
97Cancer Informatics 2014:13(S7)

Open Access: Full open access to
this and thousands of other papers at
http://www.la-press.com.

Cancer
Informatics

Supplementary Issue: Array Platform Modeling and Analysis (B)

Introduction
Recent advances in high-throughput technologies, including
next generation sequencing (NGS), mass spectrometry (MS),
and imaging assays and scans, are providing unprecedented
capabilities for cancer researchers to interrogate biological
systems of interest, while creating tremendous challenges
with respect to data management, access, and analysis. The
Cancer Genome Atlas (TCGA) project,1 for example, cur-
rently provides germline and tumor DNA-sequencing,
RNA-sequencing, methylation, and imaging data from
thousands of patients across multiple solid tumor and hema-
tologic malignancies. Consequently, cancer researchers are
faced with the formidable task of managing and integrating
massive amounts of data, produced in structured as well as

unstructured formats, to be positioned to use this treasure
trove of data to push the scientific envelope. The requisite
analyses are not confined to traditional assessment of differ-
ential expression but extend to integrative genomics including
analysis of expression quantitative trait loci (eQTL2) linking
DNA and RNA sequencing data.

In many cases, the data volume, velocity, and variety3
generated by these high-throughput platforms have collec-
tively rendered the traditional single- and cluster-farm com-
puting model, which was employed with great success in the
microarray and genome-wide association studies (GWAS) era,
technologically obsolete. Recent advances in computational
technologies, especially distributed computing for “Big Data”,
such as Hadoop, have shown great potential as technological

Next Generation Distributed Computing for Cancer Research

Pankaj Agarwal1 and Kouros Owzar1,2

1Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA. 2Department of Biostatistics and Bioinformatics, Duke University
Medical Center, Durham, NC, USA.

Abstract: Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and
angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting infor-
matics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastruc-
ture, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed
computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform,
namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed
description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for
performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number
of other current technologies for distributed computing.

keywords: cancer, informatics, hadoop, high performance computing, gpu, cluster, cloud computing, big data, data storage, data management, scalable
computing, NGS, genomics

SUPpLEMENT: Array Platform Modeling and Analysis (B)

Citation: Agarwal and Owzar. Next Generation Distributed Computing for Cancer Research. Cancer Informatics 2014:13(S7) 97–109 doi: 10.4137/CIN.S16344.

Received: August 19, 2014. ReSubmitted: January 05, 2015. Accepted for publication: January 06, 2015.

Academic editor: J.T. Efird, Editor in Chief

TYPE: Review

Funding: Authors disclose no funding sources.

Competing Interests: Authors disclose no potential conflicts of interest.

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0
License.

Correspondence: p.agarwal@duke.edu

Paper subject to independent expert blind peer review by minimum of two reviewers. All editorial decisions made by independent academic editor. Upon submission manuscript was
subject to anti-plagiarism scanning. Prior to publication all authors have given signed confirmation of agreement to article publication and compliance with all applicable ethical and
legal requirements, including the accuracy of author and contributor information, disclosure of competing interests and funding sources, compliance with ethical requirements relating to
human and animal study participants, and compliance with any copyright requirements of third parties. This journal is a member of the Committee on Publication Ethics (COPE).
Published by Libertas Academica. Learn more about this journal

http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com/journal-cancer-informatics-j10
http://dx.doi.org/10.4137/CIN.S16344
mailto:p.agarwal@duke.edu

Agarwal and Owzar

98 Cancer Informatics 2014:13(S7)

solutions for addressing the challenges of the data deluge in
next generation cancer research.

This paper provides an overview of scalable and dis-
tributed computing technologies with specific emphasis
on the widely used open source Hadoop project. The pre-
sentation is organized as follows. In the next section, we
provide an overview of the elements of scalable computing
systems and provide a number of examples. Afterward, we
provide an introduction to Hadoop as a full-featured dis-
tributed system for scalable computing and data storage and
management. This section also includes an overview of the
Hadoop ecosystem and specific examples of bioinformat-
ics applications leveraging this technology. In the section
that follows, we outline a proof-of-concept (POC) cluster
to illustrate the design and implementation of a basic NGS
data pre-processing system based on Hadoop. In the Discus-
sion, we consider other available and widely used systems for
distributed computing that could be used as an alternative to
or in concert with Hadoop depending on the specific cancer
informatics challenge at hand.

Scalable Computing Systems
Background. Computing models. Broadly speaking, com-

putational systems can be grouped into two categories (see for
example Refs.4,5):

1.	 Heterogeneous systems: These are typically single node
workstations or servers for which computational power
is scaled by upgrading or adding additional Central Pro-
cessing Units (CPUs) or memory along with other com-
ponents including Graphics Processing Units (GPUs) or
Many-in-Core co-processors.

2.	 Homogeneous distributed systems: Another way to scale
computation is by connecting several computers. If the
computers are connected within the same administrative
domain, the collective is referred to as a compute cluster.
If connected across networks and administrative domains,
it is referred to as a computer grid. The individual comput-
ers in the collective are called nodes. Scaling a cluster or
grid is typically accomplished by adding nodes rather than
adding components to the individual nodes.

Scaling of computation is accomplished through task or
data parallelization.6,7 In task parallelization, a computational
task is divided into several tasks to be run in parallel on the
same dataset and the results are combined. For large datasets,
this approach is often not feasible as the data may not fit into
memory. In data parallelization, the data are divided into
smaller sets and the same processing is applied to each subset
after which the results are combined.

Traditionally only a single task or instruction could
be carried out on one piece of data and the related CPU
architecture is called Single Instruction Single Data (SISD8).
In order to enable parallelization, other architectures have

been developed. These include Single Instruction Multiple
Data (SIMD8), which allows the same instruction or process-
ing to be applied to different datasets, or Multiple Instruction
Multiple Data (MIMD8) in which multiple instructions can
be applied to different datasets.

In a distributed system, processing is done by the CPU
in each of the nodes. Although the CPUs of the individual
nodes are independent of each other the memory and storage
could be shared among the nodes. The data stored on disk are
made available to the CPU for processing through the mem-
ory, which requires a means of transferring the data through
a communication channel such as memory bus and inter-node
networking. If data are shared between the nodes, then coor-
dination between the processes running on different nodes is
required to maintain a consistent state of the data. The three
common architectures for distributed systems are9:

1.	 Shared nothing, in which each node in the cluster works
independent of other nodes with no inter-dependence
for memory or storage. If required, coordination among
processes running on different nodes is accomplished by
passing messages among them or by underlying distri
buted system management software called middleware.
An advantage of this configuration is that because of
lack of dependence among different nodes, the cluster
can scale indefinitely by simply adding more nodes to the
cluster.

2.	 Shared memory, in which the nodes have access to a
common memory that can be used for coordinating the
processing tasks among the different nodes.

3.	 Shared disk, in which data processed by the different
nodes are shared either through a central storage or by
direct exchange with each other.

In distributed systems, the bandwidth of the communi-
cation channels used for sharing data and passing messages
as well as the processing overhead of maintaining data in a
consistent state can have a significant impact on the perfor-
mance of the system.9 Each of the three distributed system
architectures employs a different strategy for managing pro-
cessing. The shared-nothing architecture has the advantage
of minimizing network latency and process coordination for
data consistency because of the independence of the nodes for
memory and data.

Data storage and models. Efficient data storage, represen-
tation, and management is crucial for building a high perfor-
mance scalable system. Data storage devices can be connected
to a computer in one of three different ways:

•	 Direct attached: Storage is attached directly to the com-
puter through an interface including Serial AT Attach-
ment (SATA) or Serial Attached SCSI (SAS).

•	 Network attached: Storage is attached to a local network,
such as a LAN, and other devices in the network can

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Next generation distributed computing

99Cancer Informatics 2014:13(S7)

access the storage device through interfaces such as Fiber
Channel.

•	 Remote: Storage is physically located outside of the inter-
nal network and is accessed through the Internet as in
cloud storage. Amazon Web Service, for example, pro-
vides cloud storage through their S3 service.10

Data required for active use are usually stored in “on-line”
primary storage, which provides fast access and availability on
demand. Data not requiring access for an extended period of
time and that can be archived are usually stored on slower and
relatively inexpensive “off-line” tertiary storage. For infrequent
access, data can be stored in “near-line” secondary storage.11
Arrangement of data storage among these tiers optimizes
the storage cost without compromising ready availability of
data for processing. Hierarchical storage management (HSM)
software, such as IBM Tivoli,12 automatically manages the
storage and movement of data in a tiered hierarchy of devices.
Data storage, access, and transfer are particularly challeng-
ing in systems that have distributed storage and clients that
require data access.

A data model is a logical, rather than a physical, repre-
sentation specifying the structure, types, and relationships
among data elements. Applications can use data models to
access data based on the logical representation without con-
cern for the physical storage location or media. For example,
in a Relational Database Management System (RDBMS), the
Structured Query Language (SQL) is used for data access and
manipulation based on the relational data model.13 Specific
data models, along with tools and Application Programming
Interfaces (APIs) to manipulate the data, have been created
for scientific computing. Two data models that have been
used extensively by the scientific community are the Net-
work Common Data Form (NetCDF) and the Hierarchical
Data Format (HDF15). Graph database models16,17 are used
extensively for representing highly interconnected data. The
Resource Description Framework (RDF18) provides a set of
specifications for a graph data model for use on the web. The
data elements are subject-predicate-object expressions called
triples or triple stores.17 Each of the three components is a
web resource represented by a Uniform Resource Identifier
(URI). SPARQL19 is the standard querying language for an
RDF triple store.

Higher level information about data is provided by meta-
data, which can be syntactic or semantic.20 Syntactic metadata
provide information about the data structures, formats, and
other physical characteristics of the data including file names
and organizational hierarchy. Semantic metadata provide
information about the meaning of the data elements particu-
larly in the context of the knowledge domain. Both syntactic
and semantic metadata can range from simple to complex. At a
simple level, syntactic metadata are used by file systems to man-
age file storage and access. At a complex level, they are used by
programs and databases to define data structures and schemas

to be used by applications for data queries, manipulation, and
analysis. Semantic metadata at a simple level provide defini-
tions for data elements through naming classifications, data
standards, and terminologies such as taxonomy, vocabulary,
dictionary, and thesaurus.20 These can be used for effective
data sharing, data integration, and interoperability among
applications. More sophisticated semantic metadata, includ-
ing ontologies, provide complex representations of the data
to include relationships to be used for knowledge inference.21
The National Cancer Institute (NCI) has created a termino
logy called NCI Thesaurus (NCIt22) specifically for cancer
research, which contains clinical and research terms related to
cancer. Concepts for drugs, therapies, and genes, among many
others, that are contained in the NCIt include terms, codes,
synonyms, and relationships among the concepts. There are
more than 200,000 relationships among more than 55,000
concepts, which can be used, among other things, for perform-
ing integrative analyses of data from different cancer research
experiments.23,24 Several other thesauri are available for clini-
cal research including the Unified Medical Language Systems
(UMLS) meta-thesaurus and the Systemized Nomenclature of
Medicine Clinical Terms (SNOMED CT).25 Gene Ontology
is one of the most widely used semantic metadata in genomics
research, which evolves dynamically with increase in knowl-
edge about genes and proteins in eukaryotic cells.26

RDBMS13 has served as a predominant technology for
data management. The hallmarks of an RDBMS are the ato-
micity, consistency, isolation, and durability (ACID27) proper-
ties. In these systems, the data are stored in a highly structured
format subject to enforcement by a relational schema. An
RDBMS is considered to be an Online Transaction Process-
ing system (OLTP28). These systems are characterized by
frequent reads and updates, referred to as transactions, of a
relatively small number of data records. The performance of
an RDBMS generally degrades as the number of data records
or data fields increases. A key development to address the
limitation of RDBMS with respect to scalability is the intro-
duction of parallel databases using row based, also known as
horizontal, partitioning.29 These databases distribute mutually
exclusive sets of rows among the nodes of a cluster. The SQL
query is applied to each partition on each of the nodes. The
results of the partitioned queries are sent back to a single node
to be merged to produce the final result. The RDBMS has
been adopted for managing and querying GWAS data.30 An
OLTP system is optimal for research projects that require a
large number of small and simple queries, and frequent data
updates. An On-line Analytical Processing (OLAP28) system
on the other hand is optimal for projects requiring complex
analytical queries but not frequent updates. The performance
of an OLTP system is measured on the basis of its ability to
maintain data consistency and integrity while maximizing
the number of transactions per time unit. The performance of
an OLAP system is measured on the basis of the throughput
of the query and the corresponding response time.28 Data

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Agarwal and Owzar

100 Cancer Informatics 2014:13(S7)

warehouses are OLAP systems developed to aggregate large
amounts of data from multiple sources. Because of the het-
erogeneous sources of data, the incoming data are typically
cleaned and transformed before they are loaded into the sys-
tem. One of the key data warehouses in biomedical research is
Informatics for Integrating Biology and the Bedside (i2B2)31,32
developed under the sponsorship of National Center for Bio-
medical Computing. The most common use of i2B2 is to
repurpose data from Electronic Medical Records (EMRs) to
be combined with clinical and genomics data.

Multi-core computing. Until the early 2000s, most
motherboards housed a single CPU with a single core for
processing. Later CPUs with multiple cores were developed
to overcome the computational limitation of the single core
design. The multi-core architecture has the advantage of pro-
viding higher clock rates because data do not have to travel
across chip sets.33 Computational tasks are typically scaled
through manual or programmatic forking of tasks to multiple
cores, or by writing multi-threaded applications using the
Open Multi-Processing (OpenMP34,35) API.

High performance computing. Two widely used
approaches for distributed computing over a cluster or grid
of server nodes or workstations are message passing and
batch queuing. These fall under the category of High Perfor-
mance Computing (HPC).36 Batch queuing systems simply
distribute individual jobs as batches to the nodes. The job
submission and management, and resource allocation are
orchestrated by a batch submission engine such as the Simple
Linux Utility for Resource Management (SLURM37). The
most commonly used system for message passing is the Mes-
sage Passing Interface (MPI38). This can be considered as
a MIMD shared nothing distributed memory architecture
as memory is not shared among the nodes and communi-
cation is done strictly through message passing. The batch
queuing approach typically does not require specialized pro-
gramming. MPI provides computational scaling at the cost
of increased programming complexity. A number of bioin-
formatics applications developed for MPI-based distributed
systems are listed in Table 1.

GPU computing. The GPU architecture is highly amenable
to parallelized scientific computing.39,40 Development languages
and APIs for General Purpose computing on GPU (GPGPU)
include the Open Computing Language (OpenCL41,42), Com-
pute Unified Device Architecture (CUDA43), and Brook for

GPU (BrookGPU44). The CUDA language is intended for
GPGPU on devices manufactured by NVIDIA. OpenCL is
a standard adopted by several vendors including NVIDIA and
AMD. A number of bioinformatics applications developed for
leveraging GPUs are listed in Table 2. A typical approach for
scientific computing on a GPU is to copy data from the host
(CPU) memory to the memory on the device (GPU). The cal-
culations are then carried out on the device after which the
results are copied to the host. If the memory limitations of
the device, relative to the size of the data, were to necessitate
breaking up the data into smaller chunks, an overhead penalty
is incurred because of repeated copies between the host and the
device. Recent GPU card offerings provide larger amounts of
memory, compared to early GPUs, rendering this technology
now feasible for analysis of high-throughput data from NGS
assays. For example, the NVIDIA K80 card45 consists of two
GPUs collectively housing 24 GB of memory and 4,992 stream-
ing cores providing peak single- and double-precision floating-
point performance of 2.91 and 8.74 teraflops, respectively. The
AMD FirePro W910046 card consists of a single GPU hous-
ing 16 GB of memory and 2,816 stream processors providing
peak single- and double-precision floating-point performance
of 5.24 and 2.62 teraflops, respectively. The GPU technology
can be scaled further by installing multiple cards on the same
motherboard.40

Cloud computing. The ability to conduct scalable com-
puting requires the acquisition, installation, and ongoing
management of a host of hardware and software resources.
This may neither be a practically nor economically feasible
proposition. Cloud computing has proven to be a powerful
alternative for researchers to conduct scalable computing on
a virtual computing infrastructure hosted and managed by a
service provider. The infrastructure may consist of hardware
resources including storage, CPU or GPU nodes, or software
resources including middleware, applications and develop-
ment frameworks provided to the researcher, who can pro-
vision the resources elastically depending on the research
needs.47 There is no standard definition for cloud comput-
ing. The National Institute of Standards and Technology
(NIST) defines cloud computing as a model48 with five essen-
tial characteristics. Resources can be provisioned on demand
by the researcher without direct interaction with the service
provider (On-demand self-service). The computing resources
are accessible to the researcher through a variety of clients via

Table 1. MPI-based applications for bioinformatics.

