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Cell-autonomous and self-sustained molecular oscillators drive circadian behavior and physiology
in mammals. From rhythms recorded in cultured fibroblasts we identified the dominant cause for
amplitude reduction as desynchronization of self-sustained oscillators. Here, we propose a general
framework for quantifying luminescence signals from biochemical oscillators, both in populations
and individual cells. Our model combines three essential aspects of circadian clocks: the stability
of the limit cycle, fluctuations, and intercellular coupling. From population recordings we can
simultaneously estimate the stiffness of individual frequencies, the period dispersion, and the
interaction strength. Consistent with previous work, coupling is found to be weak and insufficient to
synchronize cells. Moreover, we find that frequency fluctuations remain correlated for longer than
one clock cycle, which is confirmed from individual cell recordings. Using genetic models for
circadian clocks, we show that this reflects the stability properties of the underlying circadian limit-
cycle oscillators, and we identify biochemical parameters that influence oscillator stability in
mammals. Our study thus points to stabilizing mechanisms that dampen fluctuations to maintain
accurate timing in peripheral circadian oscillators.
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Introduction

Cell-autonomous molecular pacemakers coordinated by pace-
maker neurons in the suprachiasmatic nucleus (SCN) drive
circadian rhythms in mammals (Reppert and Weaver, 2002;
Schibler and Sassone-Corsi, 2002). Whereas central pace-
makers were shown to elicit robust circadian firing rhythms
with negligible damping (Welsh et al, 1995; Liu et al, 1997),
oscillations of mRNA levels in peripheral organs and cell
cultures showed marked damping (Yamazaki et al, 2000; Yoo
et al, 2004). This raised the question whether SCN oscillations
were qualitatively different from those in peripheral tissues,
even though the underlying molecular clocks seem to utilize
the same genetic components (Yagita et al, 2001; Schibler and
Sassone-Corsi, 2002).

Several studies using luciferase and GFP reporters have now
clarified the issue. For instance, tissue explants generate robust
oscillatory bioluminescence signals that damp out after ~7
days, whereas rhythms in cultured cells derived from the same
tissues persist for ~20 days (Yoo et al, 2004). Repeating the
experiment in SCN lesioned mice does not abolish rhythms but
induces phase shifts, indicating the existence of organ-specific
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synchronization cues probably masked by the SCN under
normal conditions. Although this suggested that peripheral
clocks can tick independent of a functional SCN, the issue was
addressed directly in a series of studies that combined single
cells and population assays. Recordings in immortalized
(Nagoshi et al, 2004) and primary (Welsh et al, 2004) mouse
fibroblasts showed that single cells generated cell-autonomous
rhythms. Furthermore, the effect of a serum shock was to
resynchronize randomly phased oscillators rather than jump-
starting arrested oscillators (Nagoshi et al, 2004). Mathema-
tical analysis of longer bioluminescence recordings reinforced
these observations and confirmed that dephasing was the
dominant cause for amplitude reduction. In embryonic cell
lines from the zebrafish that were transfected with a zfperiod4-
luciferase reporter, Carr and Whitmore (2005) observed the
resynchronization of single cellular oscillators by light.
Importantly, by monitoring individual cells during 6 days,
the authors observed that successive periods within a single
cell drift in time (Supplementary Figure S2). Consensus from
several models thus strongly supports that damping seen in
cultures at the population level reflects desynchronization
rather than damping of individual oscillators. Moreover, the
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default unsynchronized state of a cell population consists of
individual oscillating cells with random phase distributions
so that populations appear globally non-oscillating. Serum
pulses merely resynchronize the phases without starting
new oscillations. Finally, all referred work hypothesized that
interoscillator coupling was absent in cell cultures, a result
that was consistent with relatively short coculture experiments
(Nagoshi et al, 2004) and also found in cyanobacterial colonies
(Mihalcescu et al, 2004). Nevertheless, the relevance of
intercell interaction in peripheral clocks remains open.

