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Abstract

Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we
reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea–induced ethylene biosynthesis and
their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated
protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of
additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants
under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not
clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a
Type II ACS isoform, also contribute to the B. cinerea–induced ethylene production. In addition to post-translational
regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction.
Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation
but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/
MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay
reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that
WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response
to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a
key role in determining the kinetics and magnitude of ethylene induction.
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Introduction
The gaseous phytohormone ethylene profoundly impacts plant

growth, development, and response to environmental stimuli [1–

7]. Studies from a number of labs have defined a signaling

pathway—from ethylene receptors to downstream signaling

components to transcription factors—that alters gene expression

and leads to ethylene-induced phenotypes (reviewed in

[1,2,5,8,9]). Ethylene-regulated responses are suppressed in the

absence of ethylene, and such suppression is released upon plant

sensing of ethylene. As a result, all ethylene-regulated processes

begin with the induction of ethylene biosynthesis [10]. Plants

under stress, including wounding, flooding, drought, osmotic

shock, ozone, and pathogen/insect invasion, produce elevated

levels of ethylene [1,6,7,11]. For this reason, ethylene is also

known as a plant stress hormone. The biosynthetic pathway of

ethylene has been fully elucidated for over two decades. Two

enzymatic steps are unique to ethylene biosynthesis: conversion of

S-adenosyl-methionine (SAM), a common metabolic precursor, to

1-amino-cyclopropane-1-carboxylic acid (ACC) by ACC synthase

(ACS) and oxidative cleavage of ACC to form ethylene by ACC

oxidase (ACO) [1,4,12]. ACS activity is very low in tissues that do

not produce a large amount of ethylene and is enhanced under

conditions that promote ethylene formation [1,4,12–14]. In

contrast, ACO is constitutively present in most vegetative tissues.

As a result, ACS is believed to be the committing and generally

rate-limiting enzyme in ethylene biosynthesis.

ACS is encoded by a small gene family in plants. In Arabidopsis,

there are nine ACS members. Based on the presence/absence of

phosphorylation sites in their C-termini, ACS isoforms are

classified into three types [15]. Type I ACS isoforms, which
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include Arabidopsis ACS1, ACS2, and ACS6, have phosphory-

lation sites by both mitogen-activated protein kinases (MAPKs)

and calcium-dependent protein kinases (CDPKs) [16,17]. Type II

ACS isoforms, which include Arabidopsis ACS4, ACS5, ACS8,

and ACS9, only have putative CDPK phosphorylation sites. In

contrast, Type III ACS isoforms have shorter C-terminal

extension and lack both phosphorylation sites. ACS7 and

ACS11 are the two Type III ACS isoforms in Arabidopsis.

ACS1 has a short deletion with the highly conserved tripeptide

Thr-Asn-Pro (TNP) missing. It is enzymatically inactive as a

homodimer, but can form functional heterodimers with other

Type I isoforms and may contribute to ethylene biosynthesis

[18,19]. ACS isoforms show cell- and tissue-specific expression and

are developmentally regulated. In addition, expression of some

members is highly responsive to extracellular stimuli [1,20].

More recent studies have highlighted the importance of ACS

protein stability regulation by protein phosphorylation and

dephosphorylation. MAPK cascades are signaling modules down-

stream of sensors/receptors that transduce extracellular stimuli

into intracellular responses in eukaryotes. A basic MAPK cascade

is composed of three interconnected kinases. MAPKs function at

the bottom of the three-kinase cascade and are activated by

MAPK kinases (MAPKKs) through phosphorylation on the Thr

and Tyr residues in their activation motif between the kinase

subdomain VII and VIII. The activity of MAPKKs is, in turn,

regulated by MAPKK kinases (MAPKKKs) via phosphorylation

of two Ser/Thr residues in the activation loop of MAPKKs.

MAPKKKs receive signals from upstream receptors/sensors, most

of the time indirectly with additional components involved

[21,22]. The outputs of a MAPK cascade are dependent on the

substrates of the MAPK(s) in the cascade. A subset of MAPKs in

plants, represented by tobacco SIPK/Ntf4/WIPK and Arabidop-

sis MPK3/MPK6, is activated under various stress conditions that

elevate ethylene production (reviewed in [21,23–26]). A gain-

of-function analysis in tobacco revealed that activation of

SIPK/WIPK induces high levels of ethylene production [27].

More detailed analyses in Arabidopsis have demonstrated that

ACS2 and ACS6, two Type I ACS isoforms, are substrates of

MPK3 and MPK6 [16,28]. Phosphorylation of ACS2/ACS6 by

MPK3 and MPK6 stabilizes the ACS protein in vivo, resulting in

increases in cellular ACS activity and in ethylene production. The

degradation machinery targets the C-terminal, non-catalytic

domain of ACS6 and possibly ACS2 because of their sequence

similarity [29]. Phosphorylation of ACS6 introduces negative

charges to its C-terminus, which reduces the turnover of ACS6 by

the ubiquitin-proteasome degradation machinery.

In addition to protein phosphorylation, protein dephosphory-

lation also plays critical role in ACS stability regulation. Recently,

it was demonstrated that protein phosphatase 2A dephosphory-

lates ACS2/ACS6 and destabilizes them, a critical process that

counteracts with MAPK phosphorylation [30]. Members of the

Type II group, including ACS5 and ACS9, are also regulated at

protein stability levels, possibly by protein phosphorylation as well

[15,31–33]. However, the kinase(s) involved remain unidentified.

Because of the complex regulation of ACS protein/activity at

multiple levels, many details about the up-regulation of ethylene

biosynthesis remain unclear, including the specific ACS isoforms

involved in the ethylene induction in response to a specific

stimulus, the regulatory pathways that control the expression of

ACS genes, and the components involved in the regulation of ACS

protein stability. It has been known for decades that a subset of

ACS genes, including Arabidopsis ACS6, is transcriptionally

activated in plants under stress or pathogen attack. However,

the importance of this transcriptional activation and the under-

lying regulatory mechanism are not known. Furthermore, ethylene

induction by different stimuli exhibits different kinetics and

magnitude. The underlying molecular mechanism of such

differential induction is also unclear.

We are interested in the regulation of ethylene biosynthesis in

plants infected by pathogens. ACS2 and ACS6, two Type I ACS

isoforms, are involved in Botrytis-induced ethylene production [28].

The residual levels of ethylene induction in the acs2/acs6 double

mutant suggest involvement of additional ACS isoforms. In this

study, we investigated (1) the potential involvement of all ACS

isoforms in ethylene induction triggered by B. cinerea infection, (2)

the importance of transcriptional activation of ACS gene expres-

sion, (3) the signaling pathways involved in the ACS gene

activation, and (4) the molecular mechanism underlying the

differential kinetics and magnitude of ethylene induction by

different stimuli. We found that members in all three ACS groups

are involved in pathogen-induced ethylene production, with

ACS2, ACS6, and ACS7 contributing the most to B. cinerea-

induced ethylene production. Based on analyses of an ACS6

knockdown mutant and of conditional gain-of-function ACS6

transgenic lines, we also can conclude that the transcriptional

activation of the ACS6 gene plays a critical role in sustaining high

levels of ethylene induction. Interestingly, MPK3 and MPK6 not

only function in the phosphorylation-induced stabilization of

ACS2/ACS6 proteins, but also signal the ACS2 and ACS6 gene

activation after B. cinerea infection. WRKY33, a MPK3/MPK6

substrate that regulates camalexin biosynthesis [34], is also

responsible for turning on ACS2/ACS6 expression downstream of

MPK3/MPK6 cascade. WRKY33 binds to the W-boxes in the

ACS2/ACS6 promoters in vivo and is directly involved in MPK3/

MPK6-induced ACS2/ACS6 gene expression. The duration and

magnitude of MPK3/MPK6 activation vary with different stimuli

and correlate well with the duration and magnitude of ethylene

induction. Regulation of ACS activity at multiple levels by the

MPK3/MPK6 cascade is an important mechanism by which the

Author Summary

Plant immunity, similar to that in animals, also involves
mitogen-activated protein kinase (MAPK) cascades. How-
ever, plants use unique MAPK substrates and secondary
signaling molecules in the process. Among them, ethylene,
a gaseous plant hormone, plays critical roles. Ethylene-
regulated responses begin with the induction of ethylene
biosynthesis. 1-amino-cyclopropane-1-carboxylic acid syn-
thase (ACS) catalyzes the committing and rate-limiting
step in ethylene biosynthetic pathway. The Arabidopsis
genome encodes nine different ACS isoforms. Two of
them, ACS2 and ACS6, were previously shown to be
phosphorylated and stabilized by MPK3 and MPK6, two
Arabidopsis pathogen-responsive MAPKs. Using a genetic
approach, we identified additional ACS isoforms including
ACS7, ACS8, and ACS11 that also contribute to pathogen-
induced ethylene production. In addition to direct phos-
phorylation modification and stabilization of ACS2 and
ACS6 proteins, MPK3 and MPK6 also regulate the
expression of ACS2 and ACS6 genes through another
MPK3/MPK6 substrate, WRKY33, a member of the plant-
specific WRKY transcription factor family. Regulations of
ACS isoforms at both transcriptional and post-translational
levels contribute to the high-level ethylene production in
plants challenged by invading pathogens. These findings
shed light on our understanding of the regulation of the
kinetics and magnitude of ethylene induction under
different stress conditions.

Dual-Level Regulation of Ethylene Biosynthesis
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levels/kinetics of ethylene production are regulated during plant

stress/defense response.

Results

Activation of ACS gene expression in B. cinerea–infected
Arabidopsis

Our previous research demonstrated involvement of ACS2 and

ACS6 in ethylene induction in B. cinerea-infected Arabidopsis [28].

This research also implicated the involvement of additional ACS

genes since there was still an approximately 25% residual level of

ethylene induction in the acs2/acs6 double mutant. To identify the

ACS isoforms involved, we profiled the expression of all nine ACS

genes in Arabidopsis infected with B. cinerea. As shown in

Figure 1A, transcripts of ACS2, ACS6, ACS7, and ACS8 accumu-

lated approximately 1600, 200, 50, and 1200 fold, respectively,

over their basal levels. ACS11 transcript also accumulated about 6

fold. ACS5 and ACS9 transcripts could be reliably detected, but no

increases were observed. In contrast, ACS1 and ACS4 transcripts

were not detectable. To better assess the potential contribution of

each ACS gene to ethylene production, we also calculated their

expression levels relative to that of EF1a (Figure 1B). This

calculation allowed us to compare the relative levels of expression

between different ACS genes. From this dataset, we found that the

expression levels of ACS2, ACS6, and ACS7 were among the

highest. ACS8 and ACS11 had lower levels of expression after

induction, while ACS5 and ACS9 expression remained very low.

The expression of ACS8 increased more than 1200 fold relative to

its basal level (Figure 1A). However, because of its low basal level

expression, the induced level of ACS8 transcript was still much

lower than those of ACS2, ACS6, and ACS7 (Figure 1B). If

regulation at other levels is the same, ACS8 is likely a minor

contributor despite the high-fold induction. In contrast, levels of

ACS7 transcript were considerably elevated (Figure 1B), despite a

relatively low fold induction (Figure 1A), a result of a relatively

high basal level. Based on these results, we speculated that ACS7

might be a major contributor to ethylene induction after plant

sensing of pathogen invasion besides ACS2 and ACS6.

B. cinerea–induced ethylene production involves ACS
isoforms in all three groups

To establish the involvement of ACS7, we identified two null

mutant alleles of ACS7, acs7-1 (FLAG_431D05, in Ws-0

background) and acs7-2 (CSHL_ET5768, in Ler-0 background).

In both mutant alleles, B. cinerea-induced ethylene production is

slightly reduced (Figure S1), similar to that in the acs2 or acs6 single

mutant [28]. This result suggests that ACS7 also contributes to B.

cinerea-induced ethylene production. In our previous publications

[16,28], we did not assign allele numbers to the acs2 and acs6

mutants. To be consistent with the nomenclature used in Dr.

Theologis’s lab [35], the acs6 allele (Salk_090423) was given an

allele number of acs6-2. This allele turned out to be a knockdown

mutant (more discussion later). In contrast, the acs6-1 mutant allele

(SALK_025672) in the study by Tsuchisaka et al. (2009) is a null

mutant with a T-DNA insertion in the open reading frame (ORF)

[35]. We failed to identify any plant with a T-DNA insertion when

we initially ordered this line from the Arabidopsis Biological

Resource Center (ABRC) in 2003. The acs2 and acs7-1 mutant

alleles we used [16,28](Figure S1) are the same as the acs2-1 and

acs7-1 alleles, respectively, in Tsuchisaka et al. (2009) report [35].

Figure 1. Activation of ACS gene expression in Arabidopsis after B. cinerea infection. (A) Twelve-day-old Arabidopsis seedlings grown in GC
vials were inoculated with B. cinerea spores. Samples were collected at indicated times for total RNAs isolation. Expressions of all nine ACS genes were
quantified by real-time PCR. Induction of ACS gene expression (fold of induction relative to the level before inoculation) was calculated by the double
DCt method. (B) ACS transcript levels are expressed as percentage of EF1a transcript, which allows comparison of expression levels between different
ACS genes. In both calculations, the expression of EF1a was used as a reference. Error bars indicate standard deviations (n = 3). ND, not detectable.
doi:10.1371/journal.pgen.1002767.g001
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We then crossed acs7-1 into the acs2-1/acs6-2 double mutant

background and identified an acs2-1/acs6-2/acs7-1 triple mutant

in the F3 generation. As shown in Figure 2, only about 10%

residual ethylene production was observed in the acs2-1/acs6-2/

acs7-1 triple mutant, confirming the importance of ACS7 in B.

cinerea-induced ethylene production. Residual ethylene induction

in the acs2-1/acs6-2/acs7-1 triple mutant again points to involve-

ment of additional ACS members. To identify them, we utilized the

high-order acs mutants generated in Dr. Theologis’ lab [35]. We

found that acs2-1/acs6-1 seedlings produced a lower level of

ethylene than our acs2-1/acs6-2 double mutant after challenged

with B. cinerea (Figure 3 and Figure S2), which is consistent with the

knockdown nature of our acs6-2 allele. Additional mutation of

ACS4, ACS5, and ACS9 genes, either one at a time or all three at

once, in the acs2-1/acs6-1 background did not further reduce the

ethylene induction. This finding is consistent with our previous

conclusion that ACS5 and ACS9 are not involved in the ethylene

induction triggered by B. cinerea infection [28]. In contrast,

mutation of the ACS7 gene in the acs2-1/acs6-1/acs4-1/acs5-2/

acs9-1 background resulted in further reduction in the ethylene

induction. In this sextuple mutant (acs2-1/acs6-1/acs4-1/acs5-2/

acs9-1/acs7-1) background, mutation of ACS11, but not ACS1,

slightly reduced the ethylene production. The very low level of

ethylene induction in the acs1-1/acs2-1/acs6-1/acs4-1/acs5-2/acs9-

1/acs7-1/acs11-1 plants also implicates the involvement of ACS8.

In the absence of B. cinerea infection, seedlings of all genotypes

produced less than 15 nL ethylene per gram of seedlings within

24 hours, a very low level in comparison to the B. cinerea-induced

ethylene production (Figure S3). From this dataset, we can also

conclude that ACS7 contributed the most to the basal level

ethylene production. Seedlings without a functional ACS7 gene

including the acs1-1/acs2-1/acs6-1/acs4-1/acs5-2/acs9-1/acs7-1/

acs11-1 failed to produce a detectable level of ethylene. As a result,

the low-level ethylene production in this octuple acs mutant in

response to B. cincerea infection is indeed a contribution of ACS8

gene.

In summary, we can conclude that ACS2 and ACS6 are major

contributors of ethylene induction and that ACS7, ACS8, and

ACS11 contribute less, with a total of ,15% of the ethylene

induction in B. cinerea-infected Arabidopsis. Among the minor

contributors, the role of ACS7 and ACS8 in B. cinerea-induced

ethylene production is clear. In contrast, the contribution of ACS11

is somewhat uncertain because of the conclusion of its involvement

is based on a small quantitative difference. One potential

mechanism underlying each ACS isoform’s contribution to

ethylene induction is through the up-regulation of their gene

expression (Figure 1). There is a good correlation between the

transcriptional activation of ACS gene expression (Figure 1) and

involvement in B. cinerea-induced ethylene production (Figure 3).

