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ABSTRACT

Photochemotherapy—in which a photosensitizing
drug is combined with ultraviolet or visible radi-
ation—has proven therapeutic effectiveness. Existing
approaches have drawbacks, however, and there is
a clinical need to develop alternatives offering
improved target cell selectivity. DNA substitution
by 4-thiothymidine (S4TdR) sensitizes cells to killing
by ultraviolet A (UVA) radiation. Here, we demon-
strate that UVA photoactivation of DNA S4TdR
does not generate reactive oxygen or cause direct
DNA breakage and is only minimally mutagenic. In
an organotypic human skin model, UVA penetration
is sufficiently robust to kill S4TdR-photosensitized
epidermal cells. We have investigated the DNA
lesions responsible for toxicity. Although thymidine
is the predominant UVA photoproduct of S4TdR in
dilute solution, more complex lesions are formed
when S4TdR-containing oligonucleotides are irradi-
ated. One of these, a thietane/S5-(6-4)T:T, is struc-
turally related to the (6-4) pyrimidine:pyrimidone
[(6-4) Py:Py] photoproducts induced by UVB/C radi-
ation. These lesions are detectable in DNA from
S4TdR/UVA-treated cells and are excised from
DNA more efficiently by keratinocytes than by leu-
kaemia cells. UVA irradiation also induces DNA
interstrand crosslinking of S4TdR-containing
duplex oligonucleotides. Cells defective in repairing
(6-4) Py:Py DNA adducts or processing DNA
crosslinks are extremely sensitive to S4TdR/UVA
indicating that these lesions contribute significantly
to S4TdR/UVA cytotoxicity.

INTRODUCTION

Photochemotherapy combines ultraviolet or visible radi-
ation with photosensitizing drugs to produce cytotoxic
effects which neither drug nor radiation can achieve alone.
Psoralen plus UVA (320–400 nm) radiation (PUVA), for
the treatment of cutaneous T-cell lymphoma and psoria-
sis, and photodynamic therapy (PDT) in which tetra-
pyrroles are activated by light to treat external and
internal malignancies (1–3) are established photochemo-
therapies. Although they are highly effective, these
approaches have drawbacks. Long-term use of PUVA is
associated with an increased risk of skin cancer (4,5). PDT
is not completely selective for the tumour tissue and can be
very painful. Hence, further research into alternative
approaches, preferably involving lower radiation doses
and/or improved selectivity is warranted.

The deliberate induction of DNA damage underlies
many successful therapeutic strategies. The canonical
DNA bases are damaged when they absorb ultraviolet
radiation (UVR) in the UVC and UVB spectral regions
(100–320 nm), but have no significant absorption at UVA
wavelengths (320–400 nm). Thus, DNA is largely insensi-
tive to direct UVA-induced photochemical damage and
skin is about 1000 times less sensitive to UVA than to
UVB both at the molecular and clinical levels (6). The
thiopurine 6-thioguanine (6-TG) and the thiopyrimidine
4-thiothymine (S4T) are examples of base analogs that
are UVA chromophores with absorbance maxima being
�340 nm. Both are incorporated efficiently into DNA of
dividing cells where they exhibit a profound synergistic
cytotoxicity with UVA radiation (7–9).

4-Thiothymidine (S4TdR) is metabolized via the thymi-
dine kinase (TK)-mediated pyrimidine nucleoside salvage
pathway (8). TK is strongly up-regulated during DNA
replication (10) and is more active in rapidly dividing
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cells (11). This property can be exploited for therapeutic
advantage, as exemplified by trifluorothymidine [recently
reviewed (12)]. Unlike trifluorothymidine, S4TdR itself is
not detectably toxic or mutagenic in cultured human cells
(8). In combination with low dose UVA, however, it
causes significant toxicity in rapidly dividing cells and
UVA sensitization factors of �100-fold are easily achiev-
able (8,9). This effect is largely independent of p53 status
(9). These two properties: selective sensitization of rapidly
dividing cells and p53 independence are key properties for
a treatment aimed at cancers in which p53 is often
mutated or absent.

The mechanism by which DNA S4TdR increases cellular
UVA sensitivity is yet to be elucidated. The UVA energy
absorbed by thiobases in DNA can cause DNA damage
by Type I photosensitization, or it may be transferred
to molecular oxygen to generate reactive oxygen species
(ROS) in a Type II photosensitization reaction. ROS
cause damage to DNA and proteins, and Type II photo-
sensitization is the predominant mechanism by which the
DNA thiopurine 6-TG exerts its photochemical effects
(7,13,14).

Nucleotide excision repair (NER)-defective xeroderma
pigmentosum (XP) cells are particularly sensitive to the
combination of S4TdR and UVA (8). This indicates that
the treatment produces potentially lethal DNA lesions that
are normally removed by NER. This DNA repair pathway
efficiently removes the (6-4) pyrimidine:pyrimidone [(6-4)
Py:Py] intrastrand DNA crosslinks induced by UVC and
UVB radiation. A thietane photoproduct that is formed in
a UVA-activated reaction between S4T with an adjacent
thymine, and which resembles a (6-4) Py:Py DNA photo-
product, is a candidate for this potentially lethal NER
substrate (15,16).

In the study reported here, UVA penetration of in vitro
reconstituted skin is shown to be sufficiently robust to
selectively kill dividing epidermal cells that contain
DNA S4TdR. We demonstrate that DNA S4TdR photo-
activation involves a predominantly Type I photosen-
sitization and does not generate significant levels of
ROS. The combination of S4TdR and UVA is only
weakly mutagenic in mammalian cultured cells. DNA
S4TdR photoproducts are identified and include a DNA
thietane that is repaired by NER.

MATERIALS AND METHODS

Cell culture

Human HaCaT, XP12RO and MRC5VA and all Chinese
hamster cell lines were grown in DMEM containing 10%
fetal calf serum. The human T lymphoblast cell line
CCRF-CEM from acute lymphoblastic leukaemia was
grown in RPMI+10% fetal calf serum. CHO irs1 (xrcc2
mutant) and irs1/XRCC2 (xrcc2 complemented irs1) cells
(17) were provided by Dr John Thacker and CHO XRS6
(Ku80 mutant) and its Ku80+ parent K1 by Dr Mark
O’Driscoll. The ERCC4(XPF) mutant CHO cell line
UV41, ERCC5(XPG) mutant UV135 and their parental
counterpart AA8 have been described (18,19).

Organotypic skin cultures on de-epidermalized dermis

Organotypic skin cultures were prepared as described (20).
Briefly, glycerol-preserved g-irradiated skin (Euro Skin
Bank, Beverwijk, Holland) was washed extensively in
PBS and incubated in antibiotic-containing PBS at 37�C
for �10 days. The epidermis was then removed using for-
ceps, and de-epidermalized dermis (DED) was cut into
small squares and placed in culture dishes with the papil-
lary dermal surface on the underside. Steel rings were
placed on top of the dermis and normal human dermal
fibroblasts were added into the rings on the reticular
dermal surface. After incubation overnight, the de-
epidermalized dermis was inverted, the rings were replaced
and normal human keratinocytes were seeded inside the
rings onto the dermis. After 2 days, the dermis was raised
to the air–liquid interface in the same orientation, by
placing the composites on steel grids for 14 days. The
medium was replaced every 3 days. At Days 6 and 7,
medium supplemented with S4TdR was added for 3 days
and the rafts were irradiated. After 24 h, they were fixed in
10% formalin and embedded in paraffin. Deparaffinized
sections were stained with Haematoxylin and Eosin for
histologic examination.

Drug treatment

S4TdR prepared according to Xu et al. (21) was obtained
from Glen Research (Sterling, VA, USA). It was dissolved
in deionized water, filter-sterilized and stored at �20�C.
All S4TdR treatments were for 48 h in medium containing
10% FCS which had been dialysed extensively (DFCS)
through a 2 kDa exclusion membrane Spectra/Por
(Spectrum Laboratories; Medicell International, Ltd.). In
the mutagenicity assay, N-methly-N-nitrosourea (MNU)
(Sigma Aldrich, UK) was dissolved in dimethylsulphoxide
(DMSO) and added to the medium.

Irradiation

UVA irradiation of oligonucleotides was at 100W/m2

with a UVH 250W iron bulb with a low range cut-off at
320 nm (UVLight Technologies, Birmingham, UK). For
irradiation of cells, the UVA source was a UVASPOT
lamp (Dr. Hönle AG UV Technology, Gräfelfing/
München, Germany), emitting broadband UVA and
filtered to remove UVB radiation (99.9%). The remaining
0.1% of transmitted UVB represents 10% of erythemally
effective energy (EEE), which at the low UVA doses used
in this study, would not contribute to any biologically
significant DNA damage. Cells were irradiated in a thin
layer of PBS containing Ca2+ and Mg2+ (PBS/CaMg) at
an irradiance of 16.6W/m2 and maintained on a
water-cooled plate during irradiation. The UVB irradi-
ation source was a Westinghouse FS20 SunLamp with
peak emission at 313 nm. A germicidal lamp equipped
with a G15T8 bulb (Sankyo Denki, Japan) was the
UVC source.
Spectrally relevant UV dosimeters were from

International Light Technologies Inc. (Peabody, MA,
USA) calibrated against spectroradiometric measurements
of the sources made by a DM150 double monochromator
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Bentham spectroradiometer (Bentham Instruments, Ltd.,
Reading, UK) calibrated against national UK standards.
Ionizing radiation (3.0Gy/min) was from a 137Cs

g-radiation source with a Nordion GC-1000 S v2.09 cell
irradiator (Ottawa, ON, Canada).

Cell survival

Irradiated cells were seeded in 48-well plates (5000 cells/
well). Viability was determined 5 days later by MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide) assay. For clonal survival, cells were plated in
6-well plates (300–500 cells/well). Colonies were stained
and counted 10 days later. Data are based on triplicate
samples from at least two experiments.

Detection of ROS

Cells were grown in the presence or absence of S4TdR for
48 h, washed twice with PBS and incubated with 5 mM
CM-H2DCFDA (Invitrogen, Paisley, Scotland) for
20min at 37�C. After additional washing with PBS, cells
were UVA irradiated in PBS/CaMg. Fluorescence was
analysed by flow cytometry on a Beckton Dickinson
(BD) Canto II machine.

APRT mutation assay

Mutation Frequency. The Adenine phosphoribosyl-
transferase (APRT) Mutation frequency was determined
using CHO-D422 (22,23). Cells were maintained in HAT
medium to eliminate spontaneous mutants. They were
then grown for 48 h in a medium supplemented with
10% DFCS and 100 mM S4TdR and irradiated. After a
further 7 days growth, 106 cells were plated per 10 cm
dish in medium containing 0.4mM 8-azaadenine. The
number of resistant colonies was determined after a
further 10 days’ growth. At least 1.5� 107 cells were
plated per experiment.

Immunofluorescence

HaCaT cells grown on culture slides (BD Falcon,
San Jose, CA) in 100 mM S4TdR were irradiated with
10 kJ/m2 UVA. Control cells were irradiated with 10Gy
g-rays. Irradiated cells were rinsed with PBS and returned
to normal medium for 4 h. They were then fixed and pro-
cessed for detection of phosphorylated gH2AX as
described by Brem et al. (24). For the detection of CPD
and (6-4) photoproducts, irradiated HaCaT cells were fixed
immediately after UV irradiation. Photoproducts were
detected using antibodies specific for thymine dimers
(clone TDM-2) or (6-4) Py:Py photoproducts (clone
64M-2) from CosmoBio Co., Ltd (Tokyo, Japan) accord-
ing to the company’s recommendations.

Comet assay

Alkaline comet assays were performed using the Single Cell
Gel Electrophoresis Assay kit (Trevigen, Gaithersburg,
MD, USA) according to the manufacturer’s protocol.
Modifications with the DNA lesion-specific enzymes T4

endoV (T4N5) or recombinant human 8-oxoguanine
glycosylase 1 (hOGG-1, both from New England

Biolabs, Hitchin, UK) were performed as described by
Cooke et al. (25). Briefly, after cell lysis, washed slides
were immersed in enzyme digestion buffer (40mM
HEPES, 0.1M KCl, 0.5mM EDTA and 0.2mg/ml BSA,
pH 8.0), for 5min. T4N5 (0.1 U/ml) or hOGG1 (3.2 U/ml)
was added to the gels which were covered with a coverslip
and incubated for 60min (T4N5) or 45min (hOGG1) at
37�C in a humidified atmosphere. Electrophoresis was
carried out according to the manufacturer’s protocol.

