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Abstract

Protein-protein interactions are critical to protein function, but three-dimensional

(3D) arrangements of interacting proteins have proven hard to predict, even given

the identities and 3D structures of the interacting partners. Specifically, identifying

the relevant pairwise interaction surfaces remains difficult, often relying on shape

complementarity with molecular docking while accounting for molecular motions to

optimize rigid 3D translations and rotations. However, such approaches can be com-

putationally expensive, and faster, less accurate approximations may prove useful for

large-scale prediction and assembly of 3D structures of multi-protein complexes. We

asked if a reduced representation of protein geometry retains enough information

about molecular properties to predict pairwise protein interaction interfaces that are

tolerant of limited structural rearrangements. Here, we describe a reduced represen-

tation of 3D protein accessible surfaces on which molecular properties such as

charge, hydrophobicity, and evolutionary rate can be easily mapped, implemented in

the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-

specific potential surface complementarity. On two available benchmarks of

185 overall known protein complexes, we observe predictions comparable to other

structure-based tools at correctly identifying protein interaction surfaces. Further-

more, we examined the effect of molecular motion through normal mode simulation

on a benchmark receptor-ligand pair and observed no marked loss of predictive accu-

racy for distortions of up to 6 Å Cα-RMSD. Thus, a shape reduction of protein sur-

faces retains considerable information about surface complementarity, offers

enhanced speed of comparison relative to more complex geometric representations,

and exhibits tolerance to conformational changes.
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1 | INTRODUCTION

Proteins often assemble into multi-protein complexes as their native

forms, mediated by pairwise (or higher-order) protein-protein

interactions. Knowledge of the participating protein-protein interfaces

involved in forming these complexes is thus critical for understanding

and perturbing protein function in a cellular context. Most of our

understanding about the contact surfaces by which proteins interact
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has been from direct experimental determination using techniques

such as X-ray crystallography and electron microscopy,1,2 but these

methods remain costly and laborious. Other, more indirect experimen-

tal techniques, including mutagenesis,3,4 mass spectrometry,5 and

cross-linking analysis,6 can also illuminate the specific residues that

participate in these interaction interfaces. These techniques give par-

tial information about the three-dimensional (3D) assembly of com-

plexes, and new integrative computational modeling strategies are

increasingly able to consider such data as distance restraints to infer

3D structures.7-10 To complement experimentally led approaches,

there has also been a strong push to develop better computational

approaches for predicting protein interaction interfaces directly from

protein amino acid sequences and 3D structures.

Importantly, the prediction of protein-protein interaction inter-

faces is of substantially lower computational complexity than the

problem of predicting or folding a 3D protein structure based on its

linear amino acid sequence, as interface predictions (eg, by molecular

docking) are limited to 6� of rotational and translation freedom and a

sampling of accompanying intramolecular motions that might occur

upon binding.11 Ideally, successful interface predictors would go

beyond predicting pairwise interactions and be useful to assemble

large molecular machines from individual subunits.

Such predictions are complicated by the fact that protein-protein

interactions may take quite different forms, and interactions can be

categorized in various ways, including obligate and non-obligate, per-

manent and transient, and strong and weak.12 Obligate complexes

consist of proteins that are not stable on their own and depend on

cooperative folding between the subunits, while non-obligate com-

plexes form from proteins that fold alone and take part in transient or

permanent protein interactions. Transient interactions can be further

divided into strong and weak interactions. Several studies have deter-

mined trends in residues that form protein interfaces. For example,

transient interactions have been observed to have similar proportions

of hydrophobic residues on both the interaction interface and the

remaining surface of the protein. However, because these interfaces

are rich in water molecules,13 there tend to be a larger number of

polar residues along the interface.14 Additionally, many of the forces

driving these interactions derive from weak electrostatic charge.15

Furthermore, all of these noncovalent interactions would benefit from

a calculation of the binding affinity.16 Thus, computational approaches

face a significant challenge in predicting contact interfaces that may

vary significantly based on the relevant class of protein-protein inter-

action for any particular interface.

Computational approaches for determining how proteins interact

include predictions of interaction interfaces or docking of protein

structures, where the former informs the latter. It has been shown

that knowledge of an interaction interface can greatly improve the

prediction of the conformation of the proteins that are interacting.17

Interface predictors may be divided into two groups: intrinsic- and

template-based approaches.18 Intrinsic-based approaches focus on

features within the protein sequence or the protein structure.