Induction of ACS2 and ACS6 gene expression is
dependent on MPK3/MPK6 pathway

Previously, we demonstrated the importance of phosphorylation

regulation of ACS2 and ACS6 by MPK3 and MPK6 in

Arabidopsis in response to pathogens/pathogen-associated molec-

ular patterns (PAMPs) [16,28,29]. It is well known that the ACS6

gene is highly induced by stress, including wounding and pathogen

infection [1,4,6,11,36,37]. However, the importance of ACS gene

activation in pathogen-induced ethylene production remains

unclear. After our discovery that phosphorylation of ACS2 and

ACS6 proteins by MPK3/MPK6 is required for ACS2/ACS6

protein stabilization and accumulation, we started to explore the

potential contribution of ACS gene activation. Theoretically, an

increase in ACS transcript levels is likely to increase the rate of de

novo ACS protein synthesis, which, in turn, will increase the net

ACS protein/activity after MAPK phosphorylation and protein

stabilization.

To determine whether ethylene induction in the conditional

gain-of-function GVG-NtMEK2DD (DD, for short) plants [16,28] is

associated with ACS gene activation, we profiled the expression of

ACS genes in DD plants after dexamethasone (DEX) treatment. As

shown in Figure 4, the expressions of ACS2 and ACS6 were highly

induced. Different from B. cinerea-infected seedlings, no induction

in ACS7, ACS8, and ACS11 expression levels were observed. In

addition, we noticed the kinetics of ACS6 induction in the DD

plants were different from that in B. cinerea-infected plants (Figure 4

versus Figure 1). This difference is likely a result of the

Figure 2. ACS7 also contributes to B. cinerea-induced ethylene
production in Arabidopsis. Twelve-day-old wild type (Col-0), acs2-1/
acs6-2 double mutant, and acs2-1/acs6-2/acs7-1 triple mutant Arabi-
dopsis seedlings grown in GC vials were inoculated with B. cinerea.
Ethylene levels in the headspace were determined at indicated times.
Error bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g002

Figure 3. Ethylene induction in high-order acs mutants after B.
cinerea infection. Twelve-day-old wild type (Col-0) and acs mutants
generated in Dr. Theologis’ lab were inoculated with B. cinerea. Ethylene
levels in the headspace were determined at 24 hrs after spore
inoculation. Error bars indicate standard deviations (n = 3). The allele
numbers are omitted for easy labeling. They are acs1-1, acs2-1, acs4-1,
acs5-2, acs6-1, acs7-1, acs9-1, and acs11-1.
doi:10.1371/journal.pgen.1002767.g003
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synchronous response in DD plants. In contrast, the infection

process of B. cinerea is progressive. As more cells sensed the growing

hyphae, higher levels of ACS6 transcript were induced at later time

points.

To confirm that MPK3 and MPK6 are responsible for

induction of ACS2 and ACS6 expression levels in the gain-of-

function DD plants, we examined the expression of ACS2 and

ACS6 in DD/mpk3 and DD/mpk6 plants. As shown in Figure 5,

induction of ACS2 and ACS6 was compromised in both the mpk3

and mpk6 single mutant backgrounds. This finding demonstrates

that induction of ACS2 and ACS6 in DD seedlings after DEX

treatment is indeed a result of MPK3/MPK6 activation. Based on

the fact that MPK3 and MPK6 are highly activated after B. cinerea

infection [28,38], we speculate that the MPK3/MPK6 cascade is

involved in regulating the B. cinerea-induced ACS2/ACS6 gene

expression and that induction of ACS7, ACS8, and ACS11

expression is regulated by pathway(s) other than MPK3/MPK6

cascade.

To provide loss-of-function evidence to support the role of the

MPK3/MPK6 cascade in B. cinerea-induced ACS2/ACS6 gene

activation, we compared the induction of ACS2 and ACS6 gene

expressions in wild type, mpk3 single mutant, mpk6 single mutant,

and rescued mpk3/mpk6 double mutant. The rescued mpk3/mpk6

double mutant was obtained by transforming a DEX-inducible

promoter-driven MPK6 (GVG-MPK6) into mpk32/2/mpk6+/2

plants. When the T3 mpk32/2/mpk6+/2/GVG-MPK6+/+ plants

began to flower, DEX was sprayed every other day to rescue the

embryo lethality of the mpk32/2/mpk62/2/GVG-MPK6+/+ zygotes.

Progenies with mpk32/2/mpk62/2/GVG-MPK6+/+ genotype were

called rescued mpk3/mpk6 double mutants [39], and were used for

this experiment. As shown in Figure 6, B. cinerea-induced ACS2 and

ACS6 expressions were little affected in either the mpk3 or mpk6

single mutant. In the rescued mpk3/mpk6 double mutant, the

induction of both genes was dramatically reduced, which supports

the conclusion that MPK3 and MPK6 regulate expressions of ACS2

and ACS6 based on the gain-of-function analysis.

Different from B. cinerea-induced ACS2/ACS6 gene activation,

gain-of-function DD-induced ACS2/ACS6 gene activation was

compromised in either mpk3 or mpk6 single mutant background

(Figure 5 and Figure 6). There are several potential explanations

for this seemingly contradictory observation. First of all, MAPK-

phosphorylation regulation of ACS2/ACS6 gene activation will be

affected by both the phosphorylation of the downstream

transcription factor(s) such as WRKY33 (more discussion below),

and their dephosphorylation by the unidentified phosphatase(s). It

is possible that in the gain-of-function DD plants, both MPK3 and

MPK6 are needed to overcome the action of the phosphatase(s) to

maintain the phosphorylation of there transcription factor(s) and

the subsequent up-regulation of ACS2/ACS6 expression. In the

absence of either MAPK, the signaling strength is below the

threshold to counteract the phosphatases and the activation of

ACS2/ACS6 expression is severely compromised. It is possible that,

in addition to the activation of MPK3/MPK6 cascade, pathogen

infection may also inactivate the dephosphorylation process as a

mechanism to promote higher levels of ethylene production. In

this situation, the absence of only one MAPK may not be sufficient

Figure 4. Activation of ACS gene expression after MPK3/MPK6 activation in the gain-of-function DD Arabidopsis seedlings. (A)
Twelve-day-old conditional gain-of-function DD Arabidopsis seedlings grown in GC vials were treated with 1-mM DEX. Samples were collected at
indicated times for total RNA preparation. After reverse transcription, expressions of all nine ACS genes were quantified by real-time PCR. Induction of
ACS gene expression (fold of induction relative to the level before inoculation) was calculated by the double DCt method. (B) ACS transcript levels
expressed as percentage of EF1a transcript, which allows comparison of expression levels among different ACS genes. In both calculations, the
expression of EF1a was used as a reference. Error bars indicate standard deviations (n = 3). ND, not detectable.
doi:10.1371/journal.pgen.1002767.g004
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to block ACS2/ACS6 activation. Alternatively, it is possible that the

activation of pathways other than MAPK cascade can compensate

the weakened MAPK pathway in the single mpk3 or mpk6 mutant,

making it necessary to mutate both MPK3 and MPK6 to see the loss-

of-function phenotype in response to B. cinerea infection. Similar

phenomenon was also observed in MPK3/MPK6-mediated

camalexin induction in response to B. cinerea infection [38].

WRKY33 is involved in the MPK3/MPK6-regulated ACS2/
ACS6 gene activation

WRKY33 is a substrate of MPK3/MPK6 in regulating the

pathogen-induced phytoalexin biosynthesis [34]. WRKY33 func-

tions as a transcriptional activator downstream of MPK3 and

MPK6 in promoting the expression of camalexin biosynthetic

genes. To determine whether WRKY33 also is involved in

activation of ACS2 and ACS6 genes downstream of the MPK3/

MPK6 cascade, we quantified the expression of these two genes in

DD and DD/wrky33 plants. As shown in Figure 7B, the induction

of ACS2 and ACS6 mRNA by the gain-of-function DD transgene

was compromised in wrky33 mutant background. Associated with

this, the induction of ethylene biosynthesis was mostly inhibited

(Figure 7A). Previously, we showed that DD protein induction and

MPK3/MPK6 activation in DD/wrky33 plants are indistinguishable

from those in DD plants [34], which strongly supports the

conclusion that WRKY33 also functions downstream of MPK3/

MPK6 in promoting the expression of ACS2 and ACS6 genes. The

low residual levels of ACS2 and ACS6 gene activation is likely to be a

result of other WRKY transcription factors that can partially

substitute for the loss of WRKY33.