Here, we present a general methodology to study biomole-
cular oscillators and deduce informative parameters from
population recordings or individual cells. We investigate the
combined effects of limit-cycle stability, intrinsic cellular
fluctuations, and oscillator coupling using a compact stochas-
tic mathematical model. Specifically we study the conse-
quences of noisy frequencies and phase coupling on the
collective phase dynamics in populations of peripheral
circadian oscillators. Using two independent bioluminescence
data sets from Nagoshi et al (2004) and Welsh et al (2004), we
show that our low-dimensional model captures the data nicely.
Our formulation also allows estimating the intercellular
coupling strength; we find that whereas the coupling strength
is insufficient for synchronization, phase crosstalk between
cells can occur at a low rate. Furthermore, we predict a new
time scale of about 1 day describing the stiffness of individual
circadian frequencies, a quantity that also directly probes the
stability of the autonomous oscillator. Finally, we identify
biochemical parameters that influence oscillator stability in
two models of mammalian circadian clocks.

Results and discussion

Model for interacting noisy-phase oscillators

Because they contain a low number of relevant parameters,
phase oscillators have been useful to study collective
synchronization, phase shifting, and entrainment properties
of circadian oscillators (Winfree, 1967; Garcia-Ojalvo et al,
2004; Mihalcescu et al, 2004; Roenneberg et al, 2005). Our
previous model for populations of phase oscillators assumed
that each cell has a randomly chosen static frequency.
In addition, each oscillator could damp out so that its peak-
to-trough amplitude ratio would decrease exponentially with a
time scale T. Using bioluminescence recordings from whole
cell cultures, this study showed that the primary cause for
amplitude loss was detuning owing to the frequency disper-
sion o; and not the decay of individual oscillators. This was
indicated by the long decay time T (18.8 days) found to be
comparable to the experiment duration (Nagoshi et al, 2004).

The frequency drifts reported by Carr and Whitmore (2005),
together with our observation that the static frequency model
underestimated the frequency dispersion measured in indivi-
dual cells with a YFP reporter (Nagoshi et al, 2004), prompted
us to extend our model to individual oscillator frequencies that
drift in time. Additionally, we explicitly model intercellular
coupling instead of assuming that it can be neglected. Briefly,
the phase derivative for each cell is taken as a stochastic
time-dependent frequency plus coupling term (Figure 1A).
Specifically, the frequencies are modeled as an Ornstein-
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97 Poisson process as population decay term
Figure 1 Stochastic phase model with drifting frequencies and intercellular

phase coupling. (A) An extended Kuramoto model for the oscillator phases ¢ (t)
and frequencies f{t) describes coupled circadian phase oscillators. The total
luminescence signal s({) is the sum of a population of initially N, oscillators each
contributing a cosine signal centered around a constant A with relative amplitude
B. Cell death follows a Poisson process with time constant t reflected by the
indicator variable 07 (f) taking value 1 before (and 0 after) cell ihas died. The time-
dependent frequencies and phases of the individual oscillators are subject to a
stochastic differential equation (cf. Materials and methods and Supplementary
information). (B) Sample frequency trajectory; v and o? are free constants
representing the inverse memory of the frequency trajectories and the frequency
dispersion, respectively. (C) Parameter listing. K describes the intercellular
coupling between the phases and is taken as all-to-all. More realistic coupling
geometries are considered in Figure 3.

Uhlenbeck (OU) process. The latter is commonly used in the
cellular context (Garcia-Ojalvo et al, 2004; Suel et al, 2006)
where fluctuations are expected to be correlated in time owing
to finite half-lives of other cell components. OU processes are
the simplest generalization of Gaussian white noise that
introduce exponentially decaying time correlations with a
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characteristic time scale y (Figure 1B; for introduction see
Lemons, 2002). Only few parameters are introduced. First
oy, the frequency dispersion, is a measure of noise. More
precisely, it describes how the limit cycle is susceptible to noise
sources, for example, intrinsic noise. On the contrary, v is a
property of the deterministic system (when n=0 in Figure 1A),
which reflects the stiffness of the frequencies or, more
generally, the stability of the oscillator. By varying y the model
interpolates smoothly between static frequencies (small vy),
whereas for larger vy the frequencies change rapidly and the
phase dynamics resembles a diffusion process (Supplemen-
tary Figure S2), as in Mihalcescu et al (2004). The coupling
among phases is described by the parameter K. With coupling
(K>0), the model becomes far more complicated, but
assuming all-to-all coupling, we derived an expression for
the critical coupling value K. above which the population
synchronizes (Rougemont and Naef, 2006). The behavior of
the synchronization threshold is recapitulated in Supplemen-
tary Figure S3, and reflects that rapidly drifting frequencies are
easier to synchronize than stiff frequencies.

