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Long noncoding RNAs (lncRNAs) are emerging as critical
regulators of gene expression and play fundamental roles in im-
mune regulation. Growing evidence suggests that immune-
related genes and lncRNAs can serve as markers to predict
the prognosis of patients with cancers, including hepatocellular
carcinoma (HCC). This study aimed to contract an immune-
related lncRNA (IR-lncRNA) signature for prospective assess-
ment to predict early recurrence of HCC. A total of 319 HCC
samples under radical resection were randomly divided into a
training cohort (161 samples) and a testing cohort (158 sam-
ples). In the training dataset, univariate, lasso, andmultivariate
Cox regression analyses identified a 9-IR-lncRNA signature
closely related to disease-free survival. Kaplan-Meier analysis,
principal component analysis, gene set enrichment analysis,
and nomogram were used to evaluate the risk model. The
results were further confirmed in the testing cohort. Further-
more, we constructed a competitive endogenous RNA regulato-
ry network. The results of the present study indicated that this
9-IR-lncRNA signature has important clinical implications for
improving predictive outcomes and guiding individualized
treatment in HCC patients. These IR-lncRNAs and regulated
genes may be potential biomarkers associated with the prog-
nosis of HCC.

INTRODUCTION
Hepatocellular carcinoma (HCC) is one of the most common human
malignancies and a leading cause of death worldwide.1,2 Although
radical resection is the cornerstone of the therapeutic option for
early-stage HCC patients,3 up to 70% of HCC patients present tumor
recurrence within 5 years after resection.4 Early recurrence is one of
the most prominent risk factors for HCC prognosis. The current stra-
tegies for assessing the risk of relapse include imaging (computed to-
mography/magnetic resonance imaging), the alpha-fetoprotein
(AFP) serum biomarker, and several tumor characteristics, such as
microvascular invasion (MVI) and portal vein tumor thrombus.
Although these strategies provide some value for predicting the risk
of recurrence, they still face great difficulty in providing an accurate
evaluation of the risk of recurrence, owing to their limited sensitivity
and specificity.5 Plasma biomarker detection and identification of pa-
tients with potential recurrence remain clinical dilemmas. Therefore,
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it is highly desirable to identify novel molecular biological markers to
accurately predict the risk of early recurrence in HCC patients.

Long noncoding RNAs (lncRNAs) are longer than 200 nucleotides in
length and have no protein coding functions.6 lncRNAs play an essen-
tial role in cancer development and progression.7,8 Evidence suggests
that lncRNAs are engaged in epigenetic regulation, gene expression,
genetic imprinting, chromatin remodeling, transcription, and post-
transcriptional processes.9,10 In addition, lncRNAs play key roles in
many cellular processes, such as the cell cycle, cell differentiation,
and DNA repair.11,12 Emerging evidence suggests that lncRNAs, as
regulators, play an important role in cancer immunity, such as anti-
gen release, immune cell migration, immune cell infiltration, antigen
presentation, and immune activation.13,14 Recent studies have sug-
gested that some lncRNAs may serve as potential prognostic bio-
markers in HCC.15 Several studies have reported the potential value
of an lncRNA signature for predicting prognosis in HCC.16–18 How-
ever, most studies have focused on overall survival (OS). Currently,
studies are lacking regarding the immune-related lncRNA signature
in the early recurrence of HCC patients after radical resection.

In the present study, we screened 319 HCC patients under radical
resection from The Cancer Genome Atlas (TCGA) to obtain patient
clinical symptoms and the expression of lncRNAs. A total of 319 sam-
ples were randomly divided into a training cohort (161 samples) and a
validation testing cohort (158 samples). In the training cohort, we
used Cox regression models and lasso regression models to identify
nine immune-related lncRNAs (9-IR-lncRNAs) that are tightly asso-
ciated with the recurrence of HCC. We developed a model to predict
the risk of recurrence (risk score) in HCC patients based on the 9-IR-
lncRNA signature. The results revealed that HCC patients with higher
risk scores had worse disease-free survival (DFS) than patients with
lower risk scores. The finding in the training cohort was validated
in the testing cohort.
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Figure 1. Analysis overview

Gene expression and clinical data of HCC under radical

resection were collected from the TCGA database. To

construct a relapse risk prediction model, nine DFS-

related IR-lncRNAs were selected using univariate Cox,

lasso-Cox, and multivariate Cox analyses. For each HCC

sample, tumor purity, TIS, and the fraction of immune cell

infiltration were estimated using the ESTIMATE and the

gene set variation analysis (GSVA) function packages in R.

In the GSVA function, samples were scored according to

the level of expression of a comprehensive set of gene

signatures related to the immune response. The resulting

scores were used to cluster the metastatic samples

based on their immune profile.
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This 9-IR-lncRNA signature not only improves the ability to predict
prognosis in HCC patients with early recurrence and promote better
clinical treatment strategies, but also helps elucidate the underlying
mechanisms. Finally, we further verified that these hub lncRNAs
were significantly differentially expressed between HCC cell lines by
quantitative real-time PCR (qRT–PCR).

RESULTS
Clinical characteristics and IR-lncRNA identification of 319

patients in the TCGA-HCC cohort

In the present study, 319 HCC samples with complete DFS informa-
tion were included after screening 374 TCGA-HCC samples. The
detailed analysis overview is shown in Figure 1. The "caret" package
in R was used to randomly divide 319 patients into two groups as fol-
lows: 161 in the training cohort and 158 in the testing cohort. The
clinical characteristics of HCC patients are shown in Table 1. There
were no significant differences between the two groups in terms of
age, gender, ethnic distribution, serum AFