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Introduction
Recent advances in high-throughput technologies, including 
next generation sequencing (NGS), mass spectrometry (MS),  
and imaging assays and scans, are providing unprecedented  
capabilities for cancer researchers to interrogate bio logical 
systems of interest, while creating tremendous challenges 
with respect to data management, access, and analysis. The 
Cancer Genome Atlas (TCGA) project,1 for example, cur-
rently provides germline and tumor DNA-sequencing, 
RNA-sequencing, methylation, and imaging data from 
thousands of patients across multiple solid tumor and hema-
tologic malignancies. Consequently, cancer researchers are 
faced with the formidable task of managing and integrating 
massive amounts of data, produced in structured as well as 

unstructured formats, to be positioned to use this treasure 
trove of data to push the scientific envelope. The requisite 
analyses are not confined to traditional assessment of differ-
ential expression but extend to integrative genomics including 
analysis of expression quantitative trait loci (eQTL2) linking 
DNA and RNA sequencing data.

In many cases, the data volume, velocity, and variety3 
generated by these high-throughput platforms have collec-
tively rendered the traditional single- and cluster-farm com-
puting model, which was employed with great success in the 
microarray and genome-wide association studies (GWAS) era, 
technologically obsolete. Recent advances in computational 
technologies, especially distributed computing for “Big Data”, 
such as Hadoop, have shown great potential as technological 
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solutions for addressing the challenges of the data deluge in 
next generation cancer research.

This paper provides an overview of scalable and dis-
tributed computing technologies with specific emphasis 
on the widely used open source Hadoop project. The pre-
sentation is organized as follows. In the next section, we 
provide an overview of the elements of scalable computing 
systems and provide a number of examples. Afterward, we 
provide an introduction to Hadoop as a full-featured dis-
tributed system for scalable computing and data storage and 
management. This section also includes an overview of the 
Hadoop ecosystem and specific examples of bioinformat-
ics applications leveraging this technology. In the section 
that follows, we outline a proof-of-concept (POC) cluster 
to illustrate the design and implementation of a basic NGS 
data pre-processing system based on Hadoop. In the Discus-
sion, we consider other available and widely used systems for 
distributed computing that could be used as an alternative to 
or in concert with Hadoop depending on the specific cancer 
informatics challenge at hand.

scalable computing systems
background. Computing models. Broadly speaking, com-

putational systems can be grouped into two categories (see for 
example Refs.4,5):

1. Heterogeneous systems: These are typically single node 
workstations or servers for which computational power 
is scaled by upgrading or adding additional Central Pro-
cessing Units (CPUs) or memory along with other com-
ponents including Graphics Processing Units (GPUs) or 
Many-in-Core co-processors.

2. Homogeneous distributed systems: Another way to scale 
computation is by connecting several computers. If the 
computers are connected within the same administrative 
domain, the collective is referred to as a compute cluster. 
If connected across networks and administrative domains, 
it is referred to as a computer grid. The indivi dual comput-
ers in the collective are called nodes. Scaling a cluster or 
grid is typically accomplished by adding nodes rather than 
adding components to the individual nodes.

Scaling of computation is accomplished through task or 
data parallelization.6,7 In task parallelization, a computational 
task is divided into several tasks to be run in parallel on the 
same dataset and the results are combined. For large datasets, 
this approach is often not feasible as the data may not fit into 
memory. In data parallelization, the data are divided into 
smaller sets and the same processing is applied to each subset 
after which the results are combined.

Traditionally only a single task or instruction could 
be carried out on one piece of data and the related CPU 
architecture is called Single Instruction Single Data (SISD8). 
In order to enable parallelization, other architectures have 

been developed. These include Single Instruction Multiple 
Data (SIMD8), which allows the same instruction or process-
ing to be applied to different datasets, or Multiple Instruction 
Multiple Data (MIMD8) in which multiple instructions can 
be applied to different datasets.

In a distributed system, processing is done by the CPU 
in each of the nodes. Although the CPUs of the individual 
nodes are independent of each other the memory and storage 
could be shared among the nodes. The data stored on disk are 
made available to the CPU for processing through the mem-
ory, which requires a means of transferring the data through 
a communication channel such as memory bus and inter-node 
networking. If data are shared between the nodes, then coor-
dination between the processes running on different nodes is 
required to maintain a consistent state of the data. The three 
common architectures for distributed systems are9:

1. Shared nothing, in which each node in the cluster works 
independent of other nodes with no inter-dependence 
for memory or storage. If required, coordination among 
processes running on different nodes is accomplished by 
passing messages among them or by underlying distri-
buted system management software called middleware. 
An advantage of this configuration is that because of 
lack of dependence among different nodes, the cluster 
can scale indefinitely by simply adding more nodes to the 
cluster.

2. Shared memory, in which the nodes have access to a 
common memory that can be used for coordinating the 
processing tasks among the different nodes.

3. Shared disk, in which data processed by the different 
nodes are shared either through a central storage or by 
direct exchange with each other.

In distributed systems, the bandwidth of the communi-
cation channels used for sharing data and passing messages 
as well as the processing overhead of maintaining data in a 
consistent state can have a significant impact on the perfor-
mance of the system.9 Each of the three distributed system 
architectures employs a different strategy for managing pro-
cessing. The shared-nothing architecture has the advantage 
of minimizing network latency and process coordination for 
data consistency because of the independence of the nodes for 
memory and data.