Category Application Description

Alignment mpiBLAST105 Implementation of BLAST on MPI for parallel execution.

ClustalW-MPI106 Implementation of Clustal-W, a multiple alignment tool, on MPI.

mrNA107 Short read alignment of NGS read.

MrBayes 3108 Bayesian phylogenetic analysis using MPI for parallelizing Markov chain Monte Carlo convergence.

Proteomics Parallel Tandem109 Implementation of X!Tandem for MS/MS spectra search against a protein database.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Next generation distributed computing

101Cancer Informatics 2014:13(S7)

a network (Broad network access). The resources are pooled by
the service provider so as to be offered to multiple users with
heterogeneous needs (Resource pooling). The resources can be
provisioned on demand by the researcher depending on the
demand (Rapid elasticity). The usage of the resources, in terms
of storage or CPU cycles used, can be monitored and quanti-
fied in a transparent manner by both the researcher and ser-
vice provider (Measured service). Cloud computing offers three
service models.48 The Software as a Service (SaaS) model pro-
vides software applications hosted and managed by the service
provider to be used by the researcher. The Platform as a Ser-
vice (PaaS) model enables custom software application devel-
opment and deployment by the researcher using programming
languages, software libraries, and tools hosted and managed
by the service provider. The Infrastructure as a Service (IaaS)
model provides storage, computing and networking resources
to the researcher for deployment of operating systems, appli-
cations, and development toolkits. The Amazon Elastic Com-
pute cloud (EC2) was one of the early commercial offerings for
cloud computing. Other current commercial offerings include
Google Cloud, IBM Cloud, and Microsoft Azure.

Several bioinformatics applications including BLAST,
genome assembly and alignment have been adapted for cloud
computing. Some of these are listed in Table 3. Generally,
these applications require the user to provision the computing

resources on the cloud, and manage the application configuration
and deployment. Several cloud manager tools have been devel-
oped enabling users to easily provision resources on the cloud
and deploy one or more tools and data to work as a single unit.
These tools in effect provide a “turnkey” solution to a complete
bioinformatics data analysis platform. Cloudman49,50 is a man-
ager initially developed to facilitate the deployment of the Gal-
axy platform51 for NGS data analysis on the cloud. It enables
packaging of the data along with the analysis tools. Other cloud
management software include StarCluster52 and elasticHPC.53

The Bio2RDF54 project facilitates integration across several
databases by creating the datasets in a common RDF18 format
to be pushed to the cloud for access. The data from the TCGA
project are available as “Linked Data”55,56 and can be queried
using SPARQL.19 The National Centers for Biomedical Ontol-
ogy (NCBO) has created BioPortal57 for review and updates of
various ontologies available to biomedical researchers. One of
the key advantages of cloud computing is the provision of the
infrastructure to make these federated biomedical data available
to the research community for integrated data analysis.

Hadoop for Scalable Computing and Data
Management

Background and core architecture. Figure 1 illus-
trates the two core components of the Hadoop architecture

Table 2. GPU applications for bioinformatics.

Category Application Description

Alignment CUSHAW110 Short read alignment based on the Burrows-Wheeler transform (BWT111) and the
Ferragina-Manzini index112

SOAP3-dp113 Short read alignment based on BWT with native BAM support

Proteomics FastPaSS114 Spectra matching using spectral library searching implemented in CUDA

Tempest115 Spectral matching using GPU-CPU

Motif Discovery GPUmotif116 Motif scan and de novo motif finding using GPU

Epigenetics GPU-BSM117 GPU based tool for mapping whole genome bisulfite sequencing reads and estimating
methylation levels

Systems Biology
(see Ref.118 for a review)

ABC-SysBio119 Simulate models written in the Systems Biology Markup Language (SBML120) format

PMCGPU121,122 Parallel simulators for Membrane Computing on the GPU

Genome-wide Inference permGPU123 Permutation resampling analysis for binary, quantitative, and censored time-to-event outcomes

Table 3. Cloud-based applications for bioinformatics.

Category Application Description

Alignment CloudBrush124 Distributed de novo genome assembler based on MapReduce which can be run on
a cloud.

CloudBurst74 Short read mapping software for Hadoop based on the RMAP125 mapping tool which
can be run on a cloud.

CloudBLAST126 MapReduce based BLAST which can be run on a cloud.

Proteomics Integrated Proteomics Pipeline (IP2)127 Proteomics data analysis pipeline also available on Amazon Web Service.

ProteoCloud128 Proteomics computing pipeline system on the cloud for peptide and protein
identifications available on Amazon Web Service.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Agarwal and Owzar

102 Cancer Informatics 2014:13(S7)

as two main layers.58 The MapReduce layer, shown above
the dashed line, is responsible for computation and resource
management while the Hadoop Distributed File System
(HDFS) layer, shown below the dashed line, is responsi-
ble for storage and data management. Hadoop follows the
Master–Slave architecture for managing computation and
data in a distributed environment. The master node sched-
ules and coordinates the computing tasks among the slave
nodes. In a Hadoop system, the master node is referred to
as the JobTracker while the slave nodes are referred to as
TaskTrackers. The JobTracker also provides the software
infrastructure for managing distributed computing such as
resource scheduling and recovery from job failures. The mas-
ter process for the HDFS layer is called the Name Node and
it manages the metadata loaded and distributed to the slave
nodes. The latter are called the Data nodes. One of the draw-
backs in earlier versions of Hadoop was the tight coupling of
the MapReduce engine and distributed computing services
provided by the JobTracker.

The computational layer of Hadoop is an implementation
of the MapReduce algorithm.59 Any implementation of this
algorithm requires the provision of two user-defined func-
tions, Map and Reduce, as its name suggests. The primary
task of the Map function is to generate a set of intermediate
pairs of keys and values. Before these pairs are passed on to
the Reduce function, they are binned according to the keys.
The Reduce function then is applied to each bin. The algo-
rithm is often illustrated using the example of counting the
occurrence of each word in a text file from the MapReduce
paper.59 Consider the example illustrated in Figure 2. The text
file in this example consists of three sentences as illustrated
under the Input. The file is split up along the three sentences
each of which is passed on to the Map function. In this stage,
the words are treated as the keys. The number of times each
word appears in the sentence is the value corresponding to the
key. Within each of the three bins in this stage, the keys are
paired up with their corresponding value. In the next stage,
Shuffle and Sort, the pairs from the previous step are grouped
into bins by the keys. Each bin is passed on to the Reduce
function, which adds the values from each pair therein. This

effectively reduces the (key, value) pairs within each bin to a
single (key, value) pair. Finally, these reduced pairs are passed
on as output.

Hadoop manages the distribution of files on individual
nodes through the HDFS. Since the data are spread over a set
of nodes on a network, all the complications of network pro-
gramming, such as node failure, have to be taken into account.
The design of HDFS facilitates the key principles of Hadoop,
namely storage and management of huge amounts of data on
a cluster of commodity hardware with fast access. To enable
these objectives, HDFS stores very large files as blocks rather
than files and provides redundancy for the data by replicating
each block. The metadata for the files is stored centrally in the
Name Node, which uses this information to reconstruct the
files from the blocks. HDFS also works on the master–worker
pattern where the Name Node is the master server and Data
Nodes the workers. The Name Node, through the metadata,
manages the file system namespace and the information about
which Data Node has the blocks for each of the files. A Map
task receives blocks of data from the Data Node and works on
one block at a time.60

Hadoop ecosystem. Decoupling of the MapReduce and
the HDFS layers enables other tools to be built as higher level
abstractions in other languages. Several tools have been devel-
oped to convert user applications written for these tools to
MapReduce jobs for deployment and execution in a Hadoop
cluster. Additionally, tools have been developed to facilitate
pushing data in standard formats, including columnar data,
into the HDFS layer whereby relieving the user of the burden
of working with the native HDFS file format. Another major
milestone in decoupling of these two layers was implemented
by the introduction of the Yet Another Resource Negotiator
(YARN61) in 2013.62 YARN decouples the distributed com-
puting resource management from the MapReduce job execu-
tion engine and delegates many job flow control and scheduling
functions to the individual application components. This
refinement of the core architecture is expected to encourage
wider adoption by allowing other computing paradigms to be
implemented in Hadoop. The collection of tools built around
the core infrastructure is referred to as the Hadoop ecosystem.
A representative subset of tools in the ecosystem is shown in
Figure 3. We provide additional details on some of the key
tools next.

HBase. The records in a traditional RDBMS are stored
in a row format. This is generally optimal when the goal is
to query a relatively small number of records (rows) consist-
ing of large number of fields (columns).63 For certain applica-
tions, the goal is to query a small subset of columns from a
large number of records. For these, it is preferable to store
the data in column format so as to increase performance of
the queries. HBase64 is a column-oriented63 database built
on top of HDFS to provide high scalability and performance
in a distributed computing environment. It is modeled after
Google’s Big Table project.65 HBase, unlike HDFS, provides

Client

Master

Job tracker

Name node

Slaves

Data node

Data node

Task tracker

Task tracker

Figure 1. Core components of the Hadoop architecture. Adapted from
Ref.58

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Next generation distributed computing

103Cancer Informatics 2014:13(S7)

real time read and write capability with random access for
large-scale data distributed in a cluster. Linear scaling is
achieved in HBase by simply adding additional nodes to the
cluster. Tables in HBase can be large and sparsely populated
with billions of rows and millions of columns. Columns
can be added dynamically to allow for changes in the data
representation.60

Hive. Data in Hadoop are natively stored as files in HDFS.
This structure does not enable convenient use of higher level
languages for data queries. Apache Hive66 offers capabilities
of a data warehouse by providing the ability to represent data
as tables similar to those of a relational database.67 To this
end, it provides the SQL-like language HiveQL67 to convert
queries into a series of MapReduce jobs for execution in a
Hadoop cluster. Within a traditional RDBMS, data schema
constraints are enforced at load time. Hive, on the other hand,
employs “schema-on-read,” which checks the constraints only
when data are read by virtue of a query. This approach is opti-
mal for loading large-scale data.60

Pig. Processing large datasets in Hadoop may require a
series of data transformation steps that may be complicated
to implement as Map and Reduce functions.60 Apache Pig68
provides higher level data structures and data transforma-
tion functions to facilitate the programming of these tasks.
Pig includes the Pig Latin69 programming language and an
execution environment for running the programs.60 The Pig
execution engine converts the user written operations into
MapReduce jobs at runtime. Additionally, Pig provides a set
of built-in functions for a number of tasks including math and
string processing. These can be modified or augmented with
user-defined functions.68

Avro. In distributed computing systems, including
Hadoop, data structured as objects are transferred on the
network among different nodes as streams of bytes using the
process of serialization. The process of converting the byte
streams back to structured data is called deserialization.60,70
These two processes are also required for writing structured
data to physical storage devices. Efficiency of these processes
can have an impact on the performance of a distributed appli-
cation.60 Apache Avro71 enables efficient implementation of
serialization and deserialization for Hadoop-based distrib-
uted applications by providing an API for several program-
ming languages. Serialization frameworks require a schema
for representing data structures. Avro uses the widely used
JavaScript Object Notation (JSON72) format71 to provide por-
tability across a number of languages.

Starfish. The core components of Hadoop, namely the
MapReduce execution engine and the HDFS distributed
storage, are extensible through their pluggable architecture.
In addition, there are various procedural and declarative
interfaces for interaction with Hadoop. Such an architecture
provides great flexibility for extending and building distrib-
uted applications in Hadoop. At the same time, it creates an

Figure 2. Typical MapReduce algorithm workflow.

RHIPE Impala Solr

MahoutHivePig

Map reduce execution engine
(job scheduling)

HBase

C
oo

rd
in

at
io

n
(Z

oo
K

ee
pe

r)

S
er

ia
liz

at
io

n
(A

vr
o)

Hadoop distributed file system
(HDFS)

Figure 3. Representative subset of the Hadoop ecosystem.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Agarwal and Owzar

104 Cancer Informatics 2014:13(S7)

enormous challenge for performance tuning, which is required
for optimal use of resources. In order for the system to adapt
to changing user needs and system workloads, several system
parameters require tuning. There are over 190 configuration
parameters that control the running of MapReduce jobs,73
the default values of which may not be optimal in all cases.
Manually tuning the parameters for performance optimiza-
tion requires expertise and can be a daunting task of trial and
error. Starfish is a self-tuning system built within the architec-
ture of Hadoop that can be used for automatic or “self ” tun-
ing.73 It enables applications and users of Hadoop to get good
performance throughout the life cycle of the data processing
jobs without the need for manual performance tuning. The
performance tuning is not limited to a single MapReduce job,
and can be extended to workflows and workloads consisting of
multiple MapReduce jobs.

Bioinformatics applications based on Hadoop. Cloud-
burst, an application for mapping short reads to a reference
genome and released in 2009, was one of the first bioinfor-
matics applications developed using Hadoop.74 Since then
several other applications have been developed.75 Many of
these were developed for the purpose of conducting short read
alignments, while some are for further downstream process-
ing such as RNA-seq and variant calling. In addition, some
general purpose applications have been developed based on
the Hadoop ecosystem that can be used for developing custom
bioinformatics applications. Table 4 summarizes a number of
applications useful for cancer research. Detailed information
regarding five other applications is also provided.

Hadoop-BAM. Hadoop-BAM is an application enabling
access to the contents of a BAM file76 within HDFS by virtue
of providing an API as a Java library. BAM files are treated as
Hadoop input and output formats. Picard77 is a full-featured
set of tools for processing NGS data. It provides extensive sup-
port for processing reads stored in the Sequence Alignment/
Mapping (SAM) or BAM formats. Hadoop-BAM is built on
the top of the Picard for accessing and manipulating BAM
files. This feature facilitates the Picard API to be used directly
within Hadoop. By distributing the processing of BAM files
across a Hadoop cluster, Hadoop-BAM enables significant

gains in processing time as well as linear scalability with the
number of nodes in a cluster.76

SeqPig. SeqPig78 is an extension of the Apache Pig
scripting language for development of analysis pipelines
for manipulation and analysis of NGS data on Hadoop.
SeqPig scripts are converted to MapReduce tasks to operate
on sequencing data stored in HDFS. It leverages Hadoop-
BAM76 to provide import and export functions for common
NGS data formats including FASTQ , FASTA, SAM, and
BAM. In addition to input and output functionality, it offers
facilities for computing base-level statistics and pile-up
among other things.

RHIPE. R79 is an open source environment for statis-
tical computing and graphics widely used by the research
community. Its powerful analytical and graphical facilities
are extended by a large library of user-contributed exten-
sion packages hosted by the Comprehensive R Archive
Network (CRAN80). The Bioconductor project81 provides a
large collection of extension packages for genomic research.
R Hadoop Integrated Programming Environment (RHIPE)
is an R extension package implementing the Divide and
Recombine (D&R) method on a Hadoop cluster for paral-
lel statistical computation.82 The D&R algorithm divides the
data into subsets on which the statistical or computational
procedure of interest is applied. The results from the subsets
are then recombined. Hadoop is used to orchestrate these two
steps while providing resource and fault tolerance manage-
ment. BlueSNP83 is an R extension package developed for
GWAS on a Hadoop cluster utilizing the D&R framework
provided by RHIPE. For the statistical analysis, in addi-
tion to the tests provided, users can define and implement
their own tests as R functions. BlueSNP is especially use-
ful for performing computationally intensive statistical tests
for GWAS including large-scale inference using permutation
resampling and eQTL analyses. Performance benchmark-
ing of BlueSNP suggested linear scaling in proportion to the
number of nodes.83

Hydra. Mass spectroscopy based assays used in proteomics
and metabolomics research generate raw data rivaling in size of
those generated by NGS assays. The identification of peptide

Table 4. Bioinformatics applications for Hadoop.