Other fluctuations could influence the biolumiscence
signals. For example, amplitude fluctuations have been consi-
dered by Mihalcescu et al (2004). However, these do not affect
the estimation of the dephasing parameters vy and oy from
population-averaged signals. Namely, if A;(t) describes the
time-dependent amplitude of cell i, we only need to assume
that its fluctuations are independent of the time of cell death
(described by the random variable 07(t) in equation (2);
Figure 1) and the phases ¢;(t). Moreover, a sufficiently large
number of cells is required (cf. Supplementary information),
which is verified empirically by the good fit in Figure 2A
(inset). Moreover, we estimated that 5000 cells contribute to
the signal at the end of the recording time (Nagoshi et al,
2004). The same arguments hold for fluctuations in the relative
amplitude B. However, relative amplitude fluctuations play
a role in the analysis of autocorrelation from single-cell
recordings (Figure 2D).

Frequency dynamics in cell-autonomous
oscillators

To establish whether the new model accurately describes
bioluminescence signals, we analyzed two independent data
sets (from Figure 3B in Nagoshi et al (2004) and Figure 3C,
luminometer track in Welsh et al, 2004). Hereafter, we refer to
theses data as D1 and D2, respectively. Both used cultured
fibroblast cells; however, the first were from the immortalized
NIH3TS3 line, whereas the second were dissociated from tails of
knock-in mPer2lciferase=SVa0 mice  The 19-day biolumines-
cence recording D1 (Figure 2A) uses a Bmall luceriferase
reporter. To connect model and theory, we fit the detrended
signal Z(t) to the predicted population-averaged signal
(Figure 2B). Fitting the two data sets leads to nicely compatible
values for the parameters ¢ and v describing the individual
oscillators (Figure 2B, Supplementary Figure S5 and Table I).
Note that all parameters can be estimated reliably, and the
error bars indicate that the model does not overfit the data.
We discuss the results for D1 in some detail. The new model
estimates a frequency dispersion of 0.1 per day, which
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converted to hours leads to a standard deviation in the periods
of 2.4 hrs, which is very close to the 2.9 h measured in single
cells (Nagoshi et al, 2004) and more accurate than the previous
estimate (0.93 h) based on static frequencies. Furthermore, the
estimated y=0.64 +0.17, reflecting a frequency damping time
of 1.56 days, is consistent across data sets. This implies that
frequency disturbances take longer than a period length to
decay; in other words the initiation of a new cycle does not
fully erase the previous cycle.

Whereas orand y are comparable in both data sets, the cell
half-lives and oscillatory amplitude B differ significantly. For
example, it appears that the primary cell cultures from D2 are
longer lived, with an estimated decay significantly longer than
the 3.2 days from D1. A probable explanation is that the
primary culture was grown under much richer serum (10%)
condition than the immortalized fibroblasts (0.5%), and this
drastically affected cell lifespan (U Schibler, personal commu-
nication). On the other hand, the oscillatory amplitude is
largerin D1 (B=0.9 versus 0.26). Here, it is likely that synthesis
and degradation kinetics of the reporter transcript and protein
play arole, as these clearly determine circadian amplitude. For
example, the protein half-life of a rhythmically transcribed
gene must be short enough for rhythmic protein accumulation
to be detected. It is possible that the mRNA half-life of the
fusion protein in the mPer2-uciferase=SV40 mygyse s Jonger than
in the Bmal-luciferase reporter (Figure 2B). For instance, the
mRNA amplitudes reported by Gachon et al (2004) (Figure 1D
and F) in the liver are approximately 5-fold for per2 and 10-
fold for Bmall, which is similar to our estimates, but the
stability of the luciferase fusion gene should be predominantly
determined by the luciferase 3'UTR rather than the per2 3’'UTR.