Data storage and models. Efficient data storage, represen-
tation, and management is crucial for building a high perfor-
mance scalable system. Data storage devices can be connected 
to a computer in one of three different ways:

•	 Direct attached: Storage is attached directly to the com-
puter through an interface including Serial AT Attach-
ment (SATA) or Serial Attached SCSI (SAS).

•	 Network attached: Storage is attached to a local network, 
such as a LAN, and other devices in the network can 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Next generation distributed computing

99CanCer InformatICs 2014:13(s7)

access the storage device through interfaces such as Fiber 
Channel.

•	 Remote: Storage is physically located outside of the inter-
nal network and is accessed through the Internet as in 
cloud storage. Amazon Web Service, for example, pro-
vides cloud storage through their S3 service.10

Data required for active use are usually stored in “on-line” 
primary storage, which provides fast access and availability on 
demand. Data not requiring access for an extended period of 
time and that can be archived are usually stored on slower and 
relatively inexpensive “off-line” tertiary storage. For infrequent 
access, data can be stored in “near-line” secondary storage.11 
Arrangement of data storage among these tiers optimizes 
the storage cost without compromising ready availability of 
data for processing. Hierarchical storage management (HSM) 
software, such as IBM Tivoli,12 automatically manages the 
storage and movement of data in a tiered hierarchy of devices. 
Data storage, access, and transfer are particularly challeng-
ing in systems that have distributed storage and clients that 
require data access.

A data model is a logical, rather than a physical, repre-
sentation specifying the structure, types, and relationships 
among data elements. Applications can use data models to 
access data based on the logical representation without con-
cern for the physical storage location or media. For example, 
in a Relational Database Management System (RDBMS), the 
Structured Query Language (SQL) is used for data access and 
manipulation based on the relational data model.13 Specific 
data models, along with tools and Application Programming 
Interfaces (APIs) to manipulate the data, have been created 
for scientific computing. Two data models that have been 
used extensively by the scientific community are the Net-
work Common Data Form (NetCDF) and the Hierarchical 
Data Format (HDF15). Graph database models16,17 are used 
extensively for representing highly interconnected data. The 
Resource Description Framework (RDF18) provides a set of 
specifications for a graph data model for use on the web. The 
data elements are subject-predicate-object expressions called 
triples or triple stores.17 Each of the three components is a 
web resource represented by a Uniform Resource Identifier 
(URI). SPARQL19 is the standard querying language for an 
RDF triple store.

Higher level information about data is provided by meta-
data, which can be syntactic or semantic.20 Syntactic metadata 
provide information about the data structures, formats, and 
other physical characteristics of the data including file names 
and organizational hierarchy. Semantic metadata provide 
information about the meaning of the data elements particu-
larly in the context of the knowledge domain. Both syntactic 
and semantic metadata can range from simple to complex. At a 
simple level, syntactic metadata are used by file systems to man-
age file storage and access. At a complex level, they are used by 
programs and databases to define data structures and schemas 

to be used by applications for data queries, manipulation, and 
analysis. Semantic metadata at a simple level provide defini-
tions for data elements through naming classifications, data 
standards, and terminologies such as taxonomy, vocabulary, 
dictionary, and thesaurus.20 These can be used for effective 
data sharing, data integration, and interoperability among 
applications. More sophisticated semantic metadata, includ-
ing ontologies, provide complex representations of the data 
to include relationships to be used for knowledge inference.21 
The National Cancer Institute (NCI) has created a termino-
logy called NCI Thesaurus (NCIt22) specifically for cancer 
research, which contains clinical and research terms related to 
cancer. Concepts for drugs, therapies, and genes, among many 
others, that are contained in the NCIt include terms, codes, 
synonyms, and relationships among the concepts. There are 
more than 200,000 relationships among more than 55,000 
concepts, which can be used, among other things, for perform-
ing integrative analyses of data from different cancer research 
experiments.23,24 Several other thesauri are available for clini-
cal research including the Unified Medical Language Systems 
(UMLS) meta-thesaurus and the Systemized Nomenclature of 
Medicine Clinical Terms (SNOMED CT).25 Gene Ontology 
is one of the most widely used semantic metadata in genomics 
research, which evolves dynamically with increase in knowl-
edge about genes and proteins in eukaryotic cells.26

RDBMS13 has served as a predominant technology for 
data management. The hallmarks of an RDBMS are the ato-
micity, consistency, isolation, and durability (ACID27) proper-
ties. In these systems, the data are stored in a highly structured 
format subject to enforcement by a relational schema. An 
RDBMS is considered to be an Online Transaction Process-
ing system (OLTP28). These systems are characterized by 
frequent reads and updates, referred to as transactions, of a 
relatively small number of data records. The performance of 
an RDBMS generally degrades as the number of data records 
or data fields increases. A key development to address the 
limitation of RDBMS with respect to scalability is the intro-
duction of parallel databases using row based, also known as 
horizontal, partitioning.29 These databases distribute mutually 
exclusive sets of rows among the nodes of a cluster. The SQL 
query is applied to each partition on each of the nodes. The 
results of the partitioned queries are sent back to a single node 
to be merged to produce the final result. The RDBMS has 
been adopted for managing and querying GWAS data.30 An 
OLTP system is optimal for research projects that require a 
large number of small and simple queries, and frequent data 
updates. An On-line Analytical Processing (OLAP28) system 
on the other hand is optimal for projects requiring complex 
analytical queries but not frequent updates. The performance 
of an OLTP system is measured on the basis of its ability to 
maintain data consistency and integrity while maximizing 
the number of transactions per time unit. The performance of 
an OLAP system is measured on the basis of the throughput 
of the query and the corresponding response time.28 Data 
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warehouses are OLAP systems developed to aggregate large 
amounts of data from multiple sources. Because of the het-
erogeneous sources of data, the incoming data are typically 
cleaned and transformed before they are loaded into the sys-
tem. One of the key data warehouses in biomedical research is 
Informatics for Integrating Biology and the Bedside (i2B2)31,32 
developed under the sponsorship of National Center for Bio-
medical Computing. The most common use of i2B2 is to 
repurpose data from Electronic Medical Records (EMRs) to 
be combined with clinical and genomics data.

Multi-core computing. Until the early 2000s, most 
motherboards housed a single CPU with a single core for 
processing. Later CPUs with multiple cores were developed 
to overcome the computational limitation of the single core 
design. The multi-core architecture has the advantage of pro-
viding higher clock rates because data do not have to travel 
across chip sets.33 Computational tasks are typically scaled 
through manual or programmatic forking of tasks to multiple 
cores, or by writing multi-threaded applications using the 
Open Multi-Processing (OpenMP34,35) API.

High performance computing. Two widely used 
approaches for distributed computing over a cluster or grid 
of server nodes or workstations are message passing and 
batch queuing. These fall under the category of High Perfor-
mance Computing (HPC).36 Batch queuing systems simply 
distribute individual jobs as batches to the nodes. The job 
submission and management, and resource allocation are 
orchestrated by a batch submission engine such as the Simple 
Linux Utility for Resource Management (SLURM37). The 
most commonly used system for message passing is the Mes-
sage Passing Interface (MPI38). This can be considered as 
a MIMD shared nothing distributed memory architecture 
as memory is not shared among the nodes and communi-
cation is done strictly through message passing. The batch 
queuing approach typically does not require specialized pro-
gramming. MPI provides computational scaling at the cost 
of increased programming complexity. A number of bioin-
formatics applications developed for MPI-based distributed 
systems are listed in Table 1.

GPU computing. The GPU architecture is highly amenable 
to parallelized scientific computing.39,40 Development languages 
and APIs for General Purpose computing on GPU (GPGPU) 
include the Open Computing Language (OpenCL41,42), Com-
pute Unified Device Architecture (CUDA43), and Brook for 

GPU (BrookGPU44). The CUDA language is intended for 
GPGPU on devices manufactured by NVIDIA. OpenCL is 
a standard adopted by several vendors including NVIDIA and 
AMD. A number of bioinformatics applications developed for 
leveraging GPUs are listed in Table 2. A typical approach for 
scientific computing on a GPU is to copy data from the host 
(CPU) memory to the memory on the device (GPU). The cal-
culations are then carried out on the device after which the 
results are copied to the host. If the memory limitations of 
the device, relative to the size of the data, were to necessitate 
breaking up the data into smaller chunks, an overhead penalty 
is incurred because of repeated copies between the host and the 
device. Recent GPU card offerings provide larger amounts of 
memory, compared to early GPUs, rendering this technology 
now feasible for analysis of high-throughput data from NGS 
assays. For example, the NVIDIA K80 card45 consists of two 
GPUs collectively housing 24 GB of memory and 4,992 stream-
ing cores providing peak single- and double-precision floating-
point performance of 2.91 and 8.74 teraflops, respectively. The 
AMD FirePro W910046 card consists of a single GPU hous-
ing 16 GB of memory and 2,816 stream processors providing 
peak single- and double-precision floating-point performance 
of 5.24 and 2.62 teraflops, respectively. The GPU technology 
can be scaled further by installing multiple cards on the same 
motherboard.40

cloud computing. The ability to conduct scalable com-
puting requires the acquisition, installation, and ongoing 
management of a host of hardware and software resources. 
This may neither be a practically nor economically feasible 
proposition. Cloud computing has proven to be a powerful 
alternative for researchers to conduct scalable computing on 
a virtual computing infrastructure hosted and managed by a 
service provider. The infrastructure may consist of hardware 
resources including storage, CPU or GPU nodes, or software 
resources including middleware, applications and develop-
ment frameworks provided to the researcher, who can pro-
vision the resources elastically depending on the research 
needs.47 There is no standard definition for cloud comput-
ing. The National Institute of Standards and Technology 
(NIST) defines cloud computing as a model48 with five essen-
tial characteristics. Resources can be provisioned on demand 
by the researcher without direct interaction with the service 
provider (On-demand self-service). The computing resources 
are accessible to the researcher through a variety of clients via 

Table 1. mPI-based applications for bioinformatics.

CATEGoRY APPLICATIoN DESCRIPTIoN

alignment mpiBLast105 Implementation of BLast on mPI for parallel execution.

ClustalW-mPI106 Implementation of Clustal-W, a multiple alignment tool, on mPI.

mrna107 short read alignment of nGs read.

mrBayes 3108 Bayesian phylogenetic analysis using mPI for parallelizing markov chain monte Carlo convergence.

Proteomics Parallel tandem109 Implementation of X!tandem for ms/ms spectra search against a protein database.
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a network (Broad network access). The resources are pooled by 
the service provider so as to be offered to multiple users with 
heterogeneous needs (Resource pooling). The resources can be 
provisioned on demand by the researcher depending on the 
demand (Rapid elasticity). The usage of the resources, in terms 
of storage or CPU cycles used, can be monitored and quanti-
fied in a transparent manner by both the researcher and ser-
vice provider (Measured service). Cloud computing offers three 
service models.48 The Software as a Service (SaaS) model pro-
vides software applications hosted and managed by the service 
provider to be used by the researcher. The Platform as a Ser-
vice (PaaS) model enables custom software application devel-
opment and deployment by the researcher using programming 
languages, software libraries, and tools hosted and managed 
by the service provider. The Infrastructure as a Service (IaaS) 
model provides storage, computing and networking resources 
to the researcher for deployment of operating systems, appli-
cations, and development toolkits. The Amazon Elastic Com-
pute cloud (EC2) was one of the early commercial offerings for 
cloud computing. Other current commercial offerings include 
Google Cloud, IBM Cloud, and Microsoft Azure.

Several bioinformatics applications including BLAST, 
genome assembly and alignment have been adapted for cloud 
computing. Some of these are listed in Table 3. Generally, 
these applications require the user to provision the computing 

resources on the cloud, and manage the application configuration 
and deployment. Several cloud manager tools have been devel-
oped enabling users to easily provision resources on the cloud 
and deploy one or more tools and data to work as a single unit. 
These tools in effect provide a “turnkey” solution to a complete 
bioinformatics data analysis platform. Cloudman49,50 is a man-
ager initially developed to facilitate the deployment of the Gal-
axy platform51 for NGS data analysis on the cloud. It enables 
packaging of the data along with the analysis tools. Other cloud 
management software include StarCluster52 and elasticHPC.53

The Bio2RDF54 project facilitates integration across several 
databases by creating the datasets in a common RDF18 format 
to be pushed to the cloud for access. The data from the TCGA 
project are available as “Linked Data”55,56 and can be queried 
using SPARQL.19 The National Centers for Biomedical Ontol-
ogy (NCBO) has created BioPortal57 for review and updates of 
various ontologies available to biomedical researchers. One of 
the key advantages of cloud computing is the provision of the 
infrastructure to make these federated biomedical data available 
to the research community for integrated data analysis.

Hadoop for scalable computing and data 
Management

background and core architecture. Figure 1 illus-
trates the two core components of the Hadoop architecture 

Table 2. GPU applications for bioinformatics.

CATEGoRY APPLICATIoN DESCRIPTIoN

alignment CUsHaW110 short read alignment based on the Burrows-Wheeler transform (BWt111) and the  
ferragina-manzini index112

soaP3-dp113 short read alignment based on BWt with native Bam support

Proteomics fastPass114 spectra matching using spectral library searching implemented in CUDa

tempest115 spectral matching using GPU-CPU

motif Discovery GPUmotif116 Motif scan and de novo motif finding using GPU

epigenetics GPU-Bsm117 GPU based tool for mapping whole genome bisulfite sequencing reads and estimating  
methylation levels

systems Biology  
(see ref.118 for a review)

aBC-sysBio119 simulate models written in the systems Biology markup Language (sBmL120) format

PmCGPU121,122 Parallel simulators for membrane Computing on the GPU

Genome-wide Inference permGPU123 Permutation resampling analysis for binary, quantitative, and censored time-to-event outcomes
 

Table 3. Cloud-based applications for bioinformatics.

CATEGoRY APPLICATIoN DESCRIPTIoN

alignment CloudBrush124 Distributed de novo genome assembler based on mapreduce which can be run on  
a cloud.

CloudBurst74 short read mapping software for Hadoop based on the rmaP125 mapping tool which  
can be run on a cloud.

CloudBLast126 mapreduce based BLast which can be run on a cloud.

Proteomics Integrated Proteomics Pipeline (IP2)127 Proteomics data analysis pipeline also available on amazon Web service.

ProteoCloud128 Proteomics computing pipeline system on the cloud for peptide and protein  
identifications available on Amazon Web Service.
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as two main layers.58 The MapReduce layer, shown above 
the dashed line, is responsible for computation and resource 
management while the Hadoop Distributed File System 
(HDFS) layer, shown below the dashed line, is responsi-
ble for storage and data management. Hadoop follows the 
Master–Slave architecture for managing computation and 
data in a distributed environment. The master node sched-
ules and coordinates the computing tasks among the slave 
nodes. In a Hadoop system, the master node is referred to 
as the JobTracker while the slave nodes are referred to as 
TaskTrackers. The JobTracker also provides the software 
infrastructure for managing distributed computing such as 
resource scheduling and recovery from job failures. The mas-
ter process for the HDFS layer is called the Name Node and 
it manages the metadata loaded and distributed to the slave 
nodes. The latter are called the Data nodes. One of the draw-
backs in earlier versions of Hadoop was the tight coupling of 
the MapReduce engine and distributed computing services 
provided by the JobTracker.