Category Application Description

Alignment and Assembly
Genome Assembly

Jnomics88 Command line driven alignment on Hadoop cluster for a number of alignment software

Contrail de novo assembly without reference genome

DistMap129 Perl tool, works with 9 different aligners, very easy client-only installation

Seal130 Alignment tool based on Pydoop (a python based API for developing Hadoop
applications131)

RNA-seq Eoulsan132 In additional to alignment, complete RNA-seq pipeline

Myrna133 Complete RNA-seq pipeline, from alignment to differential expression, written in
Perl, integrates R79 and Bioconductor81 for downstream statistical analysis

Variant Calling Crossbow134 Performs alignment and SNP genotyping

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Next generation distributed computing

105Cancer Informatics 2014:13(S7)

sequences from the spectra84 is one of the major computational
challenges in this field. This is accomplished by matching the
spectra against known sequences in a large database. Most
matching algorithms developed for this problem are amenable
to parallelization. Hydra,85 an open source Hadoop applica-
tion, performs scalable peptide database search. The Each
query is based on matching the mass to charge ratio score of
the source spectra against those of the target peptides in the
database. The latter is generated once up front and distributed
to HDFS so as to be reused for all matching tasks.

Hadoop Cluster Setup
In this section, we outline a POC Hadoop cluster to illustrate the
design and implementation of a basic NGS data pre-processing
pipeline for RNA Sequencing data. A Hadoop cluster requires
a minimum of two nodes for a distributed architecture. It can
be set up on a single node in a “pseudo-distributed” mode to
be primarily used for learning and testing purposes. The POC
was designed using the FlexPod product line, which is an inte-
grated commercial distributed computing system developed by
Cisco and Netapp.86 Each of the eight nodes in the cluster was
a dual eight-core CPU server, providing 16 cores per node, with
128 GB RAM. One of the eight nodes was dedicated as the
Name Node and another as the JobTracker. The other six nodes
served as worker nodes, each functioning as a TaskTracker
and a Data Node. The combined internal storage across the
eight nodes was 40 TB and used for HDFS storage. A Netapp
E-series storage server with 100 TB capacity was included in
the POC. Since Hadoop works most efficiently with local stor-
age rather than network storage, to avoid the latency of moving
data during a MapReduce job, the latter was primarily used as
a staging area for large datasets. The process of transferring

data from the staging area to HDFS for processing is called
ingestion. The nodes were rack mounted and connected with a
Cisco Fabric Interconnect 10 Gig switch. The latter was con-
nected to an internal 1 Gig LAN. It should be noted that since
most of the communication during the execution of Hadoop
jobs is among the nodes, the network throughput during job
processing is not limited by the bandwidth of LAN and will
take advantage of the higher bandwidth of the switch. The
external storage server communicates with the cluster using
the Fiber Channel over Ethernet (FCoE) protocol. Cluster
management for the Flexpod line is carried out using the UCS
Manager, which is cluster administrative software providing
features such as addition or removal of nodes. The design of the
POC is illustrated in Figure 4.

The POC was designed to provide a scalable computing
solution for a representative basic three-stage data analysis
pipeline for cancer research using high-throughput sequenc-
ing assays. The primary stage is devoted to initial processing
of the raw reads. These, typically stored using the FASTQ
format, are aligned against a reference genome. If a reference
genome is not available or a custom reference is needed, de novo
genome assembly may be performed at this stage. The result-
ing data are captured in the SAM file87 format. For efficient
downstream processing, the file size is reduced by converting
to a BAM file, a binary compressed version of the SAM file.
In the second stage, the aligned reads are further processed
to obtain summary information including variant calls for
DNA sequencing, or gene or isoform level counts for RNA
sequencing data. The third stage is devoted to downstream
statistical analyses including differential expression, eQTL,
and feature discovery analysis. The pipeline is conceptualized
in Figure 5.

LAN (1 Gig E)

Fabric interconnect (10 Gig E switch)

Nexus fabric extender

10 Gig E

FCoE

Node 1: NameNode/Sec. NN

Node 2: JobTracker

Node 3: TaskTracker/DataNode

• • •

NetApp E-Series

Node 8: TaskTracker/DataNode

UCS Manager

Figure 4. Cisco FlexPod cluster architecture.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Agarwal and Owzar

106 Cancer Informatics 2014:13(S7)

A preliminary performance benchmarking for the pri-
mary data analysis stage was carried out for comparing the
FASTQ alignment performance on a single node with that
on the POC Hadoop cluster. The single node was a Linux
server with similar Alignment of FASTQ files on the
Hadoop cluster done using Jnomics88 and bowtie289 on the
single node. FASTQ files of size 4 GB, 9 GB, and 65 GB
were considered.

Discussion
To address the computational needs of a given research prob-
lem requiring a scalable computational framework, Hadoop
is neither the exclusive nor necessarily always the optimal
solution. Some of these are geared toward specific applica-
tion areas while others are designed to provide a more generic
framework. They can be used as an alternative to or in concert
with Hadoop. The Genome Analysis Toolkit (GATK90,91) is a
powerful and feature-rich framework for NGS variant discov-
ery. It employs a custom MapReduce framework along with
CPU threading features to facilitate variant discovery and
calling. GATK uses aligned and pre-processed reads using
the BAM87 format as input and returns the results, including
annotation, quality score, number of variant base calls, depth,
and genotype call in the Variant Calling Format (VCF92).
The input BAM files can be produced using existing Hadoop
applications for processing raw reads and then processed by
GATK.

Genomics research in cancer often involves repeated
application of computationally intensive statistical inference
methods or learning algorithms on the same dataset. A per-
formance penalty is incurred if data are written to disk after
each job and reloaded from the disk into memory for the next.
Spark93 is a system for scalable computing that replaces the

MapReduce layer of Hadoop while leveraging its HDFS layer.
Spark enables memory resident cyclic data flow to optimize
performance.94,95 The compute tasks are carried out on Resil-
ient Distributed Datasets (RDD96). An RDD is a read-only
collection of objects, which can be partitioned across nodes in
a cluster. The RDDs are cached in memory across the cluster
nodes and can be re-used when needed in parallel without the
need for writing the data to disk between individual jobs. It
also provides comprehensive fault tolerance.

In case a partition is lost, it can be rebuilt from the infor-
mation in the handle to the RDD about how the partition
was built in the first place. The RDDs are cached in memory
across the cluster nodes and can be re-used in MR jobs exe-
cuted in parallel without the need for materializing the data
in the RDDs to disk between individual jobs. Spark natively
supports three programming languages, Scala, Python, and
Java, for development and provides a library of machine learn-
ing algorithms (MLib). This library includes function for basic
statistics methods, including summary statistics and random
number generation, class discovery methods (eg, k-means clus-
tering and principal components analysis97), and supervised
learning methods (eg, support vector machines, decision tress,
and random forests98). It also provides numerical algorithms for
matrices (eg, singular value decomposition99) and optimization
(eg, gradient descent and BGFS100). This library can be used as
a tool kit for development of a scalable pipeline for downstream
analyses. It should be noted that the HAMA project101 pro-
vides matrix operation capabilities for Hadoop. Currently, the
most widely used format for storing aligned reads from NGS
assays is the SAM or its binary counterpart BAM. While there
are Hadoop applications supporting this format, as previously
discussed, this format may not be optimally designed for dis-
tributed computing. ADAM102 provides a set of data formats

POC

Primary (Alignment):
BWA
Bowtie

Secondary (Post-Alignment):
Count (R/Bioconductor)
Variant Calling (GATK)

FastQ SAM BAM Count
VCF

Tertiary (Statistical Analysis):
Differential Expression
Associations

Downstream Analytics:
Systems Biology
Databases – query

Diff. Expr.
Sig. Assoc.

Data Integration Data Integration Data Integration Data Integration

Data Source

Data Source

Figure 5. Genomics data analysis pipeline.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Next generation distributed computing

107Cancer Informatics 2014:13(S7)

for specifying large-scale NGS data along with a set of APIs
for accessing and processing the data efficiently:

•	 A data format and access API, built on top of Apache
Avro, for transforming the general purpose genomic data
formats into the ADAM format and Apache Parquet for
accessing the data.

•	 A data transformation API, built using the Scala pro-
gramming language and implemented on Apache Spark,
for transforming and working with the data specified in
the ADAM format.

Hadoop is not a turnkey technology. To gauge the per-
formance of the POC, we considered short read sequence files
of size 4, 9, and 65 GB, respectively. The maximum gain in
performance was observed for the medium sized files (21 versus
50 minutes with a relative gain of 58%). The gain for the large
size files was modest (227 versus 241; a relative gain of 6%),
whereas for the small sized files, a degradation in performance
was observed (25 versus 16 minutes; a relative loss of 56%). This
degradation may be attributed to the startup overhead for oper-
ating a Hadoop cluster. It also suggests that tuning of opera-
tional parameters may be required to optimize performance
for this particular size dataset. For the large size data files, the
startup overhead is likely to be irrelevant. To increase perfor-
mance, tuning or addition of more nodes will be required.

The computational facilities of Hadoop can be extended
using other hardware and software technologies. For example,
GPUs can be used in the compute nodes of a Hadoop cluster
to provide a second level of parallelization. JCuda,103 a java
binding for CUDA, can be used to communicate with pro-
grams written in CUDA.104

Conclusions
Considering the unrelenting onslaught of massive amounts of
genomics, clinical, and EHR data, Hadoop provides a power-
ful computational framework for integrative data management
and analysis in cancer research. While a number of bioinfor-
matics tools with applications for cancer research have been
developed on the basis of this technology, further refinement
and development of de novo tools leveraging the collective
spectrum of the Hadoop ecosystem is needed to reap its full
potential. As with any other system for distributed computing,
Hadoop is not a turnkey system. Developing a highly opti-
mized solution using this technology requires understanding of
computer algorithms, specifically for writing custom Map and
Reduce functions, and understanding of the interaction among
hardware and software components. Other technologies for
scalable and distributed computing, including GPU, MPI, and
Spark, are available. These can be used in concert with or as
an alternative to Hadoop depending on the research problem
at hand. The choice of a distributed system must be carefully
evaluated during the early design stage and be periodically
reevaluated throughout the course of the research.

Acknowledgment
The authors thank the reviewers for insightful and helpful
comments.

Author Contributions
Designed the POC and carried out the pre-processing: PA.
Wrote the manuscript: PA. Made critical revisions: KO. Both
authors reviewed and approved the final manuscript.

References
	 1.	 The Cancer Genome Atlas. 2014. Available at: http://cancergenome.nih.gov/.

Accessed December 10, 2014.
	 2.	 Sun W. A statistical framework for eqtl mapping using RNA-seq data. Biometrics.

2012;68(1):1–11.
	 3.	 Demchenko Y, Grosso P, de Laat C, Membrey P. Addressing big data issues

in scientific data infrastructure. In: Collaboration Technologies and Systems
(CTS), 2013 International Conference. 2013:48–55.

	 4.	 Kunzman DM, Kale LV. Programming heterogeneous systems. In: Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium. 2011:2061–4.

	 5.	 Suri PK, Mitall S. A comparative study of various computing processing envi-
ronments: a review. Int J Comp Sci Inf Technol. 2012;3(5):5215–8.

	 6.	 Daniel Hillis W, Steele GL Jr. Data parallel algorithms. Commun ACM.
1986;29(12):1170–83.

	 7.	 Andrade D, Fraguela BB, Brodman J, Padua D. Task-parallel versus data-parallel
library-based programming in multicore systems. In: Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro International Conference.
2009:101–10.

	 8.	 Eijkhout V. Introduction to High Performance Scientific Computing. Creative Com-
mons Attribution 3.0 Unported license. 2014.

	 9.	 Kale V. Guide to Cloud Computing for Business and Technology Managers. Chapman
and Hall/CRC; 2014. CRC Press, Taylor & Francis Group, 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton, FL 33487-2742.

	 10.	 Amazon S3. 2014. Available at: http://aws.amazon.com/s3/. Accessed November
19, 2014.

	 11.	 Erbacci G, Sbrighi M, Crosbie A, et al. Data management in HPC. A joint
scientific and technological study undertaken by CINECA and TCD for the
ENACTS network. Sectoral Report. 2003.

	 12.	 Tivoli Storage Manager for Space Management. 2014. Available at: http://www-03.
ibm.com/software/products/en/tivostormanaforspacmana. Accessed November
18, 2014.

	 13.	 Codd E. A relational model of data for large shared data banks. Commun ACM.
1970;13(6):377–87.

	 14.	 Rew R, Davis G. NetCDF: an interface for scientific data access. Comput Graph
Appl IEEE. 1990;10(4):76–82.

	 15.	 Folk R, McGrath RE, Yeager N. HDF: an update and future directions. Geosci
Remote Sens Symp IEEE. 1999;1:273–5.

	 16.	 Angles R, Gutierrez C. Survey of graph database models. ACM Comput. Surv.
2008;40(1):1:1–1:39.

	 17.	 Angles R. A comparison of current graph database models. In: Data Engineer-
ing Workshops (ICDEW), 2012 IEEE 28th International Conference. 2012;
171–7.

	 18.	 Resource Description Framework (RDF) Model and Syntax Specification. 2014.
Available at: http://www.w3.org/TR/PR-rdf-syntax/. Accessed December 10,
2014.

	 19.	 SPARQL Query Language for RDF. 2014. Available at: http://www.w3.org/
TR/rdf-sparql-query/. Accessed December 10, 2014.

	 20.	 Duval E, Hodgins W, Sutton S, et al. Metadata principles and practicalities.
Vol 8. D-Lib Magazine; 2002.

	 21.	 Floridi L, ed. The Blackwell Guide to the Philosophy of Computing and Information,
chapter Ontology. Blackwell Publishing Limited, Malden, MA, USA. 2008.

	 22.	 NCI Thesaurus (NCIt). 2014. Available at: https://wiki.nci.nih.gov/display/
EVS/NCI+Thesaurus+%28 NCIt%29. Accessed December 21, 2014.

	 23.	 Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu WL, Wright LW.
NCI thesaurus: a semantic model integrating cancer-related clinical and molecu-
lar information. J Biomed Inform. 2007;40:30–43.

	 24.	 Golbeck J, Fragoso G, Hartel F, et al. The National Cancer Institute’s Thésaurus
and Ontology. Web Semantics: Science, Services and Agents on the World Wide Web 1.
2003:75–80.

	 25.	 Richesson RL, Nadkarni P. Data standards for clinical research data collection
forms: current status and challenges. J Am Med Inform Assoc. 2011;18(3):341–6.

	 26.	 Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification
of biology. Nat Genet. 2000;25:25–9.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
http://www-03.ibm.com/software/products/en/tivostormanaforspacmana
http://www-03.ibm.com/software/products/en/tivostormanaforspacmana

Agarwal and Owzar

108 Cancer Informatics 2014:13(S7)

	 27.	 Haerder T, Reuter A. Principles of transaction-oriented database recovery. ACM
Comput. Surv. 1983;15(4):287–17.

	 28.	 Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology.
ACM Sigmod Record. Mar 1997;26(1):65–74.

	 29.	 Stonebraker M, Abadi D, DeWitt DJ, et al. Mapreduce and parallel DBMSs:
friends of foes? Commun ACM. 2010;53(1):64–71.

	 30.	 Mitha F, Herodotou H, Borisov N, Jiang C, Yoder J, Owzar K. SNPpy – data-
base management for SNP data from genome wide association studies. PLoS
ONE. 2011;6(10):e24982.

	 31.	 Murphy S, Churchill S, Bry L, et al. Instrumenting the health care enterprise for
discovery research in the genomic era. Genome Res. 2009;19(9):1675–81.

	 32.	 Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond with
informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc.
Mar–Apr 2010;17(2):124–30.

	 33.	 Vajda A. Programming Many-Core Chips. Springer Science+Business Media,
LLC 2011, 233 Spring Street, New York, NY 10013, USA.

	 34.	 Dagum L, Menon R. OpenMP: an industry standard api for shared-memory
programming. Comput Sci Eng IEEE. 1998;5(1):46–55.

	 35.	 OpenMP Architecture Review Board. OpenMP application program interface
version 3.0. 2008.

	 36.	 Severance C, Dowd K. High Performance Computing. O’Reilly Media; 1998. Inc.
	 37.	 Yoo AB, Jette MA, Grondona M. Slurm: simple linux utility for resource man-

agement. In: Feitelson D, Rudolph L, Schwiegelshohn U, eds. Job Scheduling
Strategies for Parallel Processing, Volume 2862 of Lecture Notes in Computer Science,
pages 44–60. Berlin, HD: Springer; 2003.

	 38.	 Message P Forum. MPI: a message-passing interface standard. Technical report.
1994. Knoxville, TN.

	 39.	 Fung J, Tang F, Mann S. Mediated Reality Using Computer Graphics Hardware
for Computer Vision. In: Wearable Computers, 2002. Proceedings. Sixth Inter-
national Symposium. 2002;IEEE:83–9.

	 40.	 Fung J, Mann S. Using multiple graphics cards as a general purpose parallel com-
puter: applications to computer vision. In: Pattern Recognition, 2004. Proceed-
ings of the 17th International Conference. Vol 1. ICPR; 2004:805–8. Publisher:
IEEE.

	 41.	 Jääskeläinen PO, de la Lama CS, Huerta P, and Takala JH. Opencl-based design
methodology for application-specific processors. In: Embedded Computer Sys-
tems (SAMOS), 2010 International Conference. 2010: 223–30.

	 42.	 Khronos OpenCL Registry. 2014. Available at: https://www.khronos.org/
registry/cl/. Accessed December 10, 2014.

	 43.	 Halfhill TR. Parallel processing with CUDA. Microprocessor Report. 2008.
Available at: http://www.nvidia.com/docs/I0/55972/220401_Reprint.pdf.

	 44.	 Buck I, Foley T, Horn D, et al. Brook for GPUs: stream computing on graphics
hardware. ACM Trans Graph. 2004;23(3):777–86.

	 45.	 NVIDIA. 2014. Available at: http://international.download.nvidia.com/
pdf/kepler/BD-07317–001_v04.pdf. TESLA K80 GPU ACCELERATOR,
BD-07317–001_v04 edition, 2014. Accessed December 10, 2014.

	 46.	 AMD FireProTM W9100 Professional Graphics. 2014. Available at: http://
www.amd.com/en-us/products/graphics/workstation/f irepro-3d/9100#.
Accessed December 10, 2014.

	 47.	 Dustdar S, Guo Y, Satzger B, Truong HL. . Principles of elastic processes. IEEE
Internet Comput. 2011;15(5):66–71.

	 48.	 Mell P, Grance T. The NIST Definition of Cloud Computing. Gaithersburg, MD:
National Institute of Standards and Technology; 2011. [20899–8930, special
publication 800–145 edition].

	 49.	 Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J. Galaxy
CloudMan: delivering cloud compute clusters. BMC Bioinformatics. 2010;11(suppl
12):S4.

	 50.	 Afgan E, Chapman B, Taylor J. Cloudman as a platform for tool, data, and anal-
ysis distribution. BMC Bioinformatics. 2012;13:315.

	 51.	 Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive
large-scale genome analysis. Genome Res. 2005;15:1451–5.

	 52.	 Starcluster. 2014. Available at: http://star.mit.edu/cluster/. Accessed November 9,
2014.

	 53.	 El-Kalioby M, Abouelhoda M, Krüger J, et al. Personalized cloud-based bio-
informatics services for research and education: use cases and the elasticHPC
package. BMC Bioinformatics. 2012;13(suppl 17):S22.

	 54.	 Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J. Bio2rdf: towards a mashup
to build bioinformatics knowledge systems. J Biomed Inform. 2008;41(5):706–16.

	 55.	 Deus HF, Veiga DF, Freire PR, Weinstein JN, Mills GB, Almeida JS.
Exposing the cancer genome atlas as a SPARQL endpoint. J Biomed Inform.
2010;43(6):998–1008.

	 56.	 Saleem M, Padmanabhuni S, Ngomo AN, et al. TopFed: TCGA tailored feder-
ated query processing and linking to LOD. J Biomed Semantics. 2014;5(1):47.

	 57.	 Whetzel PL, Noy NF, Shah NH, et al. BioPortal: enhanced functionality via
new Web services from the National Center for Biomedical Ontology to access
and use ontologies in software applications. Nucleic Acids Res. 2011;39:W541–5.

	 58.	 Prajapati V. Big Data Analytics with R and Hadoop. Birmingham: Packt Publish-
ing; 2013.

	 59.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters.
Commun ACM. 2008;51(1):13.

	 60.	 White T. Hadoop: The Definitive Guide. Second ed. Sebastopol, CA: O’Reilly
Media; 2010.

	 61.	 Vavilapalli VK, Murthy AC, Douglas C, et al. Apache Hadoop yarn: yet another
resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13. New York, NY: ACM; 2013:5:1–5:16.

	 62.	 Hadoop Releases. 2014. Available at: http://hadoop.apache.org/releases.html#
15+October%2C+2013%3A+Release+2.2.0+available. Accessed December 10,
2014.

	 63.	 Abadi DJ, Madden SR, Hachem N. Column-stores vs. row-stores: how differ-
ent are they really? In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08. New York, NY: ACM;
2008:967–80.

	 64.	 Apache HBase. 2014. Available at: http://hbase.apache.org/. Accessed November
15, 2014.

	 65.	 Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems, Vol. 26, No. 2, Article 4,
Pub. date: June 2008.

	 66.	 Apache Hive. 2014. Available at: https://hive.apache.org/. Accessed November
15, 2014.

	 67.	 Thusoo A, Sarma JS, Jain N, et al. Hive: a warehousing solution over a map-
reduce framework. Proc VLDB Endow. 2009;2(2):1626–9.

	 68.	 Apache Pig. 2014. Available at: http://pig.apache.org/. Accessed November 15,
2014.

	 69.	 Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: a not-
so-foreign language for data processing. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’08.
New York, NY: ACM; 2008:1099–110.

	 70.	 Hericko M, Juric MB, Rozman I, Beloglavec S, Zivkovic A. Object serialization
analysis and comparison in java and .net. Sig plan Not. 2003;38(8):44–54.

	 71.	 Apache Avro. 2014. Available at: http://avro.apache.org/. Accessed November
15, 2014.

	 72.	 JSON. 2014. Available at: http://www.json.org//. Accessed November 15, 2014.
	 73.	 Herodotou H, Lim H, Luo G, et al. Starfish: a self-tuning system for big data

analytics. In: Proceedings of the 5th Conference on Innovative Data Systems
Research. 2011.

	 74.	 Schatz MC. Cloudburst: highly sensitive read mapping with MapReduce. Bioin-
formatics. 2009;25(11):1363–9.

	 75.	 Taylor RC. An overview of the hadoop/mapreduce/hbase framework and its cur-
rent applications in bioinformatics. BMC Bioinformatics. 2010;11(suppl 12):S1.

	 76.	 Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko K.
Hadoop-BAM: directly manipulating next generation sequencing data in the
cloud. Bioinformatics. 2012;28(6):876–7.

	 77.	 Picard. 2014. Available at: http://broadinstitute.github.io/picard/. Accessed
November 15, 2014.

	 78.	 Schumacher A, Pireddu L, Niemenmaa M, et al. Seqpig: simple and scalable
scripting for large sequencing data sets in hadoop. Bioinformatics. 2014;30(1):
119–20.

	 79.	 R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing; 2014.

	 80.	 The Comprehensive R Archive Network. 2014. Available at: http://cran.r-
project.org/. Accessed December 10, 2014.

	 81.	 Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software develop-
ment for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

	 82.	 Guha S, Hafen R, Rounds J, et al. Large complex data: divide and recombine
D&R with RHIPE. Statistics. 2012;1:53–67.

	 83.	 Huang H, Tata S, Prill RJ. BlueSNP: R package for highly scalable genome-wide
association studies using hadoop clusters. Bioinformatics. 2013;29(1):135–6.

	 84.	 Mann M, Wilm M. Error-tolerant identification of peptides in sequence data-
bases by peptide sequence tags. Anal Chem. 1994;66(24):4390–9.

	 85.	 Lewis S, Csordas A, Killcoyne S, et al. Hydra: a scalable proteomic search
engine which utilizes the Hadoop distributed computing framework. BMC
Bioinformatics. 2012;13:324.

	 86.	 The Cisco FlexPod Product Line. 2014. Available at: http://www.cisco.com/c/en/
us/solutions/data-center-virtualization/flexpod/index.html. Accessed December
10, 2014.

	 87.	 Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and
SAMtools. Bioinformatics. 2009;25(16):2078–9.

	 88.	 Jnomics. 0000. Available at: https://github.com/jgurtowski/jnomics.
	 89.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Met.

2012;9:357–359.
	 90.	 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a Map

Reduce framework for analyzing next-generation DNA sequencing data. Genome
Res. 2010;20(9):1297–303.

	 91.	 DePristo MA, Banks E, Poplin R, et al. A framework for variation discov-
ery and genotyping using next-generation DNA sequencing data. Nat Genet.
2011;43(5):491–8.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

Next generation distributed computing

109Cancer Informatics 2014:13(S7)

	 92.	 Danecek P, Auton A, Abecasis G, et al; 1000 Genomes Project Analysis Group.
The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.

	 93.	 Spark. 2014. Available at: https://spark.apache.org/. Accessed November 15,
2014.

	 94.	 Engle C, Lupher A, Xin R, et al. Shark: fast data analysis using coarse-grained
distributed memory. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 2012:689–92.

	 95.	 Zaharia M, Chowdhury M, Das T, et al. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing. USENIX NSDI; 2012.
San Jose, CA.

	 96.	 Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing. In: Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12. Berkeley, CA: USENIX Association; 2012:2.

	 97.	 Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. Academic Press, A Har-
court Science and Technology Company, San Diego, CA, USA; 1979.

	 98.	 Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2 ed.
Springer; 2009. Springer Science+Business Media, LLC 2011 233 Spring Street,
New York, NY 10013, USA.

	 99.	 Golub GH, Van Loan CF. Matrix Computations. 3rd Ed. ed. Baltimore, MD:
Johns Hopkins University Press; 1996.

	100.	 Lange K. Optimization. Springer Texts in Statistics. Springer; 2004. Springer-
Verlag, NY, LLC Part of Springer Science+Business Media, LLC 2011 233
Spring Street, New York, NY 10013, USA.

	101.	 Seo S, Yoon EJ, Kim J, et al. HAMA: an efficient matrix computation with
the MapReduce framework. In: 2010 IEEE Second International Conference
on Cloud Computing Technology and Science. CloudCom; 2010:721–6. IEEE
Computer Society.

	102.	 Massie M, Nothaft F, Hartl C, et al. ADAM: Genomics Formats and Processing
Patterns for Cloud Scale Computing. Technical Report UCB/EECS-2013–207.
Berkeley: EECS Department, University of California; 2013.

	103.	 Yan Y, Grossman M, Sarkar V. Jcuda: A Programmer-Friendly Interface for
Accelerating Java Programs with Cuda. In: Proceedings of the 15th Interna-
tional Euro-Par Conference on Parallel Processing, Euro-Par ’09. Berlin, HD:
Springer-Verlag; 2009:887–99.

	104.	 CUDA on Hadoop. 2014. Available at: http://wiki.apache.org/hadoop/CUDA%
200n%20Hadoop. Accessed November 11, 2014.

	105.	 mpiBLAST: Open-Source Parallel BLAST. 2014. Available at: http://www.
mpiblast.org/. Accessed November 23, 2014.

	106.	 Li KB. ClustalW-MPI: ClustalW analysis using distributed and parallel com-
puting. Bioinformatics. 2003;19(12):1585–6.

	107.	 Del Fabbro C, Vezzi F, Policriti A. mrNA: The MPI randomized Numerical Aligner.
Pennsylvania: IEEE International Conference on Bioinformatics and Biomedi-
cine (BIBM); 2011:139–42.

	108.	 Ronquist F, Huelsenbeck JP. MrBayes 3: bayesian phylogenetic inference under
mixed models. Bioinformatics. 2003;19(12):1572–4.

	109.	 Duncan DT, Craig R, Link AJ. Parallel Tandem: a program for parallel process-
ing of tandem mass spectra using PVM or MPI and X!tandem. J Proteome Res.
2005;4(5):1842–7.

	110.	 Liu Y, Schmidt B, Maskell DL. CUSHAW: a CUDA compatible short read
aligner to large genomes based on the burrows-wheeler transform. Bioinformatics.
2012;28(14):1830–7.

	111.	 Burrows M and Wheeler DJ. A Block Sorting Lossless Data Compression Algo-
rithm. Technical Report, Digital Equipment Corporation, 1994. 1994. Available
at: http://www.hpl. hp.com/techreports/Compaq-DEC/SRC-RR−124.pdf.

	112.	 Ferragina P and Manzini G. Opportunistic data structures with applications.
In foundations of computer science. In: Proceedings of 41st Annual Symposium
IEEE. 2000; 390–8.

	113.	 Luo R, Wong T, Zhu J, et al. SOAP3-dp: fast, accurate and sensitive GPU-based
short read aligner. PLoS One. 2013;8(5):e65632.

	114.	 Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB. Fast paral-
lel tandem mass spectral library searching using GPU hardware acceleration.
J. Proteome Res. 2011;10(6):2882–8.

	115.	 Milloy JA, Faherty BK, Gerber SA. Tempest: GPU-CPU computing for high-
throughput database spectral matching. J Proteome Res. 2012;11(7):3581–91.

	116.	 Zandevakili P, Hu M, Qin Z. GPUmotif: an ultra-fast and energy-efficient motif
analysis program using graphics processing units. PLoS One. 2012;7(5):e36865.

	117.	 Manconi A, Orro A, Manca E, Armano G, Milanesi L. GPU-BSM: a GPU-
based tool to map bisulfite-treated reads. PLoS One. 2014;9(5):e97277.

	118.	 Dematté L, Prandi D. GPU computing for systems biology. Brief Bioinform.
2010;11(3):323–33.

	119.	 Liepe J, Barnes C, Cule E, et al. SysBio – approximate Bayesian computation in
python with GPU support. Bioinformatics. 2010;26(14):1797–9.

	120.	 Hucka M, Finney A, Sauro HM, et al; SBML Forum. The systems biology
markup language (SBML): a medium for representation and exchange of bio-
chemical network models. Bioinformatics. 2003;19(4):524–31.

	121.	 Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, Pérez-Hurtado I,
Pérez-Jiménez MJ. Simulation of P systems with active membranes on Cuda.
Brief Bioinform. 2009;11:313–22.

	122.	 Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, Pérez-Hurtado I,
Pérez-Jiménez MJ. Implementing P systems parallelism by means of GPUs. In:
Pâun G, Pérez-Jiménez MJ, Riscos-Núñez A, Rozenberg G, Salomaa A, eds.
Membrane Computing, Lecture Notes in Computer Science, Vol.5957. Berlin HD:
Springer; 2010:227–41.

	123.	 Shterev ID, Jung SH, George SL, Owzar K. permGPU: using graphics pro-
cessing units in RNA microarray association studies. BMC Bioinformatics.
2010;11(1):329.

	124.	 Chang YJ, Chen CC, Chen CL, Ho JM. A de novo next generation genomic
sequence assembler based on string graph and MapReduce cloud computing
framework. BMC Genomics. 2012;13(S28):Sul7.

	125.	 Smith AD, Xuan Z, Zhang MQ. Using quality scores and longer reads improves
accuracy of Solexa read mapping. BMC Bioinformatics. 2008;9:128.

	126.	 Matsunaga A, Tsugawa M, Fortes J. Cloudblast: Combining Mapreduce and
Virtualization on Distributed Resources for Bioinformatics Applications.
In: Proceedings of Fourth IEEE CS International Conference. eScience
(ESCIENCE ’,08); 2008:222–9. IEEE Computer Society.

	127.	 Integrated Proteomics Pipeline. 2014. Available at: http://integratedproteomics.
com/. Accessed November 11, 2014.

	128.	 Muth T, Peters J, Blackburn J, Rapp E, Martens L. Proteocloud: a full-featured
open source proteomics cloud computing pipeline. J Proteomics. 2013;88:104–8.

	129.	 Pandey RV, Schlötterer C. DistMap: a toolkit for distributed short read mapping
on a hadoop cluster. PLoS One. 2013;8(8):e72614.

	130.	 Pireddu L, Leo S, Zanetti G. SEAL: a distributed short read mapping and dupli-
cate removal tool. Bioinformatics. 2011;27:2159–60.

	131.	 Leo S, Zanetti G. Pydoop: a Python MapReduce and HDFS API for
Hadoop. In: Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10. New York, NY, USA: ACM;
2010:819–25.

	132.	 Jourdren L, Bernard M, Dillies MA, Le Crom S. Eoulsan: a cloud com-
puting-based framework facilitating high throughput sequencing analyses.
Bioinformatics. 2012;28(11):1542–3.

	133.	 Langmead B, Hansen KD, Leek JT. Cloud-scale RNA-sequencing differential
expression analysis with Myrna. Genome Biol. 2010;11(R83):1–11.

	134.	 Gurtowski J, Schatz MC, Langmead B. Genotyping in the cloud with Crossbow.
Curr Protoc Bioinformatics. 2012;Chapter 15:Unit15.3.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
https://spark.apache.org/

