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Abstract: Background: Metabolic syndrome (MetS) is a common complication of long-term treatment
of persons with schizophrenia taking (atypical) antipsychotics. In this study, we investigated the
existence of an association with polymorphisms of genes for four hormones that regulate energy
metabolism. Methods: We recruited 517 clinically admitted white patients (269M/248F) with a
verified diagnosis of schizophrenia (ICD-10) and with a stable physical condition. Participants were
classified for having or not having MetS and genotyped for 20 single-nucleotide polymorphisms
(SNPs) in the genes encoding insulin-induced gene 2 (INSIG2), ghrelin (GHRL), leptin (LEP), and
leptin receptor (LEPR). Results: The 139 patients (26.9%) with MetS were significantly more likely
to be women, older, and ill longer, and had a larger body mass index (BMI). Four polymorphisms
(rs10490624, rs17587100, rs9308762, and rs10490816) did not meet the Hardy–Weinberg equilibrium
(HWE) criterion and were excluded. Only genotypes and alleles of the rs3828942 of LEP gene
(chi2 = 7.665, p = 0.022; chi2 = 5.136, p = 0.023) and the genotypes of the rs17047718 of INSIG2 gene
(chi2 = 7.7, p = 0.021) had a significant association with MetS. Conclusions: The results of our study
suggest that the LEP and INSIG2 genes play a certain causal role in the development of MetS in
patients with schizophrenia.

Keywords: metabolic syndrome; genetic polymorphism; INSIG2; GHRL; LEP; LEPR

1. Introduction

Antipsychotics are the main pharmacological agents used to treat schizophrenia
patients, but long-term use of most of these preparations increases the risk of developing
metabolic syndrome (MetS) [1–3]. MetS has associations with cardiovascular risk factors,
which increases the risk of death in patients with mental disorders. The hormonal regulators
of metabolism and their encoding genes may provide information about the mechanism
and be potential biomarkers for susceptibility to the development of MetS [4,5].

Previous studies have suggested some candidate genes for MetS, including the
insulin-induced gene 2 (INSIG2) [6,7], ghrelin gene (GHRL) [8–14], leptin (LEP) [7,11,15–19],
and leptin receptor genes (LEPR) [11,16,17,19,20]. For instance, INSIG2 rs17047764 was
shown to be associated with antipsychotic-related weight gain [6], whereas rs17587100,
rs10490624, and rs17047764 localized within or near the INSIG2 gene had a strong associa-
tion with clozapine-induced BMI gain in patients with schizophrenia [7]. GHRL rs27647,
rs26802, and rs696217 are associated with certain components of MetS in elderly people [10].
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In a previous study, we have measured serum levels of the adipokines leptin, adiponectin,
tumor necrosis factor-α, and interleukin-6, and related them to the existence of (components
of) MetS in people with schizophrenia [21]. The results suggest that leptin in particular is
elevated in people with MetS. We think it is interesting to investigate whether this also has
a genetic component.

Insulin-induced gene 2 (INSIG2) encodes for an Insig2 protein of 225 amino acids
that plays an important role in inhibiting the synthesis of cholesterol and other lipids in
adipocytes [22,23]. By binding to the sterol regulatory element-binding protein (SREBP)
and the cleavage-activating protein (SCAP), Insig prevents this SCAP/SREBP complex
from leaving the site of synthesis in the endoplasmic reticulum and coming into ac-
tion. Among other things, Insig prevents the transcription of 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMG-CoA reductase) and also promotes the sterol-dependent
degradation of HMG-CoA reductase. In this way, Insig2 is assigned an important regu-
latory role in adipocyte differentiation, cholesterol homeostasis, lipogenesis, and glucose
metabolism [22].

Ghrelin is a peptide hormone of 28 amino acids that is produced primarily in the
stomach and was first described in 1999 [24,25]. It is secreted in two forms: if less than
10% is acylated and if it has affinity for the growth hormone secretagogue receptor 1a
(GHSR1a). The remainder is not acylated and reacts with a yet unknown receptor. Ghrelin
has a multitude of biological effects, the best known of which is the promotion of appetite,
whereby acting on the hypothalamic arcuate nucleus (ARC) is thought to be the main
mechanism [25]. In addition to regulating this homeostatic food intake, peripherally
secreted ghrelin is also involved in hedonic-motivated craving for food [24]. Moreover,
ghrelin, in combination with leptin and orexin, has been attributed a role in the development
of obesity in people with short sleep duration [26]. A meta-analysis of 21 studies with
2250 participants found that short sleep duration was associated with increased ghrelin
levels, while sleep deprivation had a significant effect on the levels of both leptin and
ghrelin [27]. This is related to the fact that food intake also follows a circadian rhythm, and
that ghrelin and leptin play an important role in the circadian regulation of homeostatic
feeding [28].

The adipokine leptin is mainly produced by mature adipocytes of the white adipose
tissue and is one of the major hormonal signaling mediators from adipose tissue to other
tissues, including the central nervous system [29–32]. It was discovered in 1994 after
cloning the mouse obese gene [33]. The transcript of the human LEP gene is a polypeptide
of 167 amino acids [30,32], but it is secreted into the blood in an active form of 146 amino
acids [34]. Leptin achieves biological effects by binding to a leptin receptor, of which
at least six isoforms exist by alternative splicing or posttranslational modification of the
same gene transcript [29]. One of these, the LepRe isoform, is not membrane-bound, and
acts as the major transport protein in the blood stream and as an inhibitor of transport
through the blood–brain barrier [30,32]. Among the others, the long LepRb isoform is the
most important and is found at various sites in the central nervous system and in tissues
beyond [29]. Binding of leptin to this receptor results in the recruitment and activation
of Janus kinase 2 (JAK2) and, ultimately, in the activation of the signal transducer and
activator of transcription 3 (STAT3) signaling [30,32]. Although leptin can also reach the
nucleus arcuatus in the hypothalamus by other routes [30], it must cross the blood–brain
barrier (BBB) in order to reach the leptin receptors. Although still controversial, it has been
postulated that the short LepRa isoform performs this function as a leptin transporter across
the BBB, while the long LepRb isoform acts as the receptor proper [35,36]. An important
aspect of diet-induced obesity is the occurrence of resistance to the effects of exogenous
leptin and also ghrelin [37,38]. The mechanism of this and the role it may play in the
development of obesity are not entirely clear [38].

Most review articles take a deep look at how these hormones achieve their effects
via the hypothalamus and brainstem [30,39]. In doing so, in our opinion, this part of the
complex emotional response is not sufficiently framed within the larger picture of the com-
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plete emotional behavioral response [40]. We believe that the hypothalamus and brainstem
play primarily a role in the mutual adjustment of various “visceral” body functions to
momentary needs and by monitoring the balance between them. In this case, this means
that the hormones described primarily influence “homeostatic” energy regulation via the
hypothalamus. This does not exclude their involvement in the development of weight gain
and MetS, but makes this involvement more modest, since behavior regulated in other
ways will also have much influence. Because this involves a close interplay of factors in
the fine regulation of energy homeostasis, genetic changes in the sensitivity of receptors
may nevertheless be additional causes of derailment that can manifest themselves in the
development of MetS. For this reason, studying the relationship between polymorphisms
of INSIG2, GHRL, LEP, and LEPR was a logical step.

2. Materials and Methods
2.1. Patients

The study complied with the Declaration of Helsinki (1975, revised in Fortaleza, Brazil,
2013) and the protocol was approved by the local Bioethical Committee. We recruited
517 patients with schizophrenia from different psychiatric clinics of the Siberian region in
the Russian Federation. The detailed characteristics of the studied group are presented in
Boiko et al. (2021) [41]. The informed consent of all participants was obtained.