The computational layer of Hadoop is an implementation 
of the MapReduce algorithm.59 Any implementation of this 
algorithm requires the provision of two user-defined func-
tions, Map and Reduce, as its name suggests. The primary 
task of the Map function is to generate a set of intermediate 
pairs of keys and values. Before these pairs are passed on to 
the Reduce function, they are binned according to the keys. 
The Reduce function then is applied to each bin. The algo-
rithm is often illustrated using the example of counting the 
occurrence of each word in a text file from the MapReduce 
paper.59 Consider the example illustrated in Figure 2. The text 
file in this example consists of three sentences as illustrated 
under the Input. The file is split up along the three sentences 
each of which is passed on to the Map function. In this stage, 
the words are treated as the keys. The number of times each 
word appears in the sentence is the value corresponding to the 
key. Within each of the three bins in this stage, the keys are 
paired up with their corresponding value. In the next stage, 
Shuffle and Sort, the pairs from the previous step are grouped 
into bins by the keys. Each bin is passed on to the Reduce 
function, which adds the values from each pair therein. This 

effectively reduces the (key, value) pairs within each bin to a 
single (key, value) pair. Finally, these reduced pairs are passed 
on as output.

Hadoop manages the distribution of files on individual 
nodes through the HDFS. Since the data are spread over a set 
of nodes on a network, all the complications of network pro-
gramming, such as node failure, have to be taken into account. 
The design of HDFS facilitates the key principles of Hadoop, 
namely storage and management of huge amounts of data on 
a cluster of commodity hardware with fast access. To enable 
these objectives, HDFS stores very large files as blocks rather 
than files and provides redundancy for the data by replicating 
each block. The metadata for the files is stored centrally in the 
Name Node, which uses this information to reconstruct the 
files from the blocks. HDFS also works on the master–worker 
pattern where the Name Node is the master server and Data 
Nodes the workers. The Name Node, through the metadata, 
manages the file system namespace and the information about 
which Data Node has the blocks for each of the files. A Map 
task receives blocks of data from the Data Node and works on 
one block at a time.60

Hadoop ecosystem. Decoupling of the MapReduce and 
the HDFS layers enables other tools to be built as higher level 
abstractions in other languages. Several tools have been devel-
oped to convert user applications written for these tools to 
MapReduce jobs for deployment and execution in a Hadoop 
cluster. Additionally, tools have been developed to facilitate 
pushing data in standard formats, including columnar data, 
into the HDFS layer whereby relieving the user of the burden 
of working with the native HDFS file format. Another major 
milestone in decoupling of these two layers was implemented 
by the introduction of the Yet Another Resource Negotiator 
(YARN61) in 2013.62 YARN decouples the distributed com-
puting resource management from the MapReduce job execu-
tion engine and delegates many job flow control and scheduling 
functions to the individual application components. This 
refinement of the core architecture is expected to encourage 
wider adoption by allowing other computing paradigms to be 
implemented in Hadoop. The collection of tools built around 
the core infrastructure is referred to as the Hadoop ecosystem. 
A representative subset of tools in the ecosystem is shown in 
Figure 3. We provide additional details on some of the key 
tools next.

HBase. The records in a traditional RDBMS are stored 
in a row format. This is generally optimal when the goal is 
to query a relatively small number of records (rows) consist-
ing of large number of fields (columns).63 For certain applica-
tions, the goal is to query a small subset of columns from a 
large number of records. For these, it is preferable to store 
the data in column format so as to increase performance of 
the queries. HBase64 is a column-oriented63 database built 
on top of HDFS to provide high scalability and performance 
in a distributed computing environment. It is modeled after 
Google’s Big Table project.65 HBase, unlike HDFS, provides 

Client

Master

Job tracker

Name node

Slaves

Data node

Data node

Task tracker

Task tracker

figure 1. Core components of the Hadoop architecture. adapted from 
ref.58
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real time read and write capability with random access for 
large-scale data distributed in a cluster. Linear scaling is 
achieved in HBase by simply adding additional nodes to the 
cluster. Tables in HBase can be large and sparsely populated 
with billions of rows and millions of columns. Columns 
can be added dynamically to allow for changes in the data 
representation.60

Hive. Data in Hadoop are natively stored as files in HDFS. 
This structure does not enable convenient use of higher level 
languages for data queries. Apache Hive66 offers capabilities 
of a data warehouse by providing the ability to represent data 
as tables similar to those of a relational database.67 To this 
end, it provides the SQL-like language HiveQL67 to convert 
queries into a series of MapReduce jobs for execution in a 
Hadoop cluster. Within a traditional RDBMS, data schema 
constraints are enforced at load time. Hive, on the other hand, 
employs “schema-on-read,” which checks the constraints only 
when data are read by virtue of a query. This approach is opti-
mal for loading large-scale data.60

Pig. Processing large datasets in Hadoop may require a 
series of data transformation steps that may be complicated 
to implement as Map and Reduce functions.60 Apache Pig68 
provides higher level data structures and data transforma-
tion functions to facilitate the programming of these tasks. 
Pig includes the Pig Latin69 programming language and an 
execution environment for running the programs.60 The Pig 
execution engine converts the user written operations into 
MapReduce jobs at runtime. Additionally, Pig provides a set 
of built-in functions for a number of tasks including math and 
string processing. These can be modified or augmented with 
user-defined functions.68

Avro. In distributed computing systems, including 
Hadoop, data structured as objects are transferred on the 
network among different nodes as streams of bytes using the 
process of serialization. The process of converting the byte 
streams back to structured data is called deserialization.60,70 
These two processes are also required for writing structured 
data to physical storage devices. Efficiency of these processes 
can have an impact on the performance of a distributed appli-
cation.60 Apache Avro71 enables efficient implementation of 
serialization and deserialization for Hadoop-based distrib-
uted applications by providing an API for several program-
ming languages. Serialization frameworks require a schema 
for representing data structures. Avro uses the widely used 
JavaScript Object Notation (JSON72) format71 to provide por-
tability across a number of languages.

