et al. (2011b), the phagocytosis rates (A), and killing
capacity (B) of J774.16 macrophage-like cells reveal that the mAbs

significantly enhanced the uptake of yeast cells by the phagocytes (p < 0.05
vs. controls) and that two of the three mAbs enabled the killing of yeast cells
by the J774.16 cells (p < 0.05 for mAbs 8H2 and 7C7 vs. controls). (C)

C57Bl/6 mice infected with 1.25 × 107 opsonized yeast cells had a 100%
survival whereas control infected mice died within 1 month after infection
(p < 0.001 for mAbs 8H2, 6F12, and 7C7 vs. controls).

altered the PD-L expression on macrophages, which resulted in a
dysregulation of T cell activation (Lazar-Molnar et al., 2008). The
PD-1/PD-L pathway is involved in maintenance of self-tolerance
and T cell regulation. Mice deficient in PD-1 were protected

against lethal challenges of H. capsulatum. Administration of mAb
that blocks PD-1 similarly protected wild-type mice against lethal
infection. Hence, antibody targeting host responses can modify
histoplasmosis.
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