HPLC analysis

S4TdR. Reverse phase-high performance liquid chroma-
tography (RP-HPLC) analysis of the irradiated nucleoside
was performed using a Waters 2695 Alliance system with a
Waters dC18 column (Atlantis, 3um, 150� 2.1mm). The
column was eluted with a gradient of 0–20% methanol in
10mM KH2PO4, pH 6.7 during the first 10min. The
methanol concentration was increased to 80% during
the subsequent 10min and to 90% in the following
3min during which the KH2PO4 concentration was
reduced to zero.

DNA. DNA was extracted using the Wizard Genomic
DNA purification kit (Promega, Madison, WI, USA).
DNA (50mg) was digested with nuclease P1 (Sigma
Aldrich, UK) (10 U, 1 h at 50�C) and alkaline phosphatase
(2 U, 1 h at 37�C). Deoxyribonucleosides were separated
by HPLC (7). Thymidine was detected and quantified by
A260nm and S4TdR by A335.

Interstrand crosslink detection

The oligonucleotides complementary to S4TdR oligo-
nucleotides were [32P] end-labelled with polynucleotide
kinase. Following annealing to their complementary
strand, duplex oligonucleotides were UVA irradiated,
heat-denatured and analysed by denaturing PAGE
followed by autoradiography (26).

RESULTS

S4TdR/UVA-induced cytotoxicity in an organotypic
skin model

The powerful synergistic toxicity of S4TdR and UVA was
tested in an organotypic 3D skin model. Reconstituted
skin (raft) cultures comprising human normal primary
fibroblasts and keratinocytes were treated with S4TdR
by maintaining the rafts in growth medium containing
the photosensitizer. The rafts were then exposed to UVA
doses of �100 kJ/m2 (this is approximately one-fifth of a
minimal erythema dose for human skin) (27) and paraffin
sections were examined for the presence of apoptotic ‘sun-
burn’ cells (SBC). Figure 1 shows that the rafts that had
received either UVA (Figure 1B) or S4TdR (Figure 1C)
alone contained only apparently healthy cells and there
was no sign of apoptosis. SBC were present only in rafts
treated with the combination of drug and radiation
(Figure 1D) and characteristic markers such as pyknosis
(chromatin condensation, leading to enhanced nuclear
colouration) and karyolysis (chromatin degradation
leading to fading of nucleus colouration) were clearly
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visible in the proliferating layers down to the basement
membrane at the epidermal–dermal junction. Notably,
there was no sign of cell damage in the upper
non-proliferating layers of the epidermis. These data dem-
onstrate that sufficient UVA penetrates through to the
proliferating target cell population to activate DNA
S4TdR and that S4TdR-containing cells in the epidermis
are susceptible to killing by relatively low doses of UVA.

Mutagenicity

Although the toxicity of the S4TdR/UVA combination is
well established (8,9), its potential mutagenicity has not
been investigated in detail. We examined mutation to
8-azaadenine-resistance in the APRT hemizygous
Chinese hamster ovary (CHO-D422) cell line. D442 cells
incorporate S4TdR extremely efficiently (Supplementary
Figure S1A) and therefore, provide a sensitive indicator of
S4TdR/UVA mutagenicity. Cells were exposed to S4TdR
and UVA alone or in combination and mutant colonies
were scored after 10–12 days. Figure 2 shows that the
most extreme condition (100 mM S4TdR plus 1 kJ/m2

UVA), which reduced cell survival to �1%
(Supplementary Figure S1B) induced a modest 2.4-fold
increase in mutation frequency. Less toxic combinations
increased the mutation frequency by �2-fold. Neither

S4TdR, nor UVA alone was measurably mutagenic at
these doses. In contrast, in the absence of S4TdR treat-
ment, a UVA dose of 500 kJ/m2 induced a similar 2- to
4-fold increase in mutation frequency. This value is com-
parable with published results with the same cell line (28)
or other CHO clones (29). Methylnitrosourea, an

A.  Untreated

C.  UVA D.  S4TdR+UVA

B.  S4TdR

Figure 1. Synergistic cytotoxicity of S4TdR/UVA in organotypic skin cultures.Organotypic skin cultures were treated as indicated and fixed 24 h
post-irradiation. Haematoxylin/eosin-stained sections are represented. (A) Untreated. (B) 300mM S4TdR. (C) 100 kJ/m2 UVA. The skin/cell archi-
tecture is unaffected by treatments in B and C. (D) S4TdR/UVA combination: Apoptotic (‘sunburn’) keratinocytes displaying pyknosis (enhanced
nuclear colouration) and cells showing karyolysis (loss of nuclear colouration) are shown as arrows. Note the absence of cellular damage in the
upper, non-proliferating layers of the epidermis.
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Figure 2. Mutagenicity of S4TdR/UVA. CHO-D422 cells grown for
48 h in S4TdR as shown were washed and irradiated with UVA.
Mutation to 8-azaadenine resistance was determined. Data are the
mean of at least three independent determinations± standard devi-
ation. The mean mutation frequency in untreated cells was 2.3� 10�5

(range: 1.2 to 3.8� 10�5). Control cells received either 500 kJ/m2 UVA
alone, 100mM S4TdR alone or 0.5mM MNU.

Nucleic Acids Research, 2011, Vol. 39, No. 22 9623

http://nar.oxfordjournals.org/cgi/content/full/gkr674/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr674/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr674/DC1


acknowledged mutagen included as a positive con-
trol, induced a 25-fold increase in mutation frequency.
We conclude that, the mutagenic effect of S4TdR/UVA
is weak and is similar to that of high-dose UVA.