Starfish. The core components of Hadoop, namely the 
MapReduce execution engine and the HDFS distributed 
storage, are extensible through their pluggable architecture. 
In addition, there are various procedural and declarative 
interfaces for interaction with Hadoop. Such an architecture 
provides great flexibility for extending and building distrib-
uted applications in Hadoop. At the same time, it creates an 

figure 2. Typical MapReduce algorithm workflow.
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figure 3. representative subset of the Hadoop ecosystem.
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enormous challenge for performance tuning, which is required 
for optimal use of resources. In order for the system to adapt 
to changing user needs and system workloads, several system 
parameters require tuning. There are over 190 configuration 
parameters that control the running of MapReduce jobs,73 
the default values of which may not be optimal in all cases. 
Manually tuning the parameters for performance optimiza-
tion requires expertise and can be a daunting task of trial and 
error. Starfish is a self-tuning system built within the architec-
ture of Hadoop that can be used for automatic or “self ” tun-
ing.73 It enables applications and users of Hadoop to get good 
performance throughout the life cycle of the data processing 
jobs without the need for manual performance tuning. The 
performance tuning is not limited to a single MapReduce job, 
and can be extended to workflows and workloads consisting of 
multiple MapReduce jobs.

bioinformatics applications based on Hadoop. Cloud-
burst, an application for mapping short reads to a reference 
genome and released in 2009, was one of the first bioinfor-
matics applications developed using Hadoop.74 Since then 
several other applications have been developed.75 Many of 
these were developed for the purpose of conducting short read 
alignments, while some are for further downstream process-
ing such as RNA-seq and variant calling. In addition, some 
general purpose applications have been developed based on 
the Hadoop ecosystem that can be used for developing custom 
bioinformatics applications. Table 4 summarizes a number of 
applications useful for cancer research. Detailed information 
regarding five other applications is also provided.

Hadoop-BAM. Hadoop-BAM is an application enabling 
access to the contents of a BAM file76 within HDFS by virtue 
of providing an API as a Java library. BAM files are treated as 
Hadoop input and output formats. Picard77 is a full-featured 
set of tools for processing NGS data. It provides extensive sup-
port for processing reads stored in the Sequence Alignment/
Mapping (SAM) or BAM formats. Hadoop-BAM is built on 
the top of the Picard for accessing and manipulating BAM 
files. This feature facilitates the Picard API to be used directly 
within Hadoop. By distributing the processing of BAM files 
across a Hadoop cluster, Hadoop-BAM enables significant 

gains in processing time as well as linear scalability with the 
number of nodes in a cluster.76

SeqPig. SeqPig78 is an extension of the Apache Pig 
scripting language for development of analysis pipelines 
for manipulation and analysis of NGS data on Hadoop. 
SeqPig scripts are converted to MapReduce tasks to operate 
on sequencing data stored in HDFS. It leverages Hadoop-
BAM76 to provide import and export functions for common 
NGS data formats including FASTQ , FASTA, SAM, and 
BAM. In addition to input and output functionality, it offers 
facilities for computing base-level statistics and pile-up 
among other things.

RHIPE. R79 is an open source environment for statis-
tical computing and graphics widely used by the research 
community. Its powerful analytical and graphical facilities 
are extended by a large library of user-contributed exten-
sion packages hosted by the Comprehensive R Archive 
Network (CRAN80). The Bioconductor project81 provides a 
large collection of extension packages for genomic research. 
R Hadoop Integrated Programming Environment (RHIPE) 
is an R extension package implementing the Divide and 
Recombine (D&R) method on a Hadoop cluster for paral-
lel statistical computation.82 The D&R algorithm divides the 
data into subsets on which the statistical or computational 
procedure of interest is applied. The results from the subsets 
are then recombined. Hadoop is used to orchestrate these two 
steps while providing resource and fault tolerance manage-
ment. BlueSNP83 is an R extension package developed for 
GWAS on a Hadoop cluster utilizing the D&R framework 
provided by RHIPE. For the statistical analysis, in addi-
tion to the tests provided, users can define and implement 
their own tests as R functions. BlueSNP is especially use-
ful for performing computationally intensive statistical tests 
for GWAS including large-scale inference using permutation 
resampling and eQTL analyses. Performance benchmark-
ing of BlueSNP suggested linear scaling in proportion to the 
number of nodes.83

Hydra. Mass spectroscopy based assays used in proteomics 
and metabolomics research generate raw data rivaling in size of 
those generated by NGS assays. The identification of peptide 

Table 4. Bioinformatics applications for Hadoop.