Template-based approaches search through databases of protein

complexes with known structures and use these interfaces to make

predictions.19 However, the latter approach requires prior structural

information for the protein(s) of interest. Intrinsic-based approaches

take either sequence information or structural information as the

input of the predictor. Enhancing intrinsic-based approaches may be

challenging, as a review of previous literature found that the addition

of more features does not improve predictions.18

Sequence-based predictors utilize protein sequence information

to either feed different amino acid properties into a machine learning

classifier or sequence alignment tools. Sequence alignment methods

assume that proteins of similar sequences have similar binding part-

ners and therefore binding sites.19 Many machine learning techniques

focus on features of neighboring residues, where the size of the win-

dow of residues ranges from 9 to 21 amino acids.19 However, proxim-

ity in sequence does not necessarily reflect proximity in structure,

highlighting the benefits of incorporating structural information into

the interface predictions. Some techniques have taken an intermedi-

ate approach where the proteins are represented by a network where

individual nodes represent residues and residue properties, while

edges represent structural information providing some spatial

resolution.20,21

Structure-based predictors utilize structural information from

either experimental data or homology modeling as a constraint in for-

mulating their prediction. Previous studies showed that the quality of

the prediction is dependent on the quality of the structure and that

homology models produce less accurate predictions.19 One structural

approach involves dividing a protein surface into patches and using

these patches to predict interaction sites. Patches are defined as

either the n closest residues where n depends on the size of the pro-

tein or a set size for all proteins.22,23 For these methods, patch size is

predetermined and uniform, causing problems for predicting inter-

faces of proteins with multiple binding partners or if the defined sur-

face patch does not accurately reflect the size of the true interface.22

Many predictors ignore the binding partner; however, utilizing the

binding partner has been shown to improve predictions.18

Partner-specific interface predictors, which account for all partici-

pating proteins in the interaction are less common but have the

benefit of considering complementarity between specific proteins.

Partner-specific predictors use structures or sequences of two pro-

teins that are assumed to interact in predicting the interaction inter-

face for each protein.18 A partner-specific approach allows the user to

consider complementarity, which plays a central role in molecular rec-

ognition. Proteins that promiscuously bind to multiple partners pre-

sent a unique challenge for predicting interfaces. These multiple

binding partners may all bind at the same site, or they may bind at

multiple sites on the protein surface.24 While recent studies highlight

the ability of current predictors to separate non-binding from binding

residues on individual proteins, these predictors fail to distinguish

partner-specific interaction sites resulting in cross-prediction between

sites.19

Currently, many partner-specific approaches exist for predicting

interactions. A majority of these methods use the primary sequence and

homology searches to make predictions. PAIRpred utilizes a support

vector machine classifier for predicting partner-specific interaction
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interfaces.25 While this approach employs multiple features, the features

included in the classifier are all based on solvent accessible surface area,

which cannot account for proteins that undergo a dramatic conforma-

tional change during binding. Another partner-specific tool is PPIPP.

PPIPP uses a neural network trained on interacting pairs and has been

shown to outperform partner-unaware models.26 Similarly, HomPPI

uses sequence-homology based approaches to identify conserved

regions between the partners.27 Both approaches only use sequence

information and do not incorporate spatial data. Many recent

approaches have attempted to use multiple sequence alignments to pre-

dict residues that coevolve between proteins through direct coupling

analysis, mutual information, or a combination of the two and show

improved prediction capabilities.8,28,29

One important challenge that remains for partner-specific,

structure-based predictors is accounting for conformational changes

that occur upon binding. The performance of these methods

decreases with increasing conformational rearrangements and dynam-

ics of the protein pairs upon binding.26 For this reason, we were inter-

ested in developing a reduced representation of protein structural

data that does not explicitly consider shape complementarity and can

make quick predictions that may be used in assembling larger protein

complexes. Here, we developed and evaluated a protein shape reduc-

tion method (MorphProt) that predicts partner-specific interaction

interfaces by mapping properties of protein surfaces to a reduced rep-

resentation and rapidly tests for complementary surface patches

within these reduced geometric representations. MorphProt shows

comparable predictive power to a number of more computationally

intensive approaches and tolerance to structural rearrangements in

the interaction partners.

2 | MATERIALS AND METHODS

2.1 | Benchmark set of protein-protein
interactions

To evaluate the quality of the interaction interface predictions from

MorphProt, we used a benchmark set of known protein complexes.

The benchmark data set for this method was version 5.0 of the widely

used protein-protein interaction docking benchmarks.30 This bench-

mark set provides a large library of 230 Protein Data Bank31 (PDB)

files for non-redundant complexes with varying rigidity, as well as

enzyme-containing and antibody-antigen complexes. From this set,

we extracted 172 complexes (Supporting Information). Those com-

plexes that were not included either had incomplete structures, creat-

ing an error in the PQR calculation or had more than two subunit

chains (excluding antibody complexes).

In addition to the protein docking benchmark 5.0, we used the

protein docking gold standard, the Critical Assessment of PRedicted

Interactions (CAPRI) score set.32 CAPRI provides an expanded bench-

mark data set for evaluating scoring functions, which includes 13 pub-

lished CAPRI targets. All predictions were made on unbound

structures and were validated against the bound structures.