ROS

High UVA doses generate intracellular ROS. In addition,
the thiopurines are Type II UVA photosensitizers and
DNA 6-TG is a potent source of ROS following UVA
activation (7). To investigate whether photoactivation of
DNA thiopyrimidines might also produce ROS, human
HaCaT keratinocytes were treated with S4TdR for 48 h
to replace �0.1% of DNA thymidine. They were then
irradiated with a range of UVA doses and ROS produc-
tion was measured using the ROS-activated fluorescent
probe CM-H2DCFDA. Flow cytometry analysis
(summarized in Figure 3A) confirmed that UVA irradi-
ation alone generated ROS in a dose-dependent manner.
The presence of DNA S4TdR did not, however, signifi-
cantly (P> 0.05) increase the levels of ROS produced by

UVA indicating that it is not acting principally as a Type
II UVA photosensitizer.

DNA damage

Single-strand breaks, oxidized DNA guanine and
cyclobutane pyrimidine dimers. The alkaline comet assay
(30) was used to determine whether DNA S4TdR
photoactivation leads to DNA strand breakage or oxida-
tive DNA damage. A modest dose of UVA, 50 kJ/m2,
caused just detectable DNA single-strand breakage in
HaCaT cells. The presence of DNA S4TdR did not detect-
ably influence strand breakage at this UVA dose, whereas
a UVA dose of 200 kJ/m2 caused a substantial increase
(Figure 3B).

The alkaline comet assay combined with recombinant
human OGG-1 DNA glycosylase (hOGG-1) treatment as
a probe for oxidative DNA damage indicated that UVA
doses of 50 and 200 kJ/m2 generated measurable DNA
8-oxoguanine in HaCaT cells. The presence of S4TdR
did not alter the hOGG-1 sensitivity of DNA following
irradiation with 50 kJ/m2 UVA (Figure 3B). Thus, in
agreement with the inability of DNA S4TdR to serve as
a source of UVA-generated ROS, it does not detectably
increase UVA-induced DNA guanine oxidation.

In parallel assays, inclusion of the cyclobutane pyrimi-
dine dimer (CPD)-specific T4 endonuclease V (T4N5) (31)
introduced significant DNA breakage in cells treated with
50 kJ/m2 or 200 kJ/m2 UVA. S4TdR treatment did not
increase T4N5 susceptibility of DNA from cells exposed
to 50 kJ/m2 UVA (Figure 3B). These data confirm the
introduction of CPD by UVA (32) and indicate further
that DNA substitution by S4TdR does not measurably
increase their formation.

In summary, UVA radiation induces DNA single-
strand breaks, oxidized guanine and CPD in HaCaT
cells. Despite acting as a UVA sensitizer for killing by
UVA, DNA S4TdR does not detectably increase the
yield of any of these DNA photoproducts even under con-
ditions that are supralethal and result in <1% cell
survival (Supplementary Figure S1B). These findings are
consistent with the inability of DNA S4TdR to increase
the yield of UVA-induced ROS in these cells and suggest
that alternative DNA lesions underlie its cytotoxic
potential.

Double-strand breaks. The accumulation of foci of phos-
phorylated histone H2AX (gH2AX) is a hallmark of the
cellular response to DSB (33). HaCaT cells that had been
treated with S4TdR (100mM, 48 h) were UVA irradiated
and gH2AX was detected by immunocytochemistry. After
4 h of irradiation, most S4TdR-treated cells displayed
a pan-nuclear staining (Figure 4) that is consistent with
inhibited replication. In contrast, following gamma ir-
radiation (10Gy) discrete focal gH2AX staining which
reflects the presence of DSB was observed in all cells.
Neither UVA nor S4TdR alone induced gH2AX
staining. These findings suggest that shortly after UVA
irradiation, Double-strand breaks (DSBs) are generated
in, at most, a small minority of S4TdR-treated cells.
They are also consistent with previous observations that
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Figure 3. (A) Reactive oxygen species. HaCaT cells were grown for
48 h in medium containing 100 mM S4TdR to replace �0.1% of DNA
thymidine. PBS-washed cells were incubated with the ROS-sensitive
probe CM-H2DCFDA, irradiated with UVA as indicated and
ROS-induced fluorescence measured by flow cytometry. Data are pre-
sented as the mean fluorescence intensity± standard deviation of three
experiments. (B) DNA single-strand breaks/guanine oxidation/
cyclobutane pyrimidine dimer (CPD) formation. HaCaT cells grown
in the presence or absence of 100mM S4TdR were washed and
irradiated with 50 or 200 kJ/m2 UVA as indicated. Direct DNA
single-strand breakage was analysed by the alkaline comet assay (No
enzyme, black bars). The presence of DNA 8-oxoguanine was revealed
by digestion with hOGG-1 (+hOGG-1, open bars) and CPDs by diges-
tion with T4N5 (+T4N5, grey bars) as indicated. DNA damage is ex-
pressed as percentage of DNA in the comet tail.
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DNA S4TdR photoactivation induces a severe inhib-
ition of DNA replication (Montaner, B. and Karran, P.,
unpublished data).

S4TdR photoproducts

S4TdR in dilute solution. We examined the stability of the
free thiodeoxynucleoside to UVA irradiation. An aqueous
S4TdR solution (0.1mM) was irradiated and the products
were separated by reverse phase HPLC. UVA induced a
dose-dependent disappearance of S4TdR (Figure 5) with
the concurrent appearance of three photoproducts. Mass
spectrometry identified thymidine as the predominant
species. The remaining photoproducts comprised small
amounts of dimeric S4TdR (TsT) and thymidine sulp-
henate (TSO) in approximately equal yields. The nature
of dimeric photoproduct is not yet completely defined.
Its UV absorbance spectrum has a maximum at 306 nm
which is close to that of S4-methylthymidine (�max 314 nm)
and S4-hydroxyethylthiothymidine (�max 308 nm). For this
reason, we tentatively assign a TST rather than disulphide-
linked (TSST) structure. The identification of thymidine
sulphenate was based upon high resolution MS analysis
(275.06) of the isolated peak and its unusual UV absorp-
tion (�max 357 nm).