CATEGoRY APPLICATIoN DESCRIPTIoN

alignment and assembly  
Genome assembly

Jnomics88 Command line driven alignment on Hadoop cluster for a number of alignment software

Contrail de novo assembly without reference genome

Distmap129 Perl tool, works with 9 different aligners, very easy client-only installation

seal130 alignment tool based on Pydoop (a python based aPI for developing Hadoop  
applications131)

rna-seq eoulsan132 In additional to alignment, complete rna-seq pipeline

myrna133 Complete rna-seq pipeline, from alignment to differential expression, written in  
Perl, integrates r79 and Bioconductor81 for downstream statistical analysis

Variant Calling Crossbow134 Performs alignment and snP genotyping
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sequences from the spectra84 is one of the major computational 
challenges in this field. This is accomplished by matching the 
spectra against known sequences in a large database. Most 
matching algorithms developed for this problem are amenable 
to parallelization. Hydra,85 an open source Hadoop applica-
tion, performs scalable peptide database search. The Each 
query is based on matching the mass to charge ratio score of 
the source spectra against those of the target peptides in the 
database. The latter is generated once up front and distributed 
to HDFS so as to be reused for all matching tasks.

Hadoop cluster setup
In this section, we outline a POC Hadoop cluster to illustrate the 
design and implementation of a basic NGS data pre-processing 
pipeline for RNA Sequencing data. A Hadoop cluster requires 
a minimum of two nodes for a distributed architecture. It can 
be set up on a single node in a “pseudo-distributed” mode to 
be primarily used for learning and testing purposes. The POC 
was designed using the FlexPod product line, which is an inte-
grated commercial distributed computing system developed by 
Cisco and Netapp.86 Each of the eight nodes in the cluster was 
a dual eight-core CPU server, providing 16 cores per node, with 
128 GB RAM. One of the eight nodes was dedicated as the 
Name Node and another as the JobTracker. The other six nodes 
served as worker nodes, each functioning as a TaskTracker 
and a Data Node. The combined internal storage across the 
eight nodes was 40 TB and used for HDFS storage. A Netapp 
E-series storage server with 100 TB capacity was included in 
the POC. Since Hadoop works most efficiently with local stor-
age rather than network storage, to avoid the latency of moving 
data during a MapReduce job, the latter was primarily used as 
a staging area for large datasets. The process of transferring  

data from the staging area to HDFS for processing is called 
ingestion. The nodes were rack mounted and connected with a 
Cisco Fabric Interconnect 10 Gig switch. The latter was con-
nected to an internal 1 Gig LAN. It should be noted that since 
most of the communication during the execution of Hadoop 
jobs is among the nodes, the network throughput during job 
processing is not limited by the bandwidth of LAN and will 
take advantage of the higher bandwidth of the switch. The 
external storage server communicates with the cluster using 
the Fiber Channel over Ethernet (FCoE) protocol. Cluster 
management for the Flexpod line is carried out using the UCS 
Manager, which is cluster administrative software providing 
features such as addition or removal of nodes. The design of the 
POC is illustrated in Figure 4.

The POC was designed to provide a scalable computing 
solution for a representative basic three-stage data analysis 
pipeline for cancer research using high-throughput sequenc-
ing assays. The primary stage is devoted to initial processing 
of the raw reads. These, typically stored using the FASTQ 
format, are aligned against a reference genome. If a reference 
genome is not available or a custom reference is needed, de novo 
genome assembly may be performed at this stage. The result-
ing data are captured in the SAM file87 format. For efficient 
downstream processing, the file size is reduced by converting 
to a BAM file, a binary compressed version of the SAM file. 
In the second stage, the aligned reads are further processed 
to obtain summary information including variant calls for 
DNA sequencing, or gene or isoform level counts for RNA 
sequencing data. The third stage is devoted to downstream 
statistical analyses including differential expression, eQTL, 
and feature discovery analysis. The pipeline is conceptualized 
in Figure 5.

LAN (1 Gig E)

Fabric interconnect (10 Gig E switch)

Nexus fabric extender

10 Gig E

FCoE

Node 1: NameNode/Sec. NN

Node 2: JobTracker

Node 3: TaskTracker/DataNode

• • •

NetApp E-Series

Node 8: TaskTracker/DataNode

UCS Manager

figure 4. Cisco flexPod cluster architecture.
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A preliminary performance benchmarking for the pri-
mary data analysis stage was carried out for comparing the 
FASTQ alignment performance on a single node with that 
on the POC Hadoop cluster. The single node was a Linux 
server with similar Alignment of FASTQ files on the 
Hadoop cluster done using Jnomics88 and bowtie289 on the 
single node. FASTQ files of size 4 GB, 9 GB, and 65 GB 
were considered.

discussion
To address the computational needs of a given research prob-
lem requiring a scalable computational framework, Hadoop 
is neither the exclusive nor necessarily always the optimal 
solution. Some of these are geared toward specific applica-
tion areas while others are designed to provide a more generic 
framework. They can be used as an alternative to or in concert 
with Hadoop. The Genome Analysis Toolkit (GATK90,91) is a 
powerful and feature-rich framework for NGS variant discov-
ery. It employs a custom MapReduce framework along with 
CPU threading features to facilitate variant discovery and 
calling. GATK uses aligned and pre-processed reads using 
the BAM87 format as input and returns the results, including 
annotation, quality score, number of variant base calls, depth, 
and genotype call in the Variant Calling Format (VCF92). 
The input BAM files can be produced using existing Hadoop 
applications for processing raw reads and then processed by 
GATK.