2.2 | Calculated properties of surfaces

The properties that were used in these analyses were charge, hydro-

phobicity, and evolutionary rate. The atomic charge was calculated

using PDB2PQR.33 PDB2PQR begins by rebuilding missing non-

hydrogen atoms using standard amino acid topologies in conjunction

with the existing atomic coordinates to determine new positions for

the missing atoms. Next, hydrogen atoms are added and positioned to

optimize the global hydrogen-bonding network. Finally, PDB2PQR

assigns atomic charges and radii based on the AMBER force field.

Here, The PDB2PQR program was run using the Opal server.

The Wimley-White hydrophobicity values34 were used in deter-

mining residue hydrophobicity. These values are semi-empirical and

based on the transfer of free energies of polypeptides that show how

favorable an amino acid is in a hydrophobic environment. Each atom

in the atomic structure was assigned a hydrophobicity value based on

the amino acid it was representing.

Finally, the evolutionary rates were obtained from the ConSurf

Database.35 This database contains information regarding pre-

calculated evolutionary conservation scores. The evolutionary rates

stored in the database are calculated using the Rate4Site algorithm.36

This method evaluates evolutionary rates using a maximum likelihood

estimate assuming a stochastic process. Based on this, amino acid

replacement probabilities were computed for each branch of the phy-

logenetic tree. The tree is then used to cluster closely related

sequences and find a consensus sequence for each cluster. The con-

sensus sequences are then compared, and each position may be

described as variable or conserved. The frequencies are renormalized

to represent a number between 1 and 9. Finally, each of the proper-

ties described was stored in the surface of the protein structure as

part of the appropriate atomic coordinate.

2.3 | Protein shape reduction

To reduce the dimensionality of the intricacies of protein shape, we

performed a shape reduction of the 3D atomic structure into a simpli-

fied representation. To perform these calculations, we have created a

Python library, MorphProt. The input for these calculations is a PDB

file (either an atomic structure or homology model), a PQR file, and a

conservation file produced by Consurf35 (when considering evolution-

ary rate). MorphProt began by extracting the molecular surface using

Michel Sanner's MSMS program,37 which uses a 1.4 Å diameter

sphere to detect the solvent accessible surface area. Next, it calcu-

lated a residue depth for all of the amino acids in the protein sequence

using the molecular surface. The residue depth was calculated using

Biopython38 and was evaluated as the average depth of all atoms in a

residue from the calculated surface. In MorphProt, amino acids were

said to be contributing to the surface of the protein if their residue

depth (calculated as the average depth across all atoms in the residue)

was less than 5 Å from the calculated accessible surface. We include

this additional 5 Å from the accessible surface to account for any sub-

surface binding properties that may be missed in the accessibility
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calculation. MorphProt then extracted the 3D coordinates for all of

the atoms that satisfy these surface constraints.

After the atomic coordinates of the surface are extracted,

MorphProt took the maximum and minimum for each x, y, and

z coordinate as 6 biased start centroids, k = 6. MorphProt uses

SKLearn39 to perform a K-means clustering. It projected each of the

clusters onto a 2D surface proportional to the size of the cluster.

Next, it binned each 2D projection into 5 Å by 5 Å boxes, forming a

grid. Note that MorphProt allows for a customizable bin size. For

these experiments, 5 Å by 5 Å boxes were used, as increases in bin

size would lead to decreases in resolution. For each binned box,

MorphProt calculated the average value of each atomic property in

the box, creating a 2D matrix of values. Here, each matrix represents

one of six faces of the protein. Each of these numbers in the matrix

may be mapped back to a location on the protein surface. To avoid

interaction interfaces being split along an edge of each face, each pro-

tein is rotated 45� in the x and y direction and the k-means is rec-

alculated. We also test an initialization of the protein structures by

taking the first three principal components, corresponding to the

major axes, to orient the protein in an optimized start position.

2.4 | Protein interaction interface prediction

We computed a 2D cross-correlation, a common pattern recognition

and image processing tool, to predict areas of the protein surface with

maximum interaction between properties. The cross-correlation was

calculated using MorphProt. Because each protein is reduced to a

total of six matrices, we calculated a total of 36 2D cross-correlations

for each pairwise interaction between the six faces of each protein for

a given initialization. In addition, we sampled all 10� rotations to

account, in an approximate fashion, for different orientations or posi-

tions of the initial protein structures.

We then calculated the sum of the top 10 scores for the

unrotated and rotated initialization positions. The top score for inter-

actions driven by evolutionary rate and hydrophobicity is the maxi-

mum score; however, because complementary charge interactions

involve a pairing of negative and positive numbers, the top score is

the minimum. The start position with the top score is used as the opti-

mal start position. Predicted interfaces are calculated independently

for each of the properties. However, to determine the most likely

interface, we determine consistency for the top 10 interfaces

predicted for each property. If each of the top 10 interface predictions

is a different subset of the same two faces (matrices), then this can be

considered a consistent prediction and is selected as the top interface.