Thus, in aqueous solution, the most favoured reaction
of photoactivated S4TdR is with water to generate thymi-
dine. Since S4T base pairs with A, this reaction generates a
canonical base pair in DNA. For this reason, it will not
contribute significantly to the cytotoxicity of S4TdR/
UVA. These findings suggest that reactions with the sur-
rounding DNA bases or DNA-interacting proteins might
be important in the formation of potentially lethal DNA
photolesions in treated cells.

S4TdR in oligonucleotides. A series of synthetic oligo-
nucleotides that contained a single S4TdR (Table 1) were
used to examine the effects of UVA irradiation on DNA
S4TdR in different sequence contexts. Oligonucleotides
were irradiated in either single- or double-stranded form
and digested to nucleosides which were separated by
RP-HPLC. Column eluates were monitored at 335 nm

(S4TdR), 260 nm (normal nucleosides) and by fluorescence
(Ex 320 nm; Em 370 nm).
Figure 6A and B shows representative HPLC profiles

for the digests of the duplex oligonucleotide in which the
TS4TG oligonucleotide is annealed to a complementary

Untreated S4TdR UVA S4TdR+UVA

γγH2AX

DAPI

Ionizing
Radiation

Figure 4. g-H2AX staining. HaCaT cells grown in the presence of 100mM S4TdR for 48 h were irradiated with 10 kJ/m2 UVA as shown. Control
cells grown in the absence of S4TdR were treated with 10Gy of gamma irradiation. In each case, g-H2AX was visualized 4 h later. Note the
pan-nuclear g-H2AX staining induced by S4TdR/UVA treatment which differs from the discrete focal staining following gamma irradiation. DNA
was counterstained with 40,6-diamidino-2-phenylindole (DAPI).
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Figure 5. UVA photostability of S4TdR in dilute solution. A 0.1mM
aqueous solution of S4TdR was irradiated with UVA as shown.
Samples were analysed by HPLC. Products were detected by A260 or
A335 and quantified. Further confirmation of TSO and TST was
obtained by mass spectrometry analysis.

Table 1. Sequences of the S4T-containing synthetic oligonucleotides

used to examine the effects of UVA irradiation on DNA S4TdR in

different sequence contexts

Sequence Code

50-GAATCAGCCS4
TGCACAGATACGAG-30 CS4

TG
GAATCAGCTS4

TGCACAGATACGAG TS4
TG

GAATCAGCGS
4
TTCACAGATACGAG GS

4
TT

GAATCAGCGS4TCCACAGATACGAG GS4TC
GAATCAGCGS4TGCACAGATACGAG GS4TG
GAATCAGCGS4TACACAGATACGAG GS4TA

S4T= 4-thiothymine.
Abbreviations used in the text for the sequences are given in the Code
column.
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strand to generate an S4T:A pair flanked by a 50T and a
30G (Table 1). A UVA dose of 10 kJ/m2 reduced the yield
of S4TdR (elution time 26min) by >60% and this coin-
cided with the appearance of a fluorescent product eluting
at 19min (Figure 6B). This photoproduct also absorbed
at 315 nm. The destruction of S4TdR and the formation
of the fluorescent/A315 absorbing material were lin-
early related to UVA dose �10 kJ/m2 (Figure 6C–E).
UVA irradiation of the single-stranded TS4TG oligo-
nucleotide generated the same 19-min product in a simi-
larly dose-dependent fashion in approximately similar
yields (data not shown).
S4T was more UVA resistant in the closely related

GS4TT duplex in which it is paired to A and flanked by
50G:C and a 30T:A pairs (Table 1). A dose of 10 kJ/m2

destroyed only �10% of the S4TdR (Figure 7A). Higher
UVA doses were more effective and only 30% of the
starting S4TdR remained after 100 kJ/m2. No photoprod-
ucts were detectable by fluorescence (Figure 7B), A335 or
A260 (data not shown). In particular, there was no con-
comitant increase in recovery of TdR, confirming that the

photochemistry of DNA S4TdR differs from that of the
free thionucleoside. The photosensitivity of S4TdR in
single- or double-stranded GS4TT was typical of oligo-
nucleotides in which S4T was not immediately 30 to
T. These included CS4TG indicating that a 50C cannot
substitute for T to confer enhanced UVA sensitivity.
Comparison between TS4TG and other duplex oligo-
nucleotides (CS4TG & GS4TT) is presented in Figure 7C.

Based on these findings, we conclude that S4TdR in
single- or double-stranded DNA is susceptible to destruc-
tion by UVA. It is atypically photosensitive when placed
30- but not 50T. In the former context, we observed a
photoproduct with fluorescence and absorbance proper-
ties consistent with those reported for thio (6-4)T:T,
(S5-(6-4)T:T) (16), which is analogous to the (6-4) Py:Py
UVC/UVB DNA photoproduct. The likely identity of the
S5-(6-4)T:T was confirmed by ELISA assays. Figure 7D
shows that the UVA-irradiated TS4TG oligonucleotide
was recognized by the antibody against (6-4) Py:Py and
gave a strong ELISA signal. In contrast, irradiated
GS4TT gave only background signals. In the absence of

Figure 6. UVA photoproducts in oligonucleotides containing S4TdR with a 50T. The oligonucleotide TS4TG annealed to a complementary strand to
place a single S4T:A base pair 30 to T:A base pair was irradiated with 10 kJ/m2 UVA. Following digestion to nucleosides, the products were analysed
by RP-HPLC and the eluate monitored by: (A) A335. Upper trace unirradiated. Lower trace 10 kJ/m2 UVA. The absorbance scale is the same for
both traces. The arrow indicates S4TdR eluting at 26min. (B) Fluorescence (Ex 320 nm; Em 370 nm). Upper trace unirradiated. Lower RP-HPLC
trace 10 kJ/m2 UVA. The arrow indicates the fluorescent photoproduct eluting at 19min. Fluorescence scale is the same for both traces. (C) UVA
dose dependence of S4TdR destruction. Residual S4TdR in digests of irradiated TS4TG duplexes was quantified from A335 nm absorbance following HPLC
separation. (D) UVA dose dependence of the formation of the fluorescent (D) and 315nm absorbing (E) photoproduct eluting from HPLC at 19min.
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a 50T, the destruction of S4TdR requires higher UVA
doses and is not associated with photoproducts with
detectable UVA or UVC absorbance or fluorescence
under our standard conditions. Although TdR is the pre-
dominant UVA photoproduct after high-dose irradiation
of S4TdR in aqueous solution, we did not see an equiva-
lent efficient conversion to TdR in irradiated
oligonucleotides.