The main criteria for the inclusion of patients in the study were a diagnosis of
schizophrenia according to the International Classification of Diseases, 10th Revision
(ICD-10) criteria, as assessed by applying a structured clinical interview (Structured Clini-
cal Interview for the DSM [SCID]); age 18–65 years; white appearance; and the absence of
severe organic pathology or somatic disorders in the stage of decompensation.

The antipsychotic and concomitant therapy received at the time of the examination
(drugs, dosages used, duration of current drug use) was assessed, as well as previous
antipsychotic and concomitant somatic therapy during the preceding six months. We used
the chlorpromazine equivalent (CPZeq) daily dosage to standardize the dose, efficacy, and
side effects of antipsychotics [42].

MetS was diagnosed according to the criteria of the International Diabetes Feder-
ation (IDF, 2005) [43]. The differences between total cholesterol, high-density lipopro-
teins, triglyceride, and glucose in the groups with and without MetS are presented in
Supplementary Table S1.

2.2. Blood Sampling

To obtain blood serum, vacutainer tubes containing SiO2 as a coagulation activator
(CAT) were used. We applied the standard procedure in which blood samples were
centrifuged at 2000× g at 4 ◦C for 30 min, followed by storage of the serum aliquots at
−20 ◦C (or −80 ◦C) until analysis. For DNA isolation, vacutainer tubes containing EDTA
were used, and the standard phenol–chloroform method was applied.

2.3. Biochemical Parameters

Total cholesterol, high-density lipoproteins, triglyceride, and glucose were measured
by commercial colorimetric enzymatic methods (Cormay, Poland).

2.4. Genetic Analysis

Genotyping of 20 single-nucleotide polymorphisms (SNPs) in the ghrelin gene (GHRL:
rs10490816, rs26312, rs26802, rs27647, rs35682, rs35683), leptin gene (LEP: rs2167270, rs3828942,
rs10954173, rs4731426), leptin receptor gene (LEPR: rs1805094, rs1137101, rs1171276, rs1805134),
and insulin-induced gene 2 (INSIG2: rs10490624, rs12623648, rs17047718, rs17587100, rs9308762,
rs17047731) was carried out using a MassARRAY Analyzer 4 mass spectrometer (Agena
Bioscience) and a QuantStudio 3D Digital PCR System Life Technologies amplifier (Applied
Biosystems) using TaqMan Validated SNP Genotyping Assay kits (Applied Biosystems),
based at The Core Facility “Medical Genomics” (Tomsk National Research Medical Center
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of the Russian Academy of Sciences). Selection criteria of the studied SNPs included a
citation in the previous genetic studies of MetS components as described in the introduction,
and a minor allele frequency (MAF) of > 5%. Basic information on these SNPs is described
in Supplementary Table S2.

2.5. Statistical Analysis

Statistical analysis was carried out with SPSS software (release 23.0) and software R
version 4.0.4 using standard functions, as well as additional packages “SNPassoc”, “psych”,
and “dplyr”. The chi-square test was used to compare gender between the groups and
the Mann–Whitney U test to compare the other demographic and clinical variables. The
Hardy–Weinberg equilibrium (HWE) of genotypic frequencies was tested by the chi-square
test. Pearson’s chi-squared test was used for between-group comparisons of genotypic and
allelic frequencies. An assessment of the association of genotypes and alleles of the studied
polymorphic variants of genes with a pathological phenotype was carried out using the
odds ratio (OR) with a 95% confidence interval for the odds ratio (95% CI). The critical
significance level was 0.05.

3. Results

A total of 517 patients receiving long-term antipsychotic therapy were examined. MetS
was diagnosed in 139 patients (26.9%). Table 1 presents the main demographic and clinical
parameters of the studied patient groups. The same parameters of the studied patient
groups depending on gender are presented in Supplementary Table S3.

Table 1. Demographic and clinical parameters of the studied patient groups.