For antibody complexes, we took the top charge score due to the vari-

able binding region that would not be captured with evolutionary rate

or the hydrophobic interaction between the heavy and light chains.

After identifying the top score in the cross-correlation matrix, we

determine the position of the two matrices that produced the score.

We use the position of the high score within the cross-correlation

matrix to identify the alignment of the two matrices and extract any

overlapping regions between the two. Once the areas of the two

matrices that are interacting are identified, we map this back to the

protein structures themselves.

2.5 | Evaluation of predicted protein interaction
interfaces

To evaluate our predictions, we calculated a confusion matrix to clas-

sify predicted interface residues as true positives, false positives, false

negatives, and true negatives based on the predicted and actual clas-

ses. We defined a residue to be on the interaction interface if any

atom from the residue is within 5 Å of an atom from the protein it is

in complex with. We then evaluated our confusion matrix where the

precision, recall, accuracy, and F1 score are defined accordingly:

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

Accuracy=
TP+ TN

TP+ TN+ FP+ FN

F1 = 2
Precision×Recall
Precision +Recall

Additionally, we have integrated an extreme value calculation to

validate the “uniqueness” of the atomic properties. This demonstrates

that placement along the interface is not a random distribution of

points but a clustering of some property contributing to an interface.

To calculate this, we randomly shuffled the properties associated with

each atom and recalculated scores. We repeated this shuffle and scor-

ing 1000 times to generate a distribution. If the score was an extreme

value in the distribution, then the score is statistically significant and

represented a clustering of a property at that location.

2.6 | Interface predictions from other tools

MorphProt was compared to four different structure-based prediction

tools: Promate 2,40 PredUS 2,41 PIER,42 and SPPIDER43 on the CAPRI

score_set complexes. The predictions were all generated using the fol-

lowing servers. The Promate 2 predictions were run at: http://

bioportal.weizmann.ac.il/promate/. The default configuration was

used. The proteins that had no predicted interface atoms were

assigned statistics of 0. The SPPIDER predictions were run at: http://

sppider.cchmc.org, using the predict interface from unbound struc-

tures option. The tradeoff between sensitivity and specificity used

was 0.5 (balanced). The PredUS 2 predictions were run at: https://

bhapp.c2b2.columbia.edu/PredUs/index_omega.html, using all default

settings. The PIER predictions were run using the server at: http://

abagyan.ucsd.edu/PIER/. The suggested cutoff score of 30 was used

to predict the interface residues.
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2.7 | Simulation of structural distortion by normal
mode analysis

To simulate structural distortion in the crystal structures from the

test set we used elNémo44, a normal mode analysis. elNémo pre-

dicts the possible movements of a macromolecule through low-

frequency normal modes. The l and r unbound subunits of PDBID:

1FQJ, 1NZ8, 1US7, 2GTP, and 3CPH from the protein-protein inter-

action docking benchmark were used. All default parameters were

kept except for DQMIN and DQMAX, which were adjusted to

100 and 300, respectively, to allow more extreme distortion.

Selected normal modes and PDBs can be found in the Supporting

Information. Modes were selected based on large Cα-RMSD from

the wild-type structure.

3 | RESULTS

We wished to test if a highly simplified geometric representation of a

3D protein surface embedded with properties was sufficient to

F IGURE 1 MorphProt pipeline for partner-specific interaction interface prediction. A, The MorphProt interaction interface pipeline begins
with atomic coordinates (PDB). Relevant surface properties are stored in these coordinates. The protein surface is converted into six matrices. A
cross-correlation is calculated between matrices of each protein to find the area of maximum interaction (max score). This is used to generate the
position of the matrices to give the maximum, which are then mapped back to the surface of the protein. B, The atomic structure to property
matrix is described in more detail. The surface of the structure is extracted, and a k-means of the atomic coordinates is used to segment the
surface into six patches. The patches are then projected into two dimensions. Each patch is then binned, and an average surface property is
calculated
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predict protein-protein interactions, while being tolerant of possible

molecular motions relevant to the interaction. We wanted to consider

protein surface properties and how opposing surfaces complement

each other when forming an interface, largely independent of protein

shape. For this reason, we began with a reduction of the irregular

shape of a protein by considering atoms near the surface of the pro-

tein, thus excluding the atoms that play a role in stabilizing the protein

core and presumably make less of a contribution to protein-protein

interactions.

3.1 | Simplified representation and interaction
interface prediction

Our simplified representation is as follows: The solvent accessible sur-

face of the protein is computed and reduced into a simplified geomet-

ric representation proportional to the size of the protein (Figure 1).