Oscillators exchange subthreshold phase signals

Our approach also allows to estimate intercell coupling.
Previous work addressed the phase coupling among bacterial
colonies using a model for two coupled phase oscillators
(Mihalcescu et al, 2004); here we use our recent result for
coupling in oscillator populations (Rougemont and Naef,
2006). From D1 and D2, we find that the coupling strength
is subthreshold and therefore cannot synchronize the cells,
consistent with previous coculture (Nagoshi et al, 2004) and
transplantation experiments (Guo et al, 2006). How could this
small phase crosstalk be mediated in cell cultures? Whereas
coupling in SCN neurons depends on synaptic transmission
(Liu and Reppert, 2000; Yamaguchi et al, 2003; Ohta et al,
2005; Maywood et al, 2006), coupling in peripheral circadian
clocks could occur via paracrine signaling, for example, a
broad class of signaling cues were shown to elicit circadian
rhythms in fibroblasts (Balsalobre et al, 2000a,b). It is possible
that some residual form of such cues could be active in culture.
The measured coupling (K=0.05day™') signifies that neigh-
boring cells are able to shift the phase of an oscillator by half
a cycle in 10 days. In comparison, synchrony would develop
if the same delay could be mediated in less than about
5 days, assuming fixed orand y (Figure 2C, left). Alternatively,
synchrony would occur if the stiffness was reduced (y
increased) or the frequency dispersion was reduced by about
twofold (Figure 2C, right).
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Figure 2 Analysis of bioluminescence data by Nagoshi et al (referred to as D1). (A) Raw data reproduced from Nagoshi et al (2004). Inset: logarithmic scale
emphasizes the exponential signal decrease reflecting cell death with half-life 3.22 days. (B) Maximum likelihood fit of the detrended signal Zto our model. The data
were detrended using band-pass filtering as detailed by Nagoshi et al (2004). (C) Posterior likelihoods of the parameters. Projections for each pair of model parameters
v, o5, and K are shown: red indicates high probability; standard errors around the maximum likelihood parameters are indicated (cf. Table I). The critical coupling lines
(black) with fixed third parameter indicate that the coupling should be increased for synchrony (first two panels), or alternatively the frequency dispersion should be
reduced (third panel). (D, E) Frequency drifts from bioluminescence signal in individual cells from the autocorrelation analysis of 10 individual cells (from Welsh et al,
2004, Figures 2B and 3C). (D) Each color is the autocorrelation for one cell. For convenience the absolute value is plotted and the maxima are fit to the envelope
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predicted from the model (cf. panel E and Supplementary information) which leads to a best fit (black line) with C=0.72, 5=0.059+0.003day ', and
v=0.39+0.11day~". (E) A single cell was simulated for 30 days with parameters similar to those for the data D2 in Table | (y=0.9day™" and o=0.1day").
Amplitude fluctuations were modeled as a correlated process with mean B, yg=>5v, and ¢ g/B=0.4, leading to a rapidly decreasing initial transient in the envelope
(exact prediction in blue; cf. Supplementary information). The approximation for large v g used to fit panel A is shown is cyan. The short (dephasing) and long-time (phase
diffusion) regimes are indicated in red and green, respectively.

Table I Parameter estimates in two independent data sets

Half-life (days) K (day ™) B Period 1/py (1) v (day™) of (day™)
Nagoshi et al (D1) 3.2240.01** 0.054+0.02* 0.904+0.01** 25.7540.02** 0.6440.17** 0.14+0.007**
Welsh et al (D2) 55.24+1.3** 0.02+0.08 0.26+0.003** 25.4840.03** 0.89+0.64 0.1+0.01**

Nonlinear expression for the predicted Z(t) (cf. Supplementary information) was fit to the luminescence signals (Figure 2C and Supplementary Figure S5) to estimate K,
B, v, 1y and of. Exponential trend (cell half-life) was estimated from the linear regression in Figure 2A (inset). * and ** refer to fit parameters with P<0.01 and P<0.001,
respectively. Standard errors in the parameter estimates are also indicated.
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Figure 3 Comparison of synchronization behavior between the all-to-all model and random 2D cell arrangements. (A) 2D cell culture geometries are modeled as
random Voronoi tessellations of the square. First and second neighbors of the central cell (in yellow) are indicated in green and red, respectively. (B) Synchronization
transition for cell cultures with local coupling. The synchronization parameter R, is computed as a function of the coupling strength K for three different geometries:
all-to-all coupling (red), nearest-neighbor coupling (blue), and coupling extending to second nearest neighbor (purple). For each coupling strength and geometry, 10 000
cells were simulated. Mean and standard error are represented for five independent cell arrangements (details in Supplementary information, section 4).