Parameter Patients without MetS,
n = 378 (73.1%)

Patients with MetS,
n = 139 (26.9%) p Value

Gender
Women 165 (43.7%) 83 (59.7%)

0.002Men 213 (56.3%) 56 (40.3%)

Mean age (M ± SD) 39.03 ± 11.65 44.19 ± 11.51 <0.0001
Mean duration of illness

(Me [Q1; Q3]) 12.0 [6.0; 20.0] 17.0 [9.5; 22.5] 0.001

Mean CPZeq, dose
(Me [Q1; Q3]) 442.4 [250.0; 758.7] 442.4 [225.0; 778.7] 0.775

Body mass index (BMI)
(M ± SD) 24.40 ± 4.85 31.04 ± 5.78 <0.0001

Note: Comparisons between groups have been made using the chi-squared test for gender and the Mann–Whitney
U-test for the other variables. Abbreviations: Me [Q1; Q3]—median and quartiles (first and third); MetS: metabolic
syndrome; CPZeq: chlorpromazine equivalent; M ± SD—mean and standard deviation.

In our sample, MetS was more often diagnosed in women with schizophrenia. The
patients with MetS were significantly older (p < 0.0001), and the duration of illness in these
patients was significantly longer than that in patients without MetS (p = 0.001). The study
groups also showed significant differences in body mass index (p < 0.0001).

Checking the frequency distribution of genotypes in the study group of patients
showed that the frequency distribution corresponds to the Hardy–Weinberg equilibrium
except for polymorphisms rs10490624 (LEP), rs17587100 and rs9308762 (INSIG2), and
rs10490816 (GHRL) (Supplementary Table S2). These polymorphisms were excluded from
further analysis.

Statistical analysis of LEP and INSIG2 in the group of schizophrenia patients revealed
a significant association of genotypes and alleles of the rs3828942 of LEP gene (chi2 = 7.665,
p = 0.022; chi2 = 5.136, p = 0.023) (Table 2) and the genotypes of the rs17047718 of INSIG2
gene (chi2 = 7.7, p = 0.021) with MetS (Table 3). The genotype AA and the allele A of the
rs3828942 have a predisposing effect on the development of MetS (OR1 = 2.06, 95%CIs:
1.16–3.64; OR2 = 1.4, 95%CIs: 1.05–1.87). For the polymorphisms of the GHRL and LEPR
genes, no associations were found with MetS in the study group of patients (Tables 4 and 5).
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Table 2. Distribution of alleles and genotypes of LEP polymorphisms in groups of patients.

SNP Genotypes/
Alleles

Patients without MetS
n (%)

Patients with MetS
n (%) OR 95%CI χ2 p

rs2167270

G/G 111 (32.1) 51 (40.8) 1.46 0.96–2.23
4.194 0.123G/A 174 (50.3) 55 (44.0) 0.69 0.44–1.08

A/A 61 (17.6) 19 (15.2) 0.68 0.37–1.25
G 0.572 0.628 1.26 0.94–1.70

2.354 0.125A 0.428 0.372 0.79 0.59–1.07

rs3828942

G/G 107 (30.9) 34 (27.2) 0.83 0.53–1.32
7.665 0.022 *G/A 184 (53.2) 55 (44.0) 0.94 0.58–1.53

A/A 55 (15.9) 36 (28.8) 2.06 1.16–3.64
G 0.575 0.492 0.72 0.54–0.96

5.136 0.023 *A 0.425 0.508 1.40 1.05–1.87

rs10954173

G/G 112 (32.5) 52 (41.9) 1.50 0.99–2.29
4.199 0.123A/G 171 (49.6) 52 (41.9) 0.65 0.42–1.03

A/A 62 (18.0) 20 (16.1) 0.69 0.38–1.27
G 0.572 0.629 1.27 0.94–1.71

2.409 0.121A 0.428 0.371 0.79 0.59–1.06

rs4731426

C/C 85 (24.6) 41 (33.1) 1.51 0.97–2.36
4.425 0.109G/C 179 (51.9) 58 (46.8) 0.67 0.42–1.08

G/G 81 (23.5) 25 (20.2) 0.64 0.36–1.15
C 0.506 0.565 1.27 0.95–1.70

2.521 0.112G 0.494 0.435 0.79 0.59–1.06

In bold and with *: Significant difference p < 0.05.