In contrast to the gain-of-function DD plants, mutation of the

WRKY33 gene had a minor impact on ethylene induction

triggered by B. cinerea infection. As shown in Figure 8A, we

observed only about a 20% decrease in ethylene production in

both alleles of the wrky33 mutant. A comparison of ACS2 and ACS6

gene expressions in the wild type and in the wrky33 mutant

revealed that about one-third of the induction in ACS2/ACS6

expression remained in the wrky33 mutant (Figure 8B). This

suggests that ACS2 and ACS6 still could be partially activated in the

absence of WRKY33. Because of the low residual ACS2/ACS6 gene

activation in the mpk3/mpk6 mutant (Figure 6), we speculate that

the residual levels seen in the wrky33 mutant are MPK3/MPK6-

dependent but WRKY33-independent, again pointing to addi-

tional transcription factors, possibly WRKY33 homologs that

partially replace WRKY33 in its absence.

No major reductions were observed in the induction of ACS7,

ACS8, and ACS11 expression in wrky33 infected with B. cinerea

(Figure S4), which is consistent with the conclusion that their

activation is MPK3/MPK6 and WRKY33 independent. The

normal activation of ACS7, ACS8, and ACS11 expressions, together

with the residual level of ACS2/ACS6 gene activation and protein

phosphorylation stabilization, may explain the observation that the

induction of ethylene in the wrky33 mutant was reduced by only

about 20% after B. cinerea infection (Figure 8A). In contrast, the

wrky33 mutation almost completely blocked induction of ethylene

biosynthesis in the gain-of-function DD plants (Figure 7A). B.

cinerea can activate multiple signaling pathways in plants. It is

possible that pathway(s) other than MPK3/MPK6 cascade are

Figure 5. Activation of ACS2 and ACS6 gene expressions in gain-
of-function DD is dependent on downstream MPK3 and MPK6.
Twelve-day-old DD, DD/mpk3, and DD/mpk6 seedlings grown in GC
vials were treated with 1-mM DEX. Samples were collected at indicated
times. Total RNAs were extracted and treated with DNase to remove
trace genomic DNA contamination. After reverse transcription, expres-
sions of ACS2 (A) and ACS6 (B) genes were quantified by real-time PCR.
ACS transcript levels were calculated as a percentage of the EF1a
transcript. Error bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g005

Figure 6. B. cinerea induced ACS2 and ACS6 gene activation is
dependent on functional MPK3 and MPK6. Twelve-day-old wild
type (Col-0), mpk3, mpk6, and rescued mpk3/mpk6 double mutant
seedlings grown in GC vials were inoculated with B. cinerea spores.
Samples were collected at indicated times. Total RNAs were extracted
and treated with DNase to remove trace genomic DNA contamination.
After reverse transcription, expressions of ACS2 (A) and ACS6 (B) genes
were quantified by real-time PCR. ACS transcript levels were calculated
as a percentage of the EF1a transcript. Error bars indicate standard
deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g006
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able to partially compensate the loss of WRKY33. It is known that

pathogen infection induces a large number of WRKY genes

[40,41], some of which might be able to partially compensate the

loss of WRKY33 gene in activating the expression of ACS2/ACS6.

WRKY33 binds to the W-boxes in the promoters of ACS2
and ACS6 genes in vivo

Genetic analysis revealed that WRKY33 is essential for gain-of-

function MPK3/MPK6-induced ACS2/ACS6 gene expression

(Figure 7B). Examination of the ACS2 and ACS6 promoters

revealed the presence of eight and seven W-boxes, respectively

(Figure 9A). To further substantiate the role of WRKY33 in the

activation of ACS2 and ACS6 gene expression, we performed

chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR)

analysis to determine whether ACS2 and ACS6 genes are direct

targets of the WRKY33 transcription factor. For this experiment,

we used DD/wrky33 mutant plants complemented with a 35S

promoter-driven WRKY33 transgene, which contains a four-

copy myc epitope tag at the N-terminus (DD/wrky33/35S:4myc-

WRKY33) [34]. The presence of the myc tag allowed us to

immunoprecipitate the WRKY33-DNA complex by using a commer-

cial anti-myc antibody. As shown in Figure 9B, immunoprecipitation

Figure 7. WRKY33 functions downstream of the MPK3/MPK6
cascade in inducing the expression of ACS2 and ACS6 genes in
the gain-of-function DD seedlings. (A) Mutation of WRKY33
compromises ethylene induction in DD seedlings. Twelve-day-old DD
and DD/wrky33 seedlings grown in GC vials were treated with 1-mM
DEX. Ethylene accumulation in GC vials was monitored at indicated
times, and then seedlings were collected for gene expression analysis.
Error bars indicate standard deviations (n = 3). (B) MPK3/MPK6-induced
ACS2 and ACS6 gene expression in DD plants is dependent on WRKY33.
Total RNA was extracted from seedlings collected in (A). Expressions of
ACS2 (upper panel) and ACS6 (lower panel) genes were quantified by
real-time PCR. ACS transcript levels were calculated as a percentage of
the EF1a transcript. Error bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g007

Figure 8. Induction of ACS2 and ACS6 gene expression after B.
cinerea infection was partially inhibited in wrky33 mutant. (A)
Mutation of WRKY33 partially blocks ethylene induction in Arabidopsis
infected by B. cinerea. Twelve-day-old wild type (Col-0) and wrky33
seedlings grown in GC vials were inoculated with B. cinerea spores.
Ethylene accumulation in GC vials was monitored at indicated times,
and seedlings were collected for gene expression analysis. Error bars
indicate standard deviations (n = 3). (B) B. cinerea-induced ACS2 and
ACS6 gene expression is compromised in the wrky33 mutant. Total RNA
was isolated from the seedlings collected in (A). Expressions of ACS2
(upper panel) and ACS6 (lower panel) genes were quantified by real-
time PCR. ACS transcript levels were calculated as a percentage of the
EF1a transcript. Error bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g008
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with the anti-myc antibody greatly enriched ACS2 and ACS6 promoter

regions containing the W-boxes. In contrast, the IgG control antibody

failed to enrich either gene promoter. This result demonstrates that

WRKY33 directly binds to the promoters of ACS2 and ACS6 in vivo,

suggesting that WRKY33 is the transcription factor downstream of the

MPK3/MPK6 cascade involved in the activation of ACS2 and ACS6

expression.

High levels of ACS6 gene expression elevate B. cinerea–
induced ethylene production

To provide further direct evidence in support of the role of

ACS6 gene activation in B. cinerea-induced ethylene production, we

transformed a DEX-inducible promoter-driven ACS6 (GVG-ACS6)

construct into the acs2-1/acs6-2/acs7-1 mutant background and

then compared the ethylene induction in acs2-1/acs6-2/acs7-1/

GVG-ACS6 plants with and without DEX treatment. Two

independent lines (#5 and #12) with different levels of ACS6

transgene induction after DEX treatment were used for this

experiment to establish a correlation between the levels of ACS6

gene expression and the levels of ethylene induction. As shown in

Figure 10A, without DEX treatment, both GVG-ACS6 transgenic

lines produced about the same levels of ethylene after B. cinerea

treatment in comparison to the acs2-1/acs6-2/acs7-1 triple mutant.

In the presence of DEX, which induced ACS6 expression

(Figure 10B), the ethylene production was greatly enhanced. The

higher level of ACS6 induction in line #5 in the presence of DEX

correlated with a higher level of ethylene induction than that in

line #12. Furthermore, ethylene induction in Line #5 was higher

than that in the wild type, indicating that transgene induction after

DEX treatment not only complements the loss of ACS6, but also

compensates the loss of ACS2 and ACS7 genes. In the absence of B.

cinerea infection, DEX treatment only slightly elevated the ethylene

production (Figure S5) to a level similar to the basal level ethylene

production of Col-0 (,10 nL/g FW in 24 hrs). This low-level

ethylene production is likely a result of high-level ACS6 gene

induction after DEX treatment (and associated higher-level of de

novo ACS6 protein synthesis) in combination with the basal level

activity of MPK6, which can phosphorylate and stabilize ACS6

protein. MPK6 has very low basal activity even in the absence of

stress/pathogen infection [16]. This is consistent with our previous

conclusion that the overexpression of ACS6 gene in the absence of

MPK3/MPK6 activation is not sufficient to induce ethylene

production due to the lack of phosphorylation stabilization [16]. As a

result, we can conclude that the high level of ethylene production seen

in acs2-1/acs6-2/acs7-1/GVG-ACS6 lines after DEX and B. cinerea

treatment is a combination of high level of gene expression (as a result

of DEX treatment), and phosphorylation stabilization due to MPK3/

MPK6 activation by B. cinerea infection.

Our attempts to identify the T-DNA insertion line in the coding

region of the ACS6 gene (SALK_025672, acs6-1) failed to reveal a true

mutant plant from the seeds received. As a result, we have been using

the SALK_090423 line (acs6-2), which has a T-DNA insertion 170 bp

upstream of the ATG start codon (Figure 9A)[16,28]. In the past, we

routinely used the double DCt method to quantify gene expression in

real-time PCR analysis, which indicated the acs6-2 mutant allele as a

knockout mutant (Figure 11B, upper panel). However, a more careful

analysis performed in this study revealed that it is actually a knockdown

mutant with an elevated basal level expression. As shown in Figure 11B

(lower panel), acs6-2 seedlings showed a higher basal level of ACS6

expression, but no increase in its transcripts was detected after B. cinerea

infection. In contrast, no transcript was detected in the acs6-1 mutant

before and after B. cinerea infection. Side-by-side comparison demon-

strated that ethylene production levels in acs6-2 and acs6-1 single

mutants after B. cinerea inoculation were similar (Figure 11A). In

contrast, acs2-1/acs6-2 seedlings produce higher levels of ethylene than

acs2-1/acs6-1 (both have the same acs2 mutant allele)(Figure S2). The

observable difference between acs6-2 and acs6-1 alleles in the acs2-1

mutant background could be due to the reduction of total ethylene

production in the absence of ACS2 gene, which makes it possible to

observe a small difference. These results suggest that acs6-2 mutant

allele is not a null mutant as acs6-1 allele, and that the high level

induction of ACS6 is important to pathogen-induced ethylene

production. Together with the gain-of-function evidence shown in

Figure 10, we can conclude that ACS6 gene activation plays an essential

role in promoting ethylene production in plants challenged by

pathogens.

Discussion

Plants challenged by pathogens, especially necrotrophs such as

B. cinerea, produce very high levels of ethylene, a critical event in

Figure 9. WRKY33 transcription factor binds to the promoter of
ACS2 and ACS6 genes in vivo. (A) The promoters of ACS2 and ACS6
genes are rich in W-boxes, the cis-element binding sites of the WRKY
transcription factor. A diagram indicates the number and relative
position of the W-boxes in the promoters of the ACS2 and ACS6 genes.
Line arrows indicate the position of primers used for qPCR after
chromatin immunoprecipitation (ChIP). Positions of the predicted
transcriptional starting sites are indicated by arrows with turning lines
and negative numbers. The T-DNA insertion site in the SALK_090423
acs6-2 allele, which locates in the promoter region of ACS6 gene, is also
indicated. (B) ChIP-qPCR analysis was performed using DD/4myc-
WRKY33WT plants generated from the cross of wrky33/4myc-WRKY33WT

with DD lines. Input chromatin was isolated from two-week-old
seedlings 12 hr after DEX treatment. Epitope-tagged WRKY33-chroma-
tin complex was immunoprecipitated with an anti-myc antibody. A
control reaction was processed side-by-side using mouse IgG. ChIP- and
input-DNA samples were quantified by real-time qPCR using primers
specific to the promoters of ACS2 (left panel) and ACS6 (right panel)
genes. ChIP results are presented as percentage of input DNA. Error
bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g009
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plant disease resistance [6,7,35]. In contrast, other stress stimuli,

including wounding, only trigger a transient and low-level ethylene

biosynthesis. Previously, we reported that MPK3/MPK6 phos-

phorylation-induced stabilization of ACS2 and ACS6 proteins is

an important mechanism in promoting ethylene induction in

Arabidopsis [16,28,29]. It is also clear from data based on acs2-1/

acs6-2 double mutant that ACS2 and ACS6 are not the only

contributors in pathogen-induced ethylene production [28]. In this

report, we demonstrate the involvement of three additional

members of the ACS gene family. Mutation of ACS2 and ACS6,

two Type I ACS members, abolishes ,85% of the ethylene

production induced by B. cinerea (Figure 2 and Figure 3) [28]. We

failed to detect the transcript from ACS1, the third member of the

Arabidopsis Type I ACS isoforms, in the seedlings, and its mutation

does not reduce pathogen-triggered ethylene production (Figure 3)

[28]. As a result, we believe that ACS1 contributes little, if any, to

pathogen-triggered ethylene production. ACS7, a member of the

Type III ACS, plays an intermediate role. Its mutation in the acs2-

1/acs6-2 background reduces ethylene induction to less than 5% of

that observed in the wild type (Figure 2 and Figure 3). This isoform

is also the major contributor of the basal level ethylene production

in the absence of pathogen infection (Figure S3). The transcripts of

ACS2, ACS6, and ACS7 are among the most abundant in B. cinerea-

infected Arabidopsis (Figure 1B). The residual levels of ethylene

induction in acs1-1/acs2-1/acs6-1/acs4-1/acs5-2/acs9-1/acs7-1 mu-

tant are likely from ACS8, a Type II ACS isoform, and ACS11, a

Type III ACS isoform.

Dual-level regulation of ACS2 and ACS6 by the MPK3/
MPK6 cascade in plant stress/defense response

In addition to post-translational regulation, we found that

transcriptional activation of the ACS genes is also critical to the

high-level of ethylene induction, as depicted in our working model

(Figure 12). Stress- and pathogen-activation of ACS genes, such as

Arabidopsis ACS6, is well established [1,36,42]. In this report, we

delineated a signaling pathway involved in the transcriptional

activation of ACS2/ACS6 in Arabidopsis after pathogen infection. It

is interesting to find that MPK3 and MPK6 not only function in the

phosphorylation-induced stabilization of ACS2/ACS6 proteins, but

also regulate the expression of ACS2 and ACS6 genes. The MPK3/

MPK6 cascade-induced ACS2/ACS6 gene activation is mediated by

WRKY33, another MPK3/MPK6 substrate [34]. WRKY33 binds

to the W-boxes in the promoters of the ACS2 and ACS6 genes

directly in vivo (Figure 9) and is involved in the MPK3/MPK6-

induced ACS2/ACS6 gene expression (Figure 7). Mutation of

WRKY33 resulted in a smaller reduction (,60%) in ACS2/ACS6

gene activation in response to B. cinerea infection (Figure 8), possibly

due to the presence of other WRKY(s) that can partially compensate

the loss of WRKY33. Conditional overexpression of ACS6 in the

acs2-1/acs6-2/acs7-1 mutant background greatly enhances the

ethylene induction (Figure 10). Furthermore, reduction in ethylene

induction in the acs6-2 allele, a knockdown mutant (Figure 11),

provides loss-of-function evidence that demonstrates the importance

of ACS6 gene activation during pathogen invasion. Transcriptional

activation of ACS2 likely has a similar role.

Induction of ACS6 expression is associated with stress-induced

ethylene production [1,20,36,42]. However, direct evidence

supporting the role of ACS gene activation has been lacking. In

Arabidopsis, overexpression of wild type ACS6 genes is not

sufficient to elevate ethylene production because of the require-

ment of protein phosphorylation and stabilization [16]. In

addition, overexpression of the ACS6 gene in the wild type

background fails to enhance ethylene production upon B. cinerea

inoculation (Li, G., Liu, Y., and Zhang, S., unpublished data), a

result of the high-level gene activation of the endogenous ACS

genes (Figure 1). In this study, we expressed the ACS6 gene in an

acs2-1/acs6-2/acs7-1 mutant background. The use of a DEX-

inducible promoter and two independent lines with different levels

of ACS6 gene induction after DEX treatment allowed us to

demonstrate the importance of ACS6 gene activation (Figure 10).

Our acs2-1/acs6-2 double mutant produces about 25% of the

wild type level of ethylene after B. cinerea infection (Figure 2) [28].

In contrast, the acs2-1/acs6-1 line only produces ,15% of the wild

type ethylene (Figure 3). The difference between these two double

mutants is likely a result of different acs6 mutant alleles since

both have the same acs2-1 mutant allele. The difference between

Figure 10. Conditional expression of the ACS6 gene in the acs2-1/acs6-2/acs7-1 mutant background restores ethylene induction
triggered by B. cinerea infection. (A) Induction of ACS6 gene expression in the acs2-1/acs6-2/acs7-1/GVG-ACS6 seedlings restores B. cinerea-
induced ethylene production. Twelve-day-old seedlings of wild type, acs2-1/acs6-2/acs7-1, and two independent lines of the GVG-ACS6 transgene in
the acs2-1/acs6-2/acs7-1 background (#5 and #12) were inoculated with B. cinerea spores. Two groups of acs2-1/acs6-2/acs7-1/GVG-ACS6 seedlings
were included with one treated with 1-mM DEX and the other treated with an equal volume of ethanol, the solvent for the DEX stock solution, at the
time of B. cinerea spore inoculation. Ethylene accumulation in GC vials was monitored at indicated times. Error bars indicate standard deviations
(n = 3). (B) Induction of ACS6 transgene expression in acs2-1/acs6-2/acs7-1/GVG-ACS6 seedlings after DEX treatment. Seedlings were collected before
(0 hr) and 6 hr after DEX treatment. Induction of the ACS6 from the GVG-ACS6 transgene was quantified by real-time PCR. ACS6 transcript levels were
calculated as a percentage of the EF1a transcript. Error bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g010
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acs2-1/acs6-2 and acs2-1/acs6-1 also suggests that the acs6-2 allele

is not a complete null mutant, which is supported by the presence

of ACS6 transcript in acs6-2 allele (Figure 11B). Since the T-DNA

insertion in this allele is in front of the transcriptional starting site

(Figure 9A), functional transcript is likely to be produced in this

mutant allele. Nonetheless, the reduction of ethylene induction in

the acs6-2 single mutant or in the acs2-1/acs6-2 double mutant

[28](Figure 2) demonstrates the importance of high-level

induction of ACS6 expression in pathogen-induced ethylene

production. Interestingly, the reduction in ethylene induction in

the acs2/acs6 double mutant is always more than the sum of the

reduction in each single mutant (Figure 3) [28]. It is possible that

the heterodimers of ACS2 and ACS6 are less active than each of

homodimer. In the absence of one isoform, only the homodimer

can be formed, which partially compensates for the loss of the

other isoform.

Importance of dual-level regulation ACS isoforms in
determining the levels and kinetics of ethylene induction

Although very inefficient energy-wise, regulation of the

ACS protein at the protein stability level by phosphorylation/

dephosphorylation allows rapid induction of ethylene biosynthesis,

which can occur within minutes after plant sensing of external

stimuli [43–45]. Such rapid response could be important to plant

response to the stress/pathogen stimuli. However, even after

phosphorylation stabilization, the ACS6 protein may not be very

stable. The half-life of the phospho-mimicking ACS6DDD is only

,3 hours [29]. In the meantime, protein phosphatase 2A will

counteract with the MAPKs by dephosphorylating the phospho-

ACS protein [30]. Under this circumstance, transcriptional

activation can provide another mechanism to further enhance

the ethylene induction in response to pathogen infection. It is well

known that stress-induced ethylene production follows different

kinetics depending on the stimuli. However, the molecular

mechanism underlying this difference is unclear. A good

correlation exists between the kinetics of MPK3/MPK6 activation

and ethylene induction. For instance, wounding induces a

transient ethylene production, which is associated with a transient

activation of MAPKs [46,47]. In contrast, infection of plants by

pathogens, especially necrotrophic fungal pathogens, triggers a

long-lasting and high-level induction of ethylene biosynthesis,

which correlates with a long-lasting and high-magnitude activation

of MPK3/MPK6 [28].

As depicted in Figure 12, MPK3 and MPK6 regulate ethylene

induction via two different mechanisms: by direct phosphorylation

and stabilization of ACS2 and ACS6 proteins [16,28,29] and by

activation of ACS2 and ACS6 gene expression (this study). Transient

activation of MPK3/MPK6 by wounding is also associated with the

activation of ACS2/ACS6 gene expression [36]. However, due to the

transient nature of MAPK activation, which returns to basal level

within ,0.5 hr to 1 hr [47], the de novo synthesized ACS protein

may not have the chance to be phosphorylated and will be degraded

quickly in the absence of MAPK phosphorylation. In B. cinerea-

infected plants, the induction of ACS2 and ACS6 gene expression will

result in high rates of de novo protein synthesis. On top of this, the

high-level and long-lasting activation of MPK3/MPK6 [28,38] can

maintain de novo synthesized ACS2 and ACS6 proteins in a

phosphorylated state and thereby stabilize the protein against

proteasome-mediated degradation [16,29]. This dual-level regula-

tory mechanism can maintain a greatly enhanced level of cellular

ACS activity and ethylene production in pathogen-infected plants.

Recently, it was shown that a PP2A protein phosphatase can

counteract with MPK3/MPK6 by dephosphorylating ACS2/ACS6

and can destabilize the ACS protein [30]. In this situation, it is even

more important to have the high-level, long-lasting activation of

MPK3/MPK6 in order to maintain the ACS2/ACS6 protein in a

phosphorylated state to ensure the high rate ethylene biosynthesis

observed in plants challenged by pathogens.

WRKY33 is a key transcriptional regulator downstream of
MPK3/MPK6 in regulating gene expression in multiple
pathways

Activation of MPK3/MPK6 and their orthologs in other plant

species induces the expression of large number of stress/defense

related genes [48,49], suggesting the involvement of downstream

transcription factors. ERF104 is a substrate of MPK6. Phosphor-

ylation of ERF104 by MPK6 results in release of ERF104 from the

Figure 11. The acs6-2 mutant allele is a knockdown mutant. (A)
B. cinerea-induced ethylene production in wild type, acs6-2
(SALK_090423), and acs6-1 (SALK_025672) plants. Twelve-day-old
seedlings grown in GC vials were inoculated with B. cinerea spores.
Ethylene accumulation in GC vials was monitored at indicated times,
and seedlings were collected for gene expression analysis. Error bars
indicate standard deviations (n = 3). (B) Induction of ACS6 expression in
wild type (Col-0), acs6-2, and acs6-1 seedlings after B. cinerea
inoculation. Total RNA was isolated from the seedlings collected in
(A). Expression of the ACS6 gene was quantified by real-time PCR. ACS6
transcript levels were expressed as fold of induction relative to the zero
time point (upper panel) and as a percentage of the EF1a transcript
(lower panel). Error bars indicate standard deviations (n = 3).
doi:10.1371/journal.pgen.1002767.g011
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complex, which allows ERF104 to activate the expression of genes

further downstream [50]. Recently, we identified the transcription

factor WRKY33 as the substrate of MPK3 and MPK6 [34].

WRKY33 is involved in the induction of camalexin biosynthesis

by promoting the expression of camalexin biosynthetic genes

[34,51]. In this report, we demonstrate that WRKY33 is involved

also in activation of ACS2 and ACS6 gene expression and ethylene

induction. In the wrky33 mutant background, gain-of-function DD-

induced ACS2 and ACS6 gene activation is essentially abolished.

Furthermore, a ChIP-qPCR analysis demonstrated that WRKY33

directly binds to the promoters of ACS2 and ACS6 genes (Figure 9).

These results reveal that WRKY33 regulates gene expression in

multiple stress/defense responses and may function as a master

transcriptional regulator downstream of the MPK3/MPK6

cascade.

The expression of both ACS2 and ACS6 genes are regulated by

the MPK3/MPK6 cascade and its downstream WRKY33.