DNA interstrand crosslinks

When duplex S4TdR oligonucleotides were UVA irradi-
ated and analysed by denaturing PAGE, a radioactive
photoproduct that migrated with the characteristics of a
cross-linked duplex was observed. Interstrand crosslinks
(ICL) formation was UVA dose-dependent. The
efficiencies of crosslinking with the GS4TA, GS4TT and
TS4TG duplexes were not widely different, suggesting that
the generation of ICL is largely independent of the imme-
diate sequence context of the S4TdR (Figure 8).
Crosslinking was dependent on the presence of the com-
plementary strand and UVA irradiation did not induce a
change in migration of single-stranded S4TdR-containing
oligonucleotides (Figure 8, middle panel).

DNA repair

In order to investigate the potential toxicity of S4TdR
DNA photoproducts, we examined the S4TdR/UVA sen-
sitivity of a number of cell lines with known DNA repair
defects. The previously reported hypersensitivity of
NER-defective XPA cells was confirmed (Supplementary
Figure S2).

DNA DSB rejoining. DNA S4TdR photoproducts inhibit
replication (Montaner, B. and Karran, P., unpublished
data). Homologous recombinational repair (HR) is one
of the predominant pathways by which lesions that
impair replication are processed. At comparable levels of
DNA S4TdR (�0.3% replacement of TdR), HR-defective
xrcc2 hamster cells were extremely sensitive to UVA.
Whereas >80% of xrcc2+ cells survived a UVA dose of
0.1 kJ/m2, the same dose reduced survival of the HR-
defective cells to around 1% (Figure 9A). In the absence
of S4TdR pre-treatment, neither the HR-proficient nor
HR-defective cells were affected by these very low UVA
doses. To address DSBs that arise outside of S phase, we
examined cells defective in the non-homologous end
joining (NHEJ) pathway. Neither the NHEJ-defective

Figure 7. UVA photoproducts in oligonucleotides containing S4TdR with a 50G or C (A and B) The GS
4
TT duplex was irradiated with 10 kJ/m2

UVA and analysed as described in the legend to Figure 6A and B. Eluted S4TdR (26min) is shown as arrows. The A335 scales in the two panels in A
and the fluorescence (Ex 320; Em 370) scales in B are the same for both traces. (C) UVA dose-dependence of S4TdR destruction in the CS4TG and
GS4TT duplexes. Residual S4TdR in digests of irradiated duplexes was quantified from A335. Data for the TS4TG duplex are shown for comparison.
(D) Detection by ELISA of photoproducts in UVA (10 kJ/m2) irradiated TS4TG and GS4TT duplexes. Inset: ELISA of DNA extracted from
CCRF-CEM cells irradiated with 10 J/m2 UVC.
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(Ku80 mutant) xrs6, nor the repair-proficient parental K1
hamster cells exhibited any S4TdR-related sensitivity over
the UVA dose range that was extremely toxic to the
HR-defective cells (data not shown). The xrs6 cells
incorporated S4TdR poorly, however, and in several ex-
periments replaced �0.03% of DNA TdR compared with
the 0.3% for the parental CHO K1 cells. Owing to this,
we are unable to draw firm conclusions about the contri-
bution of NHEJ to S4TdR/UVA resistance. Taken

together with the findings from the gH2AX immunocyto-
chemistry, however, the data indicate that DNA lesion(s)
that block replication and thereby generate DSB that
require HR for repair are a major contributor to the
lethal effects of S4TdR/UVA.

DNA crosslink processing. The HR pathway is part of the
complex system that processes ICL. The XPF:ERCC1
endonuclease is also involved and XPF-deficient cells are
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Figure 9. S4TdR/UVA sensitivity in DNA repair-defective cell lines. (A) Homologous recombination. xrcc2-deficient CHO irs1 cells and their
XRCC2 complemented counterparts were grown for 48 h in 100mM S4TdR and UVA irradiated at the doses indicated. Survival was determined
by clonal assay. (B) XPF and XPG. CHO UV135 (XPG) and CHO UV41 (XPF) cells were treated as in A. Survival was determined by clonal assay.
(C) Fanconi A. FancA-defective and FancA-corrected MEFs were treated as in A. Survival was determined by clonal assay.
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Figure 8. DNA interstrand photocrosslinking in S4TdR-containing duplex oligonucleotides. The GS
4
TA, GS

4
TT and TS4

TG oligonucleotides were
annealed to their [32P]-labelled complementary strands and irradiated with the UVA doses shown. A [32P]-labelled unannealed GS4TT strand was
also irradiated with 50 kJ/m2 UVA (far left lane of central panel). Products were separated by denaturing PAGE and detected by autoradiography.
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extremely sensitive to DNA interstrand crosslinking
agents. CHO UV41 cells are defective in the hamster
homolog of XPF. Figure 9B shows that 0.1 kJ/m2 UVA
reduced the survival of S4TdR-treated UV41 cells to
�0.1%. At comparable levels of DNA S4TdR (0.2–
0.3%), the parental AA8 cells were essentially insensitive
to UVA at doses up to five times higher. The UV135 XPG
mutant CHO cells exhibited an intermediate sensitivity
compatible with their NER defect (Figure 9B). Mouse
embryonic fibroblasts defective in the FancA protein, a
member of the Fanconi anaemia (FA) pathway core
complex, were also more sensitive to S4TdR/UVA than
their FancA-proficient counterparts (Figure 9C). The
pattern of S4TdR/UVA sensitivity among these various
mutant cell lines indicates that ICL are a significant con-
tributor to toxicity.