In the calculations presented so far, we have assumed that
each cell was evenly coupled to every other cell (all-to-all
coupling). This choice reflected mathematical convenience, as
we can then derive expressions for the critical coupling
strength. To investigate the validity of this approximation, we
assume that synchrony is mediated through diffusing peptides.
With sizes of about 1 nm, we can estimate using the Einstein-
Stokes formula that 10 cell shells can be reached within
12min, which is small compared with the oscillatory
period. Therefore, if signaling peptides are secreted, each cell
effectively receives temporally coherent synchronization
signals from a large number of neighboring cells. To assess
whether this is sufficient for synchronization, we have
assumed realistic cell geometries generated from random
Voronoi tilings (Figure 3A). In these, each cell has an average
of six neighbors, but the environment for each cell is slightly
different. Simulations show that adding cell shells leads to
a synchronization behavior that converges to the all-to-all
model (Figure 3B), indicating that our estimates of coupling
are reliable. In fact the coupling estimated from the all-to-all
model is a lower bound for the real coupling strength.

Frequency dynamics from individual cell
recordings

Next we analyze the frequency dynamics in single-cell
luciferase recordings (cf. Figures 2B and 3C in Welsh et al,
2004) using autocorrelation of the signals. A property of
autocorrelations is that these are unaffected by coupling as
long as K is below the synchronization threshold (section 1.5,
Supplementary information). This highlights an interesting
difference between single cell and population recordings:
subthreshold coupling cannot be estimated from single cells,
whereas it can be estimated from the dephasing dynamics of
initially synchronized populations, as in Figure 2C. One salient
feature of individual cell bioluminescence signals is that their
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amplitude fluctuates significantly. The short time behavior of
autocorrelations shows abrupt drop in the autocorrelation
within the first period (arrow in Figure 2D), which is captured
by a simple model, assuming independent amplitude and
phase fluctuations (Figure 2E and Supplementary information,
section 1.3). Even though we had few cells at our disposal,
fitting the mode to the data leads to an estimated frequency
dispersion o within a factor two of the population estimate,
whereas the drift parameter y is within the error bars of
the population estimate. This good agreement (cf. overlay
in Supplementary Figure S6) from different approaches
thus supports that correlated frequency fluctuations are an
essential signature of peripheral circadian oscillators.

Origins of frequency fluctuations

Phase models, which have been popular in circadian biology
since the work of Winfree (1967), postulate that molecular
mechanisms generate sustained oscillations without describ-
ing the molecular interactions among clock components.
However, the wealth of biochemical data about circadian
pathways has allowed the development of rate equation
models that show how limit-cycle oscillation can arise (Forger
and Peskin, 2003; Leloup and Goldbeter, 2003; Locke et al,
2005) and resist noise in clock circuits (Barkai and Leibler,
2000; Gonze et al, 2002; Vilar et al, 2002; Forger and Peskin,
2005; Gonze and Goldbeter, 2006). Several of these models rely
on the mutual feedback of an activator and repressor pair that
triggers relaxation oscillations (Barkai and Leibler, 2000; Vilar
et al, 2002), whereas others use delayed feedback (Gonze et al,
2002). Under physiological conditions, such chemical reaction
networks face two types of fluctuations: (i) those that
follow from the finite numbers of molecules, DNA, mRNA,
or proteins (often termed intrinsic) and (ii) fluctuations that
act globally on all parts of the network like thermal
fluctuations or changes in cell volume in dividing cells (termed
extrinsic).
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Recent stochastic simulations probing the role of intrinsic
noise in two mammalian clock models showed that the period
variability is directly affected by the number of clock proteins.
Specifically, the variance in circadian period length is inversely
proportional to the number of molecules (Leloup and
Goldbeter, 2003; Forger and Peskin, 2005). Whereas intrinsic
fluctuations thus lead to period variability, the magnitude of
these fluctuations depends on the stability of the deterministic
limit cycle. This is reflected in our phase model by the relation
o7=0%/(2v), that s, for fixed noise %, more stable limit cycles
(y large) are less susceptible to noise and thus have smaller
frequency dispersion. As y measures the stability of the
phase oscillator, it is natural to ask how this inverse timescale
relates to a canonical measure of limit-cycle stability, namely
the negative logarithm of the leading Floquet multiplier pg
(Eckmann and Ruelle, 1985; Strogatz, 2000). In Supplemen-
tary Figures S7-S9, we use yp=—log(ur) to measure limit-cycle
stability. To address the above question we apply Floquet
analysis to a generic circadian model describing a delayed
negative feedback loop (Gonze and Goldbeter, 2006). This
model includes three dynamical variables and describes
mRNA transcription, translation, and nuclear translocation
of an autoregulatory clock protein. In parallel we simulate
intrinsic noise through a master equation and use the Gillespie
(1976) algorithm to simulate trajectories (as in Gonze and
Goldbeter, 2006) from which we estimate the variability in
frequency. By varying the number of molecules (Q) and
transcription rate, we found that population averages of
stochastic trajectories could be well approximated by the form
predicted for the phase model (Supplementary Figure S9),
with parameter values y=yr and oy very close to the estimate
from the trajectories. This correspondence shows that the
Floquet stability can be probed experimentally using our
method, and that we can use powerful analytical tools to study
how limit-cycle stability depends on model parameters. For
illustration, we vary each of the nine parameters indepen-
dently while monitoring stability and period of the limit cycle
(Supplementary Figure S7). We find that stability can be
increased most efficiently by raising the transcription rate (vg)
of the mRNA or by reducing the half-max parameter (K,) for
mRNA degradation. Meanwhile, increasing the translation rate
of the protein (k) or the nuclear translocation rate (k) reduces
period length as expected, whereas period lengthens with
increased vs.