However, the induction kinetics of ACS2 and ACS6 genes are

different in both gain-of-function DD transgenic plants (Figure 4)

and wild type plants after pathogen treatment (Figure 1). One

possibility is that one or more transcription factors, other than

WRKY33, are involved. The differential involvement of these

unknown transcription factors could result in the different kinetics

observed in the induction of ACS2 and ACS6 genes. These

transcription factors may or may not be regulated by the MPK3/

MPK6 cascade. The activation of MPK3 and MPK6 proteins in

the gain-of-function DD plants is sufficient to induce the expression

of ACS2 and ACS6 genes to levels similar to those observed in B.

cinerea-infected plants (Figure 1 and Figure 4), suggesting that the

transcriptional machinery controlling expression of ACS2 and

ACS6 genes is fully turned on in DD plants. On the other hand,

mutation of WRKY33 essentially blocks DD-induced ACS2/ACS6

gene activation (Figure 7B) but only partially blocks the induction

of ACS2 and ACS6 genes in B. cinerea-infected plants (Figure 8B),

suggesting the activation of additional components by B. cinerea

that cannot be activated by MPK3/MPK6 cascade alone, possibly

homologs of WRKY33 that can partially replace the function of

WRKY33 in its absence.

Contribution of MPK3/MPK6-independent pathway(s) to
stress-/pathogen-induced ethylene biosynthesis

The aforementioned discussions are focused on the role of the

MPK3/MPK6 cascade in regulating ACS2 and ACS6, two major

contributors of pathogen-induced ethylene production, as depicted

in our working model (Figure 12). A similar level of reduction in

ethylene induction in the mpk3/mpk6 and acs2/acs6 double mutants

(,85%) is consistent with our conclusion that the MPK3/MPK6

signaling cascade only controls ACS2 and ACS6. Genetic

evidence also supports the involvement of three additional ACS

isoforms, ACS7, ACS8, and ACS11, in B. cinerea-induced ethylene

production (Figure 2 and Figure 3). ACS7 and ACS11 are the two

members in the Type III ACS group in Arabidopsis. ACS8

belongs to the Type II ACS group. Based on mutant analyses,

these three ACS genes contribute about 15% of the total ethylene

produced in B. cinerea-infected plants (Figure 3) [28]. Transcrip-

tional activation of ACS7, ACS8, and ACS11 is not regulated by the

MPK3/MPK6 cascade (Figure 4); the signaling pathway(s)

involved in the activation of their expression is unknown. It is

also unclear whether ACS7, ACS8, and ACS11 are regulated at

the protein stability level. Since ACS7 and ACS11 do not have a

typical putative phosphorylation site in their C-termini, they are

likely to be regulated at the transcriptional level only. ACS8,

similar to ACS5 and ACS9, has a putative CDPK phosphorylation

site in its C-terminus. It is possible that phosphorylation by

CDPK(s) is involved in its protein stability regulation, similar to

ACS5 and ACS9 [32,33].

Figure 12. A model depicting the dual-level regulation of ACS activity by MPK3/MPK6-dependent and independent pathways
during pathogen-induced ethylene production. Members of all three types of ACS isoforms are involved in pathogen-induced ethylene
production. In B. cinerea-infected plants, Type I (ACS2/ACS6) isoforms contribute the most (,85%). ACS2 and ACS6 are regulated by the MPK3/MPK6
cascade at both transcriptional and protein stability levels. The transcriptional up-regulation is mediated by WRKY33, a MPK3/MPK6 substrate. Type II
(ACS8 and ACS11) and Type III (ACS7) isoforms are activated at the transcriptional level although the regulatory pathway(s) involved is not clear at
present. Increase in total cellular ACS activity drives the elevated ethylene production, which triggers downstream responses.
doi:10.1371/journal.pgen.1002767.g012
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Ethylene plays an important role in plant disease resistance.

Using a high-order acs mutant, Tsuchisaka et al. (2009)

demonstrated that ethylene production is essential to plant

resistance against B. cinerea. However, ethylene induction was not

examined in the study. In this report, we demonstrate that

ethylene induction in acs1-1/acs2-1/acs6-1/acs4-1/acs5-2/acs9-1/

acs7-1/acs11-1 mutant plants after B. cinerea infection is only at

,2% of that in the wild type (Figure 3). Plant sensing of abiotic

stress stimuli or invading pathogens triggers a number of signaling

events. Among them, the activation of MAPK cascades and

calcium influx are two of the earliest [21,24,52]. Our research

demonstrates the regulation of ACS2 and ACS6 by a specific

MAPK cascade at both transcriptional and post-translational

levels. This pathway contributes ,85% of the total ethylene

induction in plants challenged by pathogens. Regulation of the

remaining ACS isoforms is unclear at present. Additional studies,

including identification of the signaling pathway(s) involved in

regulation of ACS7, ACS8, and ACS11 expressions, protein

phosphorylation, and protein stability, are needed to further our

understanding of the complex regulation of ethylene induction

during the plant stress/defense response.

Materials and Methods

Plant growth conditions and treatments
Soil-grown plants were maintained at 22uC in a growth

chamber with a 14-hr light cycle (100 mE/m22 sec21). For

experiments, seeds were surface-sterilized. After imbibition at

4uC for 3–5 days, seeds were sown in petri dishes with liquid

half-strength Murashige and Skoog (MS) medium and grown in a

growth chamber at 22uC with continuous light (70 mE/

m22 sec21). Five-day-old seedlings were transferred to 20-ml

GC vials with 6 ml of liquid half-strength MS medium (10

seedlings per vial) and maintained under the same growth

conditions. Twelve- to fourteen-day-old seedlings grown in GC

vials were used for experiments.

Procedures for Botrytis cinerea (Strain: DSM 4709) maintenance

and spore preparation were described previously [28]. Twelve-

day-old seedlings grown in GC vials were inoculated with B. cinerea

spores at a final concentration of 4.06105 spores/vial. Induction of

DD and ACS6 expressions in GVG-NtMEK2DD and GVG-ACS6

transgenic plants was performed by the addition of DEX stock

solution (5 mM in ethanol) to a final concentration of 1 mM. An

equal volume of ethanol was used as a negative (2DEX) control.

At least two independent repetitions were performed with

similar results for experiments with multiple time points. For single

time-point experiments, at least three independent repetitions

were performed.

Mutant lines and generation of transgenic plants
Arabidopsis thaliana Columbia (Col-0) ecotype was used as the

wild-type control, unless stated otherwise. T-DNA insertion

mutant alleles of MPK3 (At3g45640), MPK6 (At2g43790), ACS1

(At3g61510), ACS2 (At1g01480), and ACS6 (At4g11280) were

described previously [16,28,39]. The two ACS7 (At4g26200)

mutant alleles, acs7-1 (FLAG_431D05) and acs7-2

(CSHL_ET5768), were obtained from INRA and Cold Spring

Harbor Laboratory, respectively. High-order acs mutants gener-

ated in Dr. Athanasios Theologis’ laboratory [35] were obtained

from the Arabidopsis Biological Resource Center (ABRC). The

stock numbers are CS16564 (acs2-1), CS16569 (acs6-1), CS16581

(acs2-1/acs6-1), CS16603 (acs2-1/acs6-1/acs4-1), CS16607 (acs2-1/

acs6-1/acs5-2), CS16609 (acs2-1/acs6-1/acs9-1), CS16644 (acs2-1/

acs6-1/acs4-1/acs5-2/acs9-1), CS16649 (acs2-1/acs6-1/acs4-1/acs5-

2/acs9-1/acs7-1), CS16650 (acs1-1/acs2-1/acs6-1/acs4-1/acs5-2/

acs9-1/acs7-1), and CS16651 (acs1-1/acs2-1/acs6-1/acs4-1/acs5-

2/acs9-1/acs7-1/acs11-1). Conditionally rescued mpk3/mpk6 dou-

ble mutant was generated by transformation of DEX-inducible

promoter driven MPK6 cDNA (GVG-MPK6) into mpk32/2/mpk6+/2

plants [39]. Double mutant seedlings were recovered from seeds

of mpk32/2/mpk6+/2/GVG-MPK6 plants sprayed with 30 mM

DEX during the flowering stage. GVG-NtMEK2DD (abbreviated as

DD), DD/mpk3, and DD/mpk6 lines were previously described

[28,38].