The reduction retains an approximate representation of interface pro-

portions. Recently, the idea of reducing proteins to simplified shapes

has gained attention in structural searches.45 Our shape reduction

uses a K-means clustering algorithm to separate protein surface

accessible amino acids into six distinct clusters, followed by a projec-

tion of the coordinates into two-dimensions (2D) (Figure 1B) to repre-

sent the surfaces. Each atomic coordinate is described by its unique

properties; charge, hydrophobicity, and evolutionary rate. These 2D

coordinates are then binned into a grid based on the transformed

atomic coordinate locations, and the average property value is calcu-

lated for each square of the grid. The result is a matrix of property

values where the locations of the values within the matrix represent

the neighbors of the atoms on the protein surface with minimal

distortion.

These reduced protein surfaces are images, making them suit-

able for several image processing techniques. To build a partner-

specific predictor that considers surface property-complementarity,

we performed cross-correlation of images from two partner proteins

to find an area of maximum similarity between the two images by

computing a dot product at each position after rotation and transla-

tion (Figure 1A). Cross-correlations have already proven to be invalu-

able in various image processing techniques, including identifying

single particles from electron microscopy data.46 Here, this approach

was used to identify an area of maximum interaction by searching

and calculating a complementarity score between properties in the

matrix. Because our protein surfaces were reduced into six matrices,

we cross-correlated each matrix of one binding partner with each

matrix of its partner and generated a score for each position of the

36 cross-correlations. The highest scores represent the positions of

each protein face where the maximum interaction occurs. The posi-

tion of the matrices can be mapped back onto the protein surface

that they represent. We designed a Python package called

MorphProt to perform the shape reduction, cross-correlation evalua-

tions, and plot the predicted interface residues onto the atomic

structure.

3.2 | Detecting interaction interfaces with a
known nature of interaction

To address the concern of any distortion by the shape reduction, we

demonstrated that interaction interfaces are still detectable with a

proof-of-concept protein pair, the alpha-chymotrypsin-eglin c com-

plex (PDB:1ACB) (Figure 2A-C). We extracted the surface of each pro-

tein in the complex and set the charge property to 0 at all positions

with the exception of the true interface. We defined the true inter-

face as all atoms from one protein that are within 5 Å of an atom of

the other protein in the complex. The atoms on the true interface of

alpha-chymotrypsin were assigned a charge of +1, and those on the

true interface of eglin c were assigned a charge of −1. We then per-

formed our shape reduction and cross-correlation analysis using

MorphProt. The top 10 interaction scores were all between the same

two protein faces, which cluster along the true interface. This indi-

cates that despite any distortion that occurs from our reduced repre-

sentation of the protein surface, MorphProt was still able to identify

the area of complementarity between the two surfaces. In addition,

when the surface properties were shuffled, the true location of the

property was identified as an extreme value (P value: .007). These

results further support the notion that the shape reduction does not

cause significant distortions, and cross-correlation can be used to find

the true interface of complementary properties. We then extended

this approach to a more complicated scenario of a protein complex

with known interaction basis.

Of primary interest for biological processes, is the assembly of

large macromolecular machines. Using MorphProt, we explored the

assembly of a large protein complex by examining our recently publi-

shed Ceru+32/GFP-17 protomer structure,47 a synthetically

engineered supercharged GFP 16-mer (Figure 2D,E). These proteins

were engineered to have oppositely charged variants of the normally

monomeric green fluorescent proteins (GFP), which resulted in the

assembly of a large, ordered macromolecular structure. Because the

structure is known to form charge-based interactions, it served as an

effective test for the ability of MorphProt to predict partner-specific

interactions within a large macromolecular complex where subunits

have multiple interaction interfaces. The input for MorphProt was the

α and β supercharged subunits. The top 10 scores accurately

predicted two of the charge-based interfaces between subunits. To

further show that the engineered, supercharged GFP produces new

charge-based interfaces, we performed our shuffle analysis on wild-

type GFP to produce 396 000 possible scores and arrangements of

the wild-type residues. The scores from the supercharged GFP fell in

the upper tail of the distribution of scores (Figure S1).

3.3 | Evaluating MorphProt on a benchmark
protein interaction set

Because many times the properties contributing to the interaction

interface remain elusive, we tested the MorphProt prediction on a
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combined benchmark set30,32 of 185 protein complexes of varying

interaction type. Of the protein complexes tested, 172 came from

the docking benchmark version 5,30 which includes various types of

interactions including antibody-antigen, enzyme-substrate, and

enzyme-receptor (Table S1). These complexes are also categorized by

the difficulty to predict the interaction interface based on I-RMSD

(RMSD of the interface). Using our validation scheme, we have ana-

lyzed the ability of MorphProt to predict the interaction interface of

the protein pairs for each difficulty group (Figure 3A,B). The average

F1 score, a weighted combination of precision and recall, for the rigid,

medium, and difficult complexes was 0.2, 0.22, and 0.21, respectively.

The accuracy of the MorphProt prediction of the rigid, medium, and

difficult complexes was 0.78, 0.76, and 0.73, respectively. We show

that MorphProt's ability to predict interaction interfaces is fairly

robust against structural changes upon binding with little variability

between the statistics of each difficulty group (Figure 3A,B). The most

severe conformational change had an I-RMSD of 8.4 Å between the

bound and unbound structures, resulting in the receptor protein open-

ing to bind with the ligand. Despite this large conformational change,

MorphProt was still able to predict some of the interaction interface

(Figure 3B).

We also classified these predictions according to the CAPRI crite-

rion of high, medium, acceptable, and incorrect ranking.48 Using this

criterion, we found that 26 of the complexes ranked high, 35 ranked

medium, 74 ranked acceptable, and 37 ranked incorrect. Our method

is based on selecting the top, consistent interface as the prediction,

but we were interested in exploring whether selecting the second

interface for those predictions where recall <0.1 would improve our

statistics (Figure S2). This approach led to better summary statistics

with the new average F1 score of 0.22 (up from 0.21) and the accu-

racy 0.77 (up from 0.74). In addition, the new CAPRI criterion ranking

was 30 high, 41 medium, 81 acceptable, and 20 incorrect.

In addition to the protein docking benchmark set, we tested

MorphProt's performance on the 13 of the CAPRI targets from the

score_set benchmark32 (Table 1). To determine whether a normalized

start position would improve the clustering and predictions, we used a

PCA to orient each protein so that the longest principal components

were on each axis. When compared to MorphProt without PCA, we

see a boost in both precision and recall. When compared to four other

structure-based interaction interface predictors (Promate 2, PredUS

2, PIER, and SPPIDER), we see that our reduced representation per-

forms favorably on all statistical parameters (Table 1).

F IGURE 2 MorphProt interface predictions for known charged interfaces. A, The experimentally determined structure of the alpha-
chymotrypsin-elgin c protein complex (PDB: 1ACB). The ligand orl (gold) interface residues were set to −1 and the receptor orr (light blue)
interface residues were set to +1, while the remainder of the surface residues were assigned a charge of 0. B, The predicted interface (red) was
mapped onto the protein complex. C, The cross-correlation scores produced from 1000 shuffles of the engineered charge property across the
surface of the protein. The point represents the top score from the prediction (Pvalue: .007). D, MorphProt predicts interfaces of the Ceru+32/
GFP-17 super-charged GFP protomer (PDB: 6MDR) between the alpha and beta subunits based on known charge-based interactions. E, The
statistics of the two interfaces are reported in the table [Color figure can be viewed at wileyonlinelibrary.com]
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3.4 | Interaction interface prediction despite
structural distortion

Finally, we wanted to test the performance of our interface predictor

against the uncertainty that may arise from structural models pro-

duced by homology modeling or lower resolution structure building

methods. In both experimental and computational structural biology,

there can occasionally be uncertainty regarding the exact position of

the side chains and backbone of the model. By distorting one of our

test proteins that produced a strong evolutionary rate interface pre-

diction, we showed that our predictions remain robust even consider-

ing a structure that is distorted by up to �6 Å Cα-RMSD. The crystal

structures of the unbound Gnai and RGS9 (PDB: 1FQJ) were distorted

using normal mode analysis (Figure 4A,B). We used elNémo44 to com-

pute the low-frequency normal modes of each of the structures in the

F IGURE 3 MorphProt predictions for the protein docking benchmark version 5. The protein docking benchmark groups protein complexes based
on the difficulty in predicting the interaction interface or docking conformation. MorphProt predictions are made for the unbound structures and
evaluated on the bound structures. A, The distribution of precision, recall, F1score, and accuracy for protein complexes in each difficulty group. B, The
unbound structures for representative proteins from each of the difficulty groups are shown on the left. The bound protein structures with the predicted
interface are colored in red. In each table, the type of interaction and I-RMSD is reported from the protein docking benchmark version 5. The bottom
complex has the largest conformational change upon binding from the difficult complex group [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Comparison of MorphProt with four other structure-
based interface predictors

Predictor Precision Recall F1 Score Accuracy

MorphProt 0.20 0.25 0.22 0.74

MorphProt PCA 0.23 0.26 0.24 0.74

SPPIDER 0.23 0.36 0.26 0.73

Promate 2 0.20 0.04 0.06 0.56

PredUS 2 0.40 0.32 0.34 0.82

PIER 0.42 0.12 0.17 0.84

Notes: The average prediction statistics across the Capri Score-set from

MorphProt, MorphProt with PCA, SPPIDER, Promate 2, PredUS2, and

PIER are shown. All statistics were calculated in the same manner. An

interface residue is any residue within 5 Å of a heavy atom from the other

protein in the complex. All predictions were made on unbound structures

and validated on the bound structures.
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F IGURE 4 MorphProt can predict interaction interfaces despite structural distortion. A, Unbound structure of Gnai and RGS9 (PDB: 1FQJ).
The ligand and receptor are depicted in gold and blue, respectively. The interface is predicted using evolutionary rate. B, The predicted interface
is colored red on the bound structure. C, The receptor and ligand were distorted using elNémo normal mode analysis. The receptor was distorted
up to �6 Å (Cα-RMSD) while ligand was held constant. The zoom-in depicts the native structure (gray) superimposed onto the �6 Å distorted

structure to show the change in position of residues on the interface (top). Precision, recall, F1 score, and accuracy were plotted against Cα-
RMSD showing that for the distorted receptor there was no linear correlation between Cα-RMSD (R2acc and R2F1 < .02) (bottom). D, The same
was done for the ligand while the receptor was held constant. Here, precision, recall, F1score, and accuracy showed a slight linear correlation with
the Cα-RMSD (R2acc = .44 and R2F1 = .52) [Color figure can be viewed at wileyonlinelibrary.com]
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complex. In the analysis, one of the subunits (receptor or ligand) was

held constant, while the interface was predicted at different Cα-

RMSD distortions of the other subunit (receptor or ligand). Despite

different configurations of the protein backbone, we were still able to

predict the interface based on the generalized property complemen-

tarity for a given section of the protein structure. We show the

predicted interface after structural distortion of both the receptor and

ligand (Figure 4C,D). At different points in the receptor distortion, we

see some slight changes in the prediction summary statistics but no

linear correlation (R2 < .02). However, the ligand distortion shows a

slight linear correlation (R2 < .52), with the prediction statistics

decreasing as the Cα-RMSD of the ligand with the native ligand

increases. This process was repeated for four additional complexes

(eight structures) with similar results (Figure S3).

4 | DISCUSSION

Here, we have demonstrated that by using shape reduction to normal-

ize the highly variable 3D protein structure to a simplified geometric

representation, we are able to store layers of information on a 2D rep-

resentation of a protein surface while preserving atomic neighbor-

hoods. The resulting matrix of values contains the location of surface

properties and their proximity to other values and is a direct represen-

tation of the spatial coordinates of the 3D atomic structure. We

showed that converting the surface properties to an image allows us

to identify areas of maximum interaction of surface properties

between two proteins via a partner-specific approach. In addition,

MorphProt has the ability to construct large macromolecular assem-

blies through detecting multiple partner-specific interfaces.

While primary sequences provide information regarding amino

acid identity and adjacent residues, it can be difficult to precisely

determine from sequence alone which residues reside on the sur-

face of a protein and their relation to each other in its 3D structure.

Structure-based approaches allow us to extract and investigate sur-

face properties, providing a useful first step for interface predic-

tion, as the spatial position of residues is essential for

macromolecular recognition.23 Many machine learning interaction

interface predictors exist and use structure, but the only informa-

tion stored in feature vectors is statistical information for the sur-

face patches and not the spatial arrangement of the residues.23 In

addition to the lack of information regarding residue neighbor-

hoods, many of the structure-based approaches are not equipped

to handle dramatic conformational changes upon binding.49 We

have addressed these limitations of previous methods through our

shape reduction by treating the protein surface as a simple 2D

matrix, where the location of a value within the matrix is a repre-

sentation of the location of that value on the protein surface. This

novel surface-patch approach turns out to be incredibly powerful in

identifying the areas of maximum interaction between structures of

interacting pairs.

In our approach, patch size is not predetermined; instead, it is

dependent on the size of the proteins being tested and the size of

overlap between protein faces for each score calculation. Traditional

approaches for identifying a surface patch result in fairly uniform

patch sizes.22 Our method tests surface patches over a number of

different sizes and arrangements because the patches are deter-

mined by the position of the cross-correlation. The first patch tested

is the corner of two matrices and expands as the calculation con-

tinues, and the patches are both rotated and adjusted in size. The

result is a sample of various patches and orientations, which can be

used to identify the area of maximum interaction between the pair

of proteins.

Because our interfaces are defined by a continuous patch of resi-

dues and not several interacting residues, it is worth investigating the

best method of defining a true interface. In our evaluations, we

focused on the CAPRI standard, which defines an interface residue as

containing a heavy atom within 5 Å of a heavy atom of the other pro-

tein in the bound structure. However, because we are predicting

whole interface patches, we have a large number of false positive pre-

dictions (residues on the outside of the patch or in concave sections

of the surface) that may not be within the 5 Å threshold. By

reevaluating our CAPRI predictions using a more forgiving 10 Å true

interface threshold, we see the average precision shift from 0.20 to

0.42 (Figure S4). It is important to note that this new threshold leads

to an increase in false negative predictions, resulting in a decrease in

recall and accuracy. The F1 score, which combines both precision and

recall, went from an average of 0.22 to 0.28. The evaluation criterion

is an important consideration and is dependent on the intended use

of the prediction.