Finally, we apply stability analysis to a detailed sixteen-
dimensional model for the mammalian circadian clock
(Leloup and Goldbeter, 2003). In the mammalian clock, the
principal activators are the Bmall, Clock, and Npas2 trans-
cription factors, whereas repression is mediated by Per1, Per2,
Cryl, Cry2, and RevErba (Schibler and Naef, 2005). The model
by Leloup and Goldbeter (2003) (LG) is based on a merged Per
gene, a merged Cry, and Bmall. It also describes protein
phosphorylation, for example, Per is phosphorylated by casein
kinase 1 (CK1), complex formation, and transport from the
cytoplasm to nucleus where mRNAs are transcribed. The
model has 53 parameters, but we restricted ourselves to four
groups of parameters: transcription rates, phosphorylation
rates of the Per and Cry proteins, complex formation between
Per and Cry, and nuclear translocation rates (Supplementary
Figure S8). Sensitivity analysis for the period length in this
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model was detailed by Leloup and Goldbeter (2004). Among
the changes that most affect period length, increased complex
formation rate and nuclear entry rate shorten the period as
expected, whereas increased Bmall transcription or Period
phosphorylation lengthens the period (Supplementary Figure
S8). Floquet analysis shows that only few of the parameters
tested strongly influence limit-cycle stability, and most of the
changes lead to less stable oscillators. Note that the value of yr
(0.87 inverse periods) for the nominal parameters are in the
range of our measured y (Table I), suggesting that the LG
model has realistic limit-cycle stability properties. In contrast,
the above three-variable model has a more stable limit cycle
with yg=2.65 inverse periods. Interestingly, the parameter that
most increases the stability is the phosphorylation rate of
Per (Supplementary Figure S8, star). Thus, this predicts that
within the LG model, the observed frequency dispersion could
be reduced maximally by overexpressing CK1 such that the
phosphorylation rate of Per would be increased by a factor of 3.

Conclusion and outlook

We showed how circadian bioluminescence signals recorded
in peripheral clock cells can be analyzed to provide insight into
three essential aspects of circadian clocks: limit-cycle stability,
their susceptibility to fluctuations, and intercellular coupling.
Analyzing independent bioluminescence recordings leads
to consistent parameter for frequency dispersion, frequency
stiffness, and coupling between cells. Furthermore, estimates
from populations and single cells were in good agreement.
Interestingly, our study predicted that oscillator stability is
such that frequencies in individual cells remain correlated
beyond one circadian cycle length. Additionally, we estimated
phase crosstalk in cell cultures, which indicated that the
coupling strength was nonzero but only about half of that
needed to synchronize the cells. We showed that collective
synchronization would occur if the frequency dispersion
would be tighter, for example, if it could be reduced by a
factor of about 2 (Figure 2C). One possible role of residual but
subthreshold coupling in peripheral circadian oscillators is
that it facilitates entrainment by systemic cues, which are
restricted to time windows shorter than the period (supported
by simulations, data not shown). Thus, our phase model
shows how dynamical stability, cellular noise level, and
intercellular coupling shape collective and individual bio-
luminescence rhythms in peripheral circadian oscillators. We
ended by linking the stability of limit cycles to the properties of
biochemical oscillator models and pointed toward molecular
mechanisms that are predicted to increase the stability of the
circadian clock in mammals.