The DEX-inducible promoter driven ACS6 construct (GVG-

ACS6) was generated by cloning the ACS6 ORF with a 4xmyc tag

[29] into the Xho I/Spe I sites of the pTA7002 vector [53]. The

binary vector was transformed into Agrobacterium tumefaciens strain

GV3101. Arabidopsis transformation was performed by the floral

dip procedure [54], and transformants were identified by

screening for hygromycin resistance. Independent lines with

ACS6 transgene induction were identified based on real-time

qPCR analysis.

Ethylene measurement
GC vials with Arabidopsis seedlings were flushed and capped

immediately after treatment. At indicated times, ethylene levels in

the headspace of the GC vials were measured by gas chroma-

tography as previously described [16]. Seedlings were then

collected, weighed, frozen in liquid nitrogen, and stored at

280uC for future analysis.

RNA extraction and real-time PCR analysis
Total RNA was extracted using the Trizol reagent (Invitrogen).

After DNase treatment, RNA (2 mg) was used for reverse

transcription. Real-time PCR analysis was performed using an

OpticonTM 2 real-time PCR machine as described previously [38].

The transcript of the EF1a gene was used to normalize the

samples. Relative gene expression was calculated using two

different methods. The first method is the commonly used double

DCt method, which gives fold of gene induction relative to basal

level before treatment (0 hr time point). The second method

expresses the transcript level relative to that of the EF1a gene in

the same sample, which is a better method when comparison of

expression levels of different genes is necessary. The primers used

for real-time PCR were ACS1 (At3g61510, 59-ACGCTTT

TCTCGTCCCTACTC-39 and 59-GGCCTTAAGGTACGCT-

GATTC-39), ACS2 (At1g01480, 59-GGATGGTTTAGGATTT

GCTTTG-39 and 59-GCACTCTTGTTCTGGATTACCTG-

39), ACS4 (At2g22810, 59-AACAACCTTGTGCTCACTGCT-39

and 59-AGATCCCTATCAAACCCTGGA-39), ACS5 (At5g

65800, 59-GACTCTCATGTTTTGCCTTGC-39 and 59-TTGG

AAGCCATTAGAGCTTGA-39), ACS6 (At4g11280, 59-GTTC

CAACCCCTTATTATCC-39 and 59-CCGTAATCTTGAACC-

CATTA-39), ACS7 (At4g26200, 59-ACGGTACGATACCATTG

TGGA-39 and 59-GCTCGCCGTCTTTAGTTTTCT-39), ACS8

(At4g37770, 59-CCTTCCTTCCTTCAAGAATGC-39 and 59-

GAGAGTCTCGTTAGCCGGAGT-39), ACS9 (At3g49700, 59-

CATACCTCGACGAAAACCAGA-39 and 59-TCATGTCAA

CCCAACAGAACA-39), ACS11 (At4g08040, 59-CAAACGATG-

GAGGTTGCTATG-39 and 59-TTGGAGACCCATTTGTTGA

TAAG-39), and EF1a (At5g60390, 59-TGAGCACGCTCT

TCTTGCTTTCA-39 and 59-GGTGGTGGCATCCATCTTGT

TACA-39).

ChIP–qPCR analysis
F1 plants generated from the cross of wrky33/4myc-WRKY33

and DD lines were used for the ChIP assay. Two-week-old
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seedlings treated with 1-mM DEX for 12 hr were processed as

previously described [55]. Briefly, chromatin was isolated from

0.8 g of frozen tissue and sonicated with a Bioruptor sonicator

(15 s on and 15 s off cycles, medium-energy settings) for 6 min.

Immunoprecipitation was performed by incubating chromatin

with 2 mg of anti-myc antibody (Millipore) or mouse IgG (negative

control) for 1 hr at 4uC. The protein-chromatin immunocomplex

was captured using Protein G-Dynal magnetic beads (Invitrogen).

After Proteinase K digestion, the immunoprecipitated DNA was

purified using a ChIP DNA Clean and Concentrator kit (Zymo

Research Corporation). Immunoprecipitated DNA and input

DNA were analyzed by qPCR using primers specific for the

promoter regions of PAD3 and WRKY33. The primer pairs

(forward and backward) used for ChIP-qPCR were ACS2 (59-

AGGCCATAAGCCCATTCAAA-39 and 59-GCCTACAGTG-

CACGACTTCA-39) and ACS6 (59-AAAGTCGTTGAGAT

TGTGTTGG-39 and 59-TGGCAGCCTTAAAGACCAGT-39),

which are in proximity of the W-boxes in the promoters. ChIP

results are presented as percentage of input DNA.

Accession numbers
Sequence data for this article can be found in the Arabidopsis

Genome Initiative or GenBank/EMBL databases under the

following accession numbers: MPK3 (At3g45640), MPK6 (At2g

43790), EF1a (At5g60390), ACS1 (At3g61510), ACS2 (At1g01480),

ACS4 (At2g22810), ACS5 (At5g65800), ACS6 (At4g11280), ACS7

(At4g26200), ACS8 (At4g37770), ACS9 (At3g49700), ACS11

(At4g08040), and WRKY33 (At2g38470).

Supporting Information

Figure S1 Mutation in ACS7, a Type III ACS isoform, slightly

reduced B. cinerea-induced ethylene production. Two-week-old

acs7-1 and acs7-2 as well as their respective wild-type controls, Ws-

0 and Ler-0, grown in GC vials were inoculated with B. cinerea

spores. Ethylene accumulation in the headspace was determined at

the indicated times. Error bars indicate standard deviations (n = 3).

(TIF)

Figure S2 Comparison of basal-level and B. cinerea-induced

ethylene production in acs2-1/acs6-2 and acs2-1/acs6-1 double

mutants. (A) B. cinerea-induced ethylene production in wild type,

acs2-1/acs6-2, and acs2-1/acs6-1 plants. Twelve-day-old seedlings

grown in GC vials were inoculated with B. cinerea spores. Ethylene

accumulation in GC vials was monitored at indicated times. Error

bars indicate standard deviations (n = 3). (B) Basal level ethylene

production in wild type, acs2-1/acs6-2, and acs2-1/acs6-1 seedlings.

Twelve-day-old seedlings grown in GC vials were mock inoculat-

ed. Ethylene accumulation in GC vials was measured after

24 hours. Error bars indicate standard deviations (n = 3).

(TIF)

Figure S3 Basal level ethylene production in various acs mutants.

(A) Basal level ethylene production in wild type (Col-0, acs2-1/acs6-2

double and acs2-1/6-2/7-1 triple mutant. Twelve-day-old seedlings

grown in GC vials were mock inoculated. Ethylene accumulation in

GC vials was measured 24 hours later. Error bars indicate standard

deviations (n = 3). (B) Basal level ethylene production in the high-

order acs mutants generated in Dr. Athanasios Theologis’ lab.

Twelve-day-old seedlings grown in GC vials were mock inoculated.

Ethylene accumulation in GC vials was measured 24 hours later.

Error bars indicate standard deviations (n = 3). The allele numbers

are omitted for easy labeling. They are acs1-1, acs2-1, acs4-1, acs5-2,

acs6-1, acs7-1, acs9-1, and acs11-1.

(TIF)

Figure S4 Activation of ACS7, ACS8, and ACS11 in the wrky33

mutant after B. cinerea inoculation. B. cinerea-induced ACS7, ACS8,

and ACS11 expression is not compromised in wrky33 mutant. Total

RNA from the experiment shown in Figure 8 was reverse

transcribed. Expressions of ACS7 (A), ACS8 (B), and ACS11 (C)

genes were quantified by real-time PCR. ACS transcript levels

were calculated as percentage of EF1a transcript. Error bars

indicate standard deviations (n = 3).

(TIF)

Figure S5 Ethylene production in acs2-1/acs6-2/acs7-1/GVG-

ACS6 transgenic seedlings after DEX treatment. Twelve-day-old

wild-type (Col-0), acs2-1/acs6-2/acs7-1, and acs2-1/acs6-2/acs7-1/

GVG-ACS6 transgenic seedlings (line #5 and #12) grown in GC

vials were treated with DEX (+DEX, final concentration of 1 mM)

or ethanol solvent control (2DEX), but without B. cinerea

inoculation. Ethylene accumulation in GC vials was measured

after 24 hours. Error bars indicate standard deviations (n = 3).

(TIF)
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