Genomics research in cancer often involves repeated 
application of computationally intensive statistical inference 
methods or learning algorithms on the same dataset. A per-
formance penalty is incurred if data are written to disk after 
each job and reloaded from the disk into memory for the next. 
Spark93 is a system for scalable computing that replaces the 

MapReduce layer of Hadoop while leveraging its HDFS layer. 
Spark enables memory resident cyclic data flow to optimize 
performance.94,95 The compute tasks are carried out on Resil-
ient Distributed Datasets (RDD96). An RDD is a read-only 
collection of objects, which can be partitioned across nodes in 
a cluster. The RDDs are cached in memory across the cluster 
nodes and can be re-used when needed in parallel without the 
need for writing the data to disk between individual jobs. It 
also provides comprehensive fault tolerance.

In case a partition is lost, it can be rebuilt from the infor-
mation in the handle to the RDD about how the partition 
was built in the first place. The RDDs are cached in memory 
across the cluster nodes and can be re-used in MR jobs exe-
cuted in parallel without the need for materializing the data 
in the RDDs to disk between individual jobs. Spark natively 
supports three programming languages, Scala, Python, and 
Java, for development and provides a library of machine learn-
ing algorithms (MLib). This library includes function for basic 
statistics methods, including summary statistics and random 
number generation, class discovery methods (eg, k-means clus-
tering and principal components analysis97), and supervised 
learning methods (eg, support vector machines, decision tress, 
and random forests98). It also provides numerical algorithms for 
matrices (eg, singular value decomposition99) and optimization 
(eg, gradient descent and BGFS100). This library can be used as 
a tool kit for development of a scalable pipeline for downstream 
analyses. It should be noted that the HAMA project101 pro-
vides matrix operation capabilities for Hadoop. Currently, the 
most widely used format for storing aligned reads from NGS 
assays is the SAM or its binary counterpart BAM. While there 
are Hadoop applications supporting this format, as previously 
discussed, this format may not be optimally designed for dis-
tributed computing. ADAM102 provides a set of data formats 

POC

Primary (Alignment):
BWA
Bowtie

Secondary (Post-Alignment):
Count (R/Bioconductor)
Variant Calling (GATK)

FastQ SAM BAM Count
VCF

Tertiary (Statistical Analysis):
Differential Expression
Associations

Downstream Analytics:
Systems Biology
Databases – query

Diff. Expr.
Sig. Assoc.

Data Integration Data Integration Data Integration Data Integration

Data Source

Data Source

figure 5. Genomics data analysis pipeline.
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for specifying large-scale NGS data along with a set of APIs 
for accessing and processing the data efficiently:

•	 A data format and access API, built on top of Apache 
Avro, for transforming the general purpose genomic data 
formats into the ADAM format and Apache Parquet for 
accessing the data.

•	 A data transformation API, built using the Scala pro-
gramming language and implemented on Apache Spark, 
for transforming and working with the data specified in 
the ADAM format.

Hadoop is not a turnkey technology. To gauge the per-
formance of the POC, we considered short read sequence files 
of size 4, 9, and 65 GB, respectively. The maximum gain in 
performance was observed for the medium sized files (21 versus 
50 minutes with a relative gain of 58%). The gain for the large 
size files was modest (227 versus 241; a relative gain of 6%), 
whereas for the small sized files, a degradation in performance 
was observed (25 versus 16 minutes; a relative loss of 56%). This 
degradation may be attributed to the startup overhead for oper-
ating a Hadoop cluster. It also suggests that tuning of opera-
tional parameters may be required to optimize performance 
for this particular size dataset. For the large size data files, the 
startup overhead is likely to be irrelevant. To increase perfor-
mance, tuning or addition of more nodes will be required.

The computational facilities of Hadoop can be extended 
using other hardware and software technologies. For example, 
GPUs can be used in the compute nodes of a Hadoop cluster 
to provide a second level of parallelization. JCuda,103 a java 
binding for CUDA, can be used to communicate with pro-
grams written in CUDA.104

conclusions
Considering the unrelenting onslaught of massive amounts of 
genomics, clinical, and EHR data, Hadoop provides a power-
ful computational framework for integrative data management 
and analysis in cancer research. While a number of bioinfor-
matics tools with applications for cancer research have been 
developed on the basis of this technology, further refinement 
and development of de novo tools leveraging the collective 
spectrum of the Hadoop ecosystem is needed to reap its full 
potential. As with any other system for distributed computing, 
Hadoop is not a turnkey system. Developing a highly opti-
mized solution using this technology requires understanding of 
computer algorithms, specifically for writing custom Map and 
Reduce functions, and understanding of the interaction among 
hardware and software components. Other technologies for 
scalable and distributed computing, including GPU, MPI, and 
Spark, are available. These can be used in concert with or as 
an alternative to Hadoop depending on the research problem 
at hand. The choice of a distributed system must be carefully 
evaluated during the early design stage and be periodically 
reevaluated throughout the course of the research.
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