Biochemical oscillators commonly serve to coordinate
cellular processes occurring over a wide range of timescales.
We showed that peripheral circadian oscillators are weakly
coupled, but others interact strongly to elicit collective
synchronization. The latter include the respiratory cycle in
yeast grown under constant condition (Henson, 2004; Klevecz
et al, 2004; Locke et al, 2005) or the somite clock, as measured
in tissue explants (Horikawa et al, 2006; Masamizu et al,
2006). The approach presented here is naturally suited to study
fluctuations in these collectively synchronized biological
timekeepers. As luminescence reporters are becoming widely
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used in chronobiology, we expect that it will provide a compact
framework to compare the dephasing dynamics in a broad
class of molecularly distinct oscillators operating in fluctuating
cellular environments.

Materials and methods

Data sets

We analyze two independent circadian bioluminescence data sets
(from Figure 3B in Nagoshi et al (2004) and Figure 3C, luminometer
track in Welsh et al (2004)). We refer to these data as D1 and D2,
respectively.

Phase model

Drifting frequencies with the properties of a fixed mean E[f]=p and
variance var[ﬂ:cr% are generated through an Ornstein-Uhlenbeck
process described by the stochastic differential equation

w00

in which n(tf) is a Gaussian white noise source with variance
parameterized as o7=2yc;. Here, y and o are free constants
representing the decay rate and amplitude of frequency fluctuations,
respectively. The mathematical aspects of synchronization in this
model are found in Rougemont and Naef (2006). Additional results
used in this paper, for example, the form for the autocorrelations, are
derived from Supplementary information.

Simulations were performed with the discrete dynamical updates
(Lemons, 2002):

filt +de) =fi(t)e ™ 4 (1 — e ) + V1 — e-2rdig,
(e +dt) =dy(6) + de(fi() + K> sin(d; — b;)

jeN;

where N; denotes the neighbors of cell i and { is a random number
drawn from a Gaussian distribution with mean 0 and variance o7.
Initial conditions ¢;(t=0)=0 reflect synchronization by the serum
pulse and f;(t=0) was drawn for a Gaussian with mean pand variance
csf For Figure 2B and C, the number of oscillators (N=5000) was
sufficient to prevent finite size effects from influencing parameter
estimation in the time span from 0 to 10 days.

Regression and detrending

To study the effects of phase dynamics, we work with the detrended
variable

s(t) — AN(t)

20 =380

which renormalizes the signal for cell death and amplitude A (Nagoshi
et al (2004); Supplementary information). N(t) denotes the population
size at time t and Z(t) lies between —1 and + 1.

All regression and associated statistical tests were performed with
the R language for statistical computing and graphics (http://cran.
r-project.org) using the !m and nim routines. Simulations were
implemented in R and C. For the parameter estimations in Table I, a
routine, that simulated the averaged signal from N=5000 oscillators
was passed to the nlm routine to fit the detrended signal Z(t). Posterior
likelihoods of the parameters in Figure 2 were generated using a grid
of parameters in the (K, v), (K, o4, (y, oy planes that were passed
to the same simulation routine.

Voronoi tilings

Voronoi tilings for randomly seeded cell nuclei were used to define
neighbors in 2D cell arrangements. First and second neighbors
were considered for the coupling term in Figure 3. Details about the

© 2007 EMBO and Nature Publishing Group
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geometrical algorithm are given in Section 4 of Supplementary
information.

Floquet analysis

We compute the Floquet multipliers for the Gonze and Leloup models
using the continuation software AUTO (Doedel et al, 2001). To find
the limit cycles, initial transcription rates were set to zero, for which
the trivial fixed point with all concentrations equal to 0 is stable.
Parameters were then increased one by one to their nominal values
(those used in the original articles) whereas limit cycles solutions were
tracked along with their periods and Floquet multipliers.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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