Table 3. Distribution of alleles and genotypes of INSIG2 polymorphisms in groups of patients.

SNP Genotypes/
Alleles

Patients without MetS
n (%)

Patients with MetS
n (%) OR 95%CI χ2 p

rs10490624

T/T 223 (81.7) 79 (78.2) 0.81 0.46–1.41
1.406 0.495C/T 27 (9.9) 12 (11.9) 1.25 0.61–2.60

C/C 23 (8.4) 10 (9.9) 1.23 0.56–2.69
T 0.866 0.842 0.82 0.52–1.29

0.746 0.388C 0.134 0.158 1.22 0.78–1.91

rs12623648

G/G 317 (91.6) 113 (90.4) 0.86 0.43–1.75
2.255 0.324G/T 29 (8.4) 11 (8.8) 1.06 0.51–2.20

T/T 0 (0.0) 1 (0.8) - -
G 0.958 0.948 0.80 0.41–1.56

0.439 0.508T 0.042 0.052 1.25 0.64–2.45

rs17047718

A/A 307 (89.0) 110 (89.4) 1.05 0.54–2.04
7.700 0.021 *A/G 38 (11.0) 10 (8.1) 0.73 0.35–1.52

G/G 0 (0.0) 3 (2.4) - -
A 0.945 0.935 0.84 0.46–1.53

0.331 0.565G 0.055 0.065 1.19 0.65–2.18

rs17587100

A/A 237 (73.6) 77 (68.8) 0.79 0.49–1.26
1.687 0.430C/A 73 (22.7) 31 (27.7) 1.31 0.80–2.14

C/C 12 (3.7) 4 (3.6) 1.03 0.32–3.27
A 0.849 0.826 0.84 0.56–1.26

0.694 0.405C 0.151 0.174 1.19 0.79–1.79

rs9308762

T/T 189 (54.9) 55 (44.4) 0.65 0.43–0.99
4.116 0.128C/T 99 (28.8) 47 (37.9) 1.63 1.03–2.58

C/C 56 (16.3) 22 (17.7) 1.35 0.76–2.40
T 0.693 0.633 0.76 0.56–1.04

3.028 0.082C 0.307 0.367 1.31 0.97–1.78

rs17047731

G/G 305 (88.4) 110 (88.7) 1.03 0.54–1.97
4.945 0.084G/A 40 (11.6) 12 (9.7) 0.83 0.42–1.64

A/A 0 (0.0) 2 (1.6) - -
G 0.942 0.935 0.89 0.49–1.62

0.139 0.709A 0.058 0.065 1.12 0.62–2.04

In bold and with *: Significant difference p < 0.05.
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Table 4. Distribution of alleles and genotypes of LEPR polymorphisms in groups of patients.

SNP Genotypes/
Alleles

Patients without MetS
n (%)