DNA S5-(6-4)T:T and excision repair

We examined whether the S5-(6-4)T:T lesion was detect-
able in DNA from S4TdR/UVA-treated cells and whether

it was subject to excision repair. HaCaT cells in which
S4TdR replaced between 0.1% and 0.2% of DNA TdR
were irradiated with UVA and DNA was extracted imme-
diately or �24 h after irradiation. DNA digests were ana-
lysed by HPLC with fluorescence detection. Figure 10A
shows that a photoproduct with the characteristic fluores-
cence and elution time (19min) of the S5-(6-4)T:T lesion
was formed in cellular DNA. At 20 kJ/m2 UVA, 30–40%
of the DNA S4TdR was destroyed. The fluorescent photo-
product was easily detectable at doses as low 5 kJ/m2 and
formation was linear with UVA dose up to 20 kJ/m2, the
highest dose examined (Supplementary Figure S3A). At
similar levels of DNA S4TdR (0.2%), the UVA dose de-
pendency of DNA S4TdR destruction and of S5-(6-4)T:T
formation in human CCRF-CEM cells was comparable
with that of HaCaT cells (Supplementary Figure S3B).
HaCaT cells removed S5-(6-4)T:T lesions. Figure 10B

shows that they were excised with a half-life of between
6 h and 12 h. By 24 h, the fluorescent product was barely
detectable in DNA from cells treated with 5 kJ/m2 or
10 kJ/m2 UVA. The removal of UVC-induced DNA

Figure 10. Induction and repair of the thietane/S5-(6-4)T:T photoproduct in HaCaT cells. (A) Formation of S5-(6-4)T:T. HaCaT cells that had been
grown for 48 h in 300 mM S4TdR were irradiated with 10 kJ/m2 UVA. DNA extracted immediately after irradiation was digested to nucleosides that
were separated by HPLC with fluorescence (Ex 320 nm; Em 370 nm) detection. The arrow indicates the elution time of the thietane/S5-(6-4)T:T
photoproduct. The fluorescence scale is the same for both traces. (B) Excision of the thietane/S5-(6-4)T:T photoproduct. HaCaT cells were treated
with S4TdR (300 mM/48 h) and irradiated with UVA: 5 (filled grey square), 10 (open triangle) or 20 (filled black circle) kJ/m2. XPA cells treated with
100mM/48 h were irradiated with 5 kJ/m2 (filled black triangle). DNA was extracted, digested to nucleosides and analysed by HPLC. The thietane/S5-
(6-4)T:T photoproduct was detected by its fluorescence at 370 nm. Thietane/S5-(6-4)T:T levels are expressed by dividing the total fluorescent signal
(mV) by the number of pmoles of TdR determined by A260 in the same sample. Inset: Excision of UVC-induced (6-4) Py:Py photoproducts. At the
times indicated, DNA was extracted from HaCaT cells irradiated with 30 J/m2 UVC and analysed by ELISA assay. (C) The thietane/S5-(6-4)T:T
photoproduct equilibrium (38,39). The thietane species with the closed four-membered ring predominates and comprises �75% of the total. For a
normal (6-4) Py:Py photoproduct, the corresponding ring-closed oxetane structure is unstable and essentially all of this product is in the ring-open
form.
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(6-4) Py:Py photoproducts was considerably faster and
they were excised with a half-life of <1 h (Figure 10B,
insert). S5-(6-4)T:T repair was significantly less efficient
in CCRF-CEM cells and they removed around half
of the initial photoproducts in 24 h (Supplementary
Figure S3C). The S5-(6-4)T:T lesions persisted at un-
changed levels for 24 h in XPA-defective XP12RO cells
(Figure 10B) confirming that repair of this photoproduct
is by NER.
The high sensitivity of the fluorescence detection

renders S5-(6-4)T:T photoproducts easily detectable in
HPLC eluates. These rare DNA adducts were not,
however, detectable in HaCaT cells by immunocytochem-
ical staining (Supplementary Figure S4) or by ELISA
(data not shown) using antibodies against UVC-induced
DNA (6-4) Py:Py lesions.

DISCUSSION

The powerful synergistic toxicity of S4TdR and UVA in
cultured cells is well established (8,9). Its recently reported
effectiveness in inhibiting tumour growth in a rat bladder
carcinoma model (34) indicates that it is a promising
photochemotherapeutic option. The most attractive appli-
cation for S4TdR would be for hyperproliferative skin
conditions that are readily accessible to UVA irradiation.
Possible limiting factors for effectiveness in this context
are penetration of UVA through the epidermis and accu-
mulation of DNA S4TdR in the proliferating target cells.
As a first step in establishing the possible efficacy of
S4TdR/UVA, we used reconstituted skin raft cultures, a
model which reproduces many of the three-dimensional
aspects of skin (20). In this model, modest radiation
doses delivered sufficient UVA to the lower levels of the
epidermis to kill S4TdR-sensitized cells. Recent evidence
from our laboratory shows that physiological doses of
UVA induce CPD in human skin (35). Importantly, in
our raft experiments, the penetrating UVA was not detect-
ably toxic without the photosensitizer. The rat bladder
carcinoma study provided indications that effective
levels of DNA S4TdR can be achieved in the target cell
population. In that study, systemic (intravenous) treat-
ment resulted in significantly higher levels of DNA
S4TdR in dividing tumour cells than in the adjacent
normal bladder epithelium (34). It is also noteworthy
that incorporation into normal skin was extremely low,
suggesting that the treatment would selectively target
hyperproliferative epidermal cells while sparing normal
cells. Taken together, these studies indicate the potential
effectiveness of S4TdR/UVA therapy. Treatment-induced
mutation and the possible development of therapy-related
cancer, is a potential hazard of any DNA damage-based
therapy. The study reported here demonstrates another
encouraging aspect of S4TdR/UVA treatment, its rela-
tively weak mutagenicity. UVA photoactivation of DNA
S4TdR combines effective cell killing with minimal poten-
tial long-term risks.
The weak mutagenicity of S4TdR/UVA is at least par-

tially accounted for by its photosensitizing mechanism.
UVA activation of DNA S4TdR does not generate

measurable ROS. As a consequence, the DNA damage it
produces appears to be qualitatively different to that
caused by high-dose UVA alone (36). Activation of
DNA S4TdR did not detectably increase DNA
single-strand breakage or guanine oxidation and in this
regard, it differs from the effects of DNA 6-TG (24,25).
We cannot, however, entirely exclude the possible forma-
tion of these DNA lesions by S4TdR/UVA, because the
simultaneous introduction of ICL reduces the sensitivity
of the comet assay. In this regard, we note that 6-TG/
UVA, which also causes interstrand DNA crosslinking,
induces single-strand breaks that are easily measurable
by the comet assay (24). It is clear that, in comparison
with 6-TG/UVA treatment, single-strand breakage and
DNA guanine oxidation are relatively infrequent events
in cells treated with S4TdR/UVA.