In our comparison of MorphProt and MorphProt PCA with four

other structural predictions, we show that the MorphProt methods

are comparable to available methods. MorphProt, however, differs

greatly from these methods in its approach. The reduced representa-

tion removes emphasis from the shape and shifts it to surface proper-

ties and their location relative to each other. Because of this, no

information is required aside from the protein structure to generate a

prediction. The other programs require some sort of a priori informa-

tion, either a template that resembles the protein being searched or a

training set where a similar protein is represented. This limits these

methods from making predictions for proteins that are not well repre-

sented experimentally.

In most structure-based interaction interface predictors, an inter-

face is identified based on features of a given area on one of the pro-

tein surfaces, ignoring properties of a partner when determining how

they best fit together. A partner-specific predictor uses information

regarding both proteins of interest. It has been shown that prediction

methods that do not employ a partner-specific approach have lower

reliability in predicting transient binding sites,50,51 whereas a partner-

specific approach can identify locations that are highly conserved for

transient protein-protein interactions.27 A significant advantage of

using a partner-specific predictor is its ability to find specific surface

areas that form interactions with different partners. One significant

challenge of many partner-specific predictors is their use of unbound

protein structures to search for interaction interfaces.18 In many bio-

logical processes, proteins undergo a dramatic conformational change
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upon binding, which complicates predicting an interface based on

unbound structures. We have demonstrated that using a reduced sur-

face representation of a protein in combination with stored informa-

tion of highly predictive properties, we can make partner-specific

interface predictions for unbound proteins, including those that

undergo at least moderate structural rearrangements, an important

feature for building multi-protein assemblies.

Furthermore, we showed that despite introduced structural dis-

tortion, we are still able to predict interfaces based on complementar-

ity. This is increasingly important for predicting interaction interfaces

with the widespread use of homology models and lower-resolution

structures. Here, greater weight is put on the neighborhoods of prop-

erties on the surface rather than their exact location. The ability to

predict the interface for homology models is significant for assembling

macromolecular complexes where little is known regarding the struc-

ture of the individual subunits. Theoretically, one could produce

models for the subunits and then arrange them according to their

interaction interfaces to predict the structure for large assemblies.

Such analyses would also benefit from protein docking following the

interface prediction to improve positioning.

While discrepancies between interface prediction and protein

docking occur often, the techniques are effective when used in con-

junction with one another. Protein-protein docking is a partner-

specific technique that is highly dependent on shape complementarity

and energetics.23 One of the limitations of protein-protein docking is

the large sample size that must be tested and then scored by an

energy function to produce a prediction of the arrangement of two

proteins. The number of arrangements would be drastically reduced

by using an interface prediction as a preliminary step before docking.

Previous studies showed that using a partner-specific, homology-

based interface prediction prior to docking significantly improves the

scoring of the docked proteins.52 Notably, the HADDOCK server

allows for the incorporation of a predicted interaction interface, how-

ever, this interface is computed from a single protein rather than a

partner-specific interface.53 Incorporating our interface prediction

into a protein-protein docking pipeline would increase computational

efficiency because it is independent of shape complementarity and

energetics.

Another significant application of partner-specific interaction

interface predictors is the screening of small molecule inhibitors or

drugs. These often interact via transient interactions,23 making

predicting transient interactions imperative. Small molecules that

interact with protein-protein interfaces and alter these interactions

have demonstrated to be effective drugs and the prediction of these

interfaces could be useful in finding potential targets.54 This poses a

challenge because many protein interfaces have been described as

large, featureless surfaces that lack obvious binding pockets.55

Because our method reduces the protein surface to essentially the

same, we would likely be able to make more accurate predictions

using physicochemical properties stored on the surface of the protein.

Furthermore, predictions and scores for small molecule inhibitors or

drugs could be optimized by understanding the area of interaction

produced by our method.

5 | CONCLUSIONS

To address the inherent variability of protein shape, conformational

changes, and structural approximations while reducing computation

time, we were interested in determining if a simplified geometry retains

enough spatial information to predict interaction interfaces based on

complementary properties. Specifically, our aim was to develop a pipe-

line that was robust to molecular motions while gaining computational

power to assemble larger multimeric protein complexes. Using

MorphProt, we performed a shape reduction of the accessible surface

of a protein into a reduced surface representation. This reduced repre-

sentation allows for easy storage of intrinsic properties of the protein

such as hydrophobicity, charge, and evolutionary rate to be embedded

within each surface image. The result is a quantitative description of

these properties across a protein surface enabling image processing

techniques to identify complementarity between the properties of two

interacting protein surfaces. We show this method can be useful when

one of the above properties is the driving force of the interaction.

MorphProt was able to predict interaction interfaces for the unbound

CAPRI targets and the protein-protein interaction benchmark complexes

with comparable results to a number of other predictors. Additionally,

MorphProt was able to predict interfaces for a large 16-subunit oligo-

mer, proteins with multiple binding sites, and crystal structures that have

been distorted by up to �6 Å Cα-RMSD to mimic models built from

lower resolution density maps or imperfect homology models. Our algo-

rithm could be integrated into platforms that aim to assemble compli-

cated protein architectures.
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