Patients with MetS
n (%) OR 95%CI χ2 p

rs1805094

G/G 256 (74.0) 95 (76.0) 1.11 0.69–1.79
0.470 0.790C/G 84 (24.3) 27 (21.6) 0.87 0.53–1.42

C/C 6 (1.7) 3 (2.4) 1.35 0.33–5.50
G 0.861 0.868 1.06 0.69–1.62

0.070 0.791C 0.139 0.132 0.94 0.62–1.44

rs1137101

G/G 95 (27.5) 35 (28.2) 1.03 0.66–1.63
0.453 0.797G/A 170 (49.3) 57 (46.0) 0.91 0.56–1.49

A/A 80 (23.2) 32 (25.8) 1.09 0.62–1.91
G 0.522 0.512 0.96 0.72–1.29

0.068 0.794A 0.478 0.488 1.04 0.78–1.39

rs1171276

A/A 240 (69.6) 91 (73.4) 1.21 0.76–1.91
0.614 0.736A/G 101 (29.3) 29 (23.4) 0.76 0.47–1.22

G/G 4 (1.2) 4 (3.2) 2.64 0.65–
10.77

A 0.842 0.851 1.07 0.71–1.60
0.107 0.744G 0.158 0.149 0.93 0.62–1.40

rs1805134

T/T 228 (66.1) 86 (69.4) 1.16 0.75–1.81
1.008 0.604C/T 104 (30.1) 33 (26.6) 0.84 0.53–1.34

C/C 13 (3.8) 5 (4.0) 1.02 0.35–2.95
T 0.812 0.827 1.11 0.76–1.62

0.274 0.601C 0.188 0.173 0.90 0.62–1.32

Table 5. Distribution of alleles and genotypes of GHRL polymorphisms in groups of patients.

SNP Genotypes/
Alleles

Patients without MetS
n (%)

Patients with MetS
n (%) OR 95%CI χ2 p

rs10490816

G/G 170 (49.1) 58 (46.4) 0.90 0.59–1.35
1.05 0.592G/C 133 (38.4) 50 (40.0) 1.10 0.71–1.71

C/C 43 (12.4) 17 (13.6) 1.16 0.61–2.19
G 0.684 0.664 0.91 0.67–1.24

0.321 0.571C 0.316 0.336 1.09 0.80–1.49

rs26312

G/G 283 (82.0) 101 (80.8) 0.92 0.55–1.56
0.34 0.844A/G 58 (16.8) 23 (18.4) 1.11 0.65–1.89

A/A 4 (1.2) 1 (0.8) 0.70 0.08–6.34
G 0.904 0.900 0.95 0.59–1.55

0.040 0.842A 0.096 0.100 1.05 0.65–1.71

rs26802

T/T 153 (44.2) 61 (48.8) 1.20 0.80–1.81
1.676 0.433G/T 154 (44.5) 51 (40.8) 0.83 0.54–1.28

G/G 39 (11.3) 13 (10.4) 0.84 0.42–1.67
T 0.665 0.692 1.13 0.83–1.55

0.619 0.431G 0.335 0.308 0.88 0.65–1.20

rs27647

T/T 128 (37.0) 44 (35.2) 0.93 0.60–1.42
0.743 0.690C/T 169 (48.8) 62 (49.6) 1.07 0.68–1.67

C/C 49 (14.2) 19 (15.2) 1.13 0.60–2.12
T 0.614 0.600 0.94 0.70–1.27

0.155 0.694C 0.386 0.400 1.06 0.79–1.43

rs35682

A/A 93 (26.9) 34 (27.2) 1.02 0.64–1.61
1.197 0.550G/A 178 (51.4) 58 (46.4) 0.89 0.54–1.46

G/G 75 (21.7) 33 (26.4) 1.20 0.68–2.12
A 0.526 0.504 0.92 0.69–1.22

0.357 0.550G 0.474 0.496 1.09 0.82–1.46

rs35683

C/C 96 (27.7) 34 (27.2) 0.97 0.61–1.54
1.482 0.477C/A 175 (50.6) 58 (46.4) 0.94 0.57–1.53

A/A 75 (21.7) 33 (26.4) 1.24 0.71–2.19
C 0.530 0.504 0.90 0.67–1.20

0.511 0.475A 0.470 0.496 1.11 0.83–1.48
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4. Discussion

In this study, with a naturalistic experimental design, we genotyped a group of
517 physically stable patients with schizophrenia (248 women and 269 men) for 20 poly-
morphisms in the genes encoding insulin-induced gene 2 (INSIG2), ghrelin (GHRL), leptin
(LEP), and the leptin receptor (LEPR), and examined whether differences existed between
378 patients without and 139 with MetS. We found a significant relationship with the
occurrence of MetS only for rs3828942 of the LEP gene and rs17047718 of the INSIG2 gene.