The extreme sensitivity of NER-deficient cells and cells
with defects in HR or in the processing of ICL indicates
that the cytotoxicity of S4TdR/UVA depends on its ability
to induce bulky DNA lesions that are severe impediments
to DNA replication. We identified two possible candidate
DNA lesions: ICL and a S5-(6-4)T:T adduct. ICL are
among the most difficult DNA lesions for the cell to
process. They prevent the helix unwinding, which is an
essential step in DNA excision repair, replication
and transcription. Their processing involves a complex
interplay between some NER proteins, specialized DNA
polymerases, members of the Fanconi anaemia family
of proteins and those of HR (37). Defects in any of
these proteins confer extreme sensitivity to ICL. The sen-
sitivity profiles of the cells we examined, in particular the
hypersensitivity of the irs1 and UV41 cell lines, are con-
sistent with a significant contribution of ICL to the cyto-
toxicity of S4TdR/UVA. This conclusion is reinforced
by the ease of ICL formation in duplex oligonucleo-
tides in vitro. Crosslinking occurred at low doses of
UVA, was independent of the sequences surrounding the
S4TdR and involved a canonical base in the comple-
mentary DNA strand. All of these observations suggest
that ICL are likely to be abundant in cells in which,
as many as, 107 DNA thymines may be replaced by
S4TdR. In agreement with this possibility, comet assays
of S4TdR/UVA-treated bladder carcinoma cells reveal
extensive DNA crosslinking that is only partially
reversed by protease digestion to remove DNA-adducted
proteins (34).

Our findings also confirm the particular photosensitivity
of S4T when it is immediately 30 to a normal thymine in
DNA. The fluorescent product that was formed after ir-
radiation of the TS4TG duplex has the properties reported
for the S5-(6-4)T:T adduct which resembles the DNA (6-4)
Py:Py lesion (38,39). The S5-(6-4)T:T adduct was also de-
tectable in DNA from S4TdR/UVA treated cells. HaCaT
keratinocytes excised these photoproducts quite efficient-
ly. Nevertheless, they were more persistent than
UVC-induced (6-4) Py:Py lesions. We observed a rapid
removal of (6-4) Py:Py lesions, consistent with their
reported half-life of �1 h in HaCaT cells (40). Removal
of S5-(6-4)T:T adducts was even slower in CCRF-CEM
leukaemia cells in which most of them persisted for up
to 24 h.
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Rapid repair of (6-4) Py:Py lesions reflects the signifi-
cant DNA distortion they create. The relative persistence
of S5-(6-4)T:T suggests that it may cause less DNA distor-
tion. This, in turn, may reflect the greater stability of the
ring-closed, thietane form (38,39). Despite obvious struc-
tural similarities between S5-(6-4)T:T and (6-4) T:T—they
are identical except for the replacement of the single O4

atom of the 30-thymine by S in the former—there are sig-
nificant differences in behaviour (16,38,39). In particular,
although, both photoproducts are formed via a
four-membered closed ring intermediate, the ring-closed
oxetane isomer of the (6-4) T:T is unstable and is imme-
diately converted to the open ring form. The thietane is
more stable and exists as an equilibrium mixture in which
the ring-closed thietane is favoured over S5-(6-4)T:T
(38,39) (Figure 10C). It is possible that, although the
structural similarities between (6-4) T:T and thietane
permits recognition of the latter in the (6-4) Py:Py
ELISA assay, the rotational constraints imposed by the
four-membered ring mitigate DNA distortion by the
thietane and impede its recognition by NER. We note,
however, that in order to induce detectable levels of
thietane/S5-(6-4)T:T photoproducts, it was necessary to
expose cells to combinations of S4TdR and UVA that
cause significant cell death. It is therefore, possible that
the one or more of the other DNA S4TdR photoproducts,
such as ICL, interferes with the processing of thietane/S5-
(6-4)T:T lesions by NER. These possibilities are currently
under investigation.

This study confirmed the extreme sensitivity of
XP12RO cells. These findings indicate that NER repairs
potentially lethal S4TdR/UVA DNA damage. The
sequence dependency of DNA thietane/S5-(6-4)T:T for-
mation suggests that these lesions may comprise a relative-
ly minor fraction of the total DNA photoproducts.
Despite this, they contribute significantly to the lethal
effects of S4TdR/UVA. The NER system is particularly
efficient in keratinocytes (41,42) and the superior repair of
thietane/S5-(6-4)T:T lesions by HaCaT cells is associated
with a high survival. XP129, a UVC-resistant ‘revertant’
of XP12RO, which has regained a normal ability to excise
(6-4) Py:Py, but not other UVC photoproducts (43,44)
provides additional evidence linking thietane/S5-(6-4)T:T
to toxicity. XP129 cells are only slightly (�2-fold) more
sensitive to S4TdR/UVA than NER proficient cells (45).
This contrasts to the �100-fold sensitivity of the parental
XP12RO cells and emphasizes the likely cytotoxicity of
unrepaired thietane/S5-(6-4)T:T lesions.

In summary, UVA photoactivation of S4TdR—a highly
efficient cytotoxic combination in cultured cells—has
properties that suggest it might be an effective highly
targeted treatment for hyperproliferative skin conditions.
Sufficient UVA penetrates reconstituted skin and skin
in vivo to generate cytotoxic DNA lesions in the lower
levels of the epidermis. Its low mutagenicity suggests
that the combination is a potentially effective and safe
therapeutic option. The DNA lesions generated by these
photosensitized reactions differ from those produced by
high-dose UVA alone and thietane/S5-(6-4)T:T photo-
products and ICLs are both likely contributors to the
cytotoxicity of S4TdR/UVA.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures S1–S4.
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