In our population, MetS is significantly more common in women than in men. This
may be sincerely so, but can also be related to the differences in the IDF (2005) criteria for
men and women. The significant differences between patients with and without MetS, in
terms of age and duration of illness, are probably related to longer-term treatment with
(atypical) antipsychotics. The significant difference in BMI is probably causally related to
having MetS.

The polymorphism rs3828942 corresponds to a variation in the intron domain of
the LEP gene. This polymorphism has nevertheless been repeatedly shown to be associ-
ated with clinical CNS-related phenomena [44–47]. Therefore, it may be shown that this
polymorphism itself, or a polymorphism with rs3828942 in equilibrium, has functional con-
sequences. These are not necessary related to homeostatic energy regulation because this
variant is probably also involved in sleep parameters [45] and anxiety [47]. Interestingly,
Salerno and colleagues examined the association of leptin levels and LEP rs3828942 with
generalized anxiety disorder (GAD), taking into account gender differences [47]. They
showed an interaction between this genotype and the diagnosis of GAD based on leptin
levels, but only in the male group [p = 0.0139]. Leptin was associated in a sex-dependent
manner with the neurobiology of anxiety disorders because female carriers of the A allele
of LEP rs3828942 showed a higher risk for GAD, while leptin levels seemed to be lower in
men with GAD who were carriers of the A allele [48]. Based on these data, we can speculate
that the rs3828942 may have an influence on serum leptin levels, which are involved in the
pathogenesis of the MetS.

The polymorphism rs17047718 is a variant in the promoter domain of the INSIG2 gene.
Talbert and colleagues’ study [48] of quantitative adiposity and glucose homeostasis traits
in 1425 Hispanics of the Insulin Resistance Atherosclerosis Family Study found a clear
association of this SNP with direct computed tomography (CT)-measured adiposity pheno-
types and with glucose homeostasis traits. The most prominent association was observed
between rs17047718 and visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT),
and VAT to SAT ratio (VSR) (p values ranged from 0.007 to 0.044) [48]. For rs17047731,
we still found a statistical trend; however, for rs12623648 and rs9308762, we found no
association in our study. In their meta-analysis, Zhang et al. [6] found some association
between rs17047764 and antipsychotic-related weight gain, but we did not examine this
SNP. We would like to tentatively conclude that the INSIG2 gene is probably involved in
the development of MetS in people with schizophrenia treated with antipsychotic drugs.

Limitations

Our research has several limitations. First, we studied a natural cohort and examined
it trans-sectionally. It would be better to prospectively follow the occurrence of MetS in
individuals randomized to certain genotypes of the SNPs studied. However, this is not
feasible. This limitation means that our results are only indicative, but no less interesting.
A second limitation is that our patients may have comorbidities and may use comedications,
which may also influence the prevalence of MetS. We excluded patients with severe organic
pathology or somatic disorders in a decompensation stage from participation, and we
expect that the comedication used will be distributed at random across the genotypes,
thus limiting the ultimate influence. Compared with studies conducted by cardiovascular
interested scientists, the size of the population studied is modest. The reader should not
lose sight of the fact that we are primarily interested in mechanistic research and that our
population consists of people with schizophrenia who are stable on antipsychotics. For this
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reason, we also do not consider it appropriate to correct for multiple testing, but we are
aware that our results do not have sufficient probative value to justify use as a biomarker.

5. Conclusions

The results of our study show that the LEP and INSIG2 genes can play an important
role in the development of MetS in patients with schizophrenia. Further study of the
molecular genetic factors of MetS and the mechanisms by which antipsychotics affect
metabolic parameters is necessary in order to assess the risk of metabolic disorders and the
implementation and individual approach to therapeutic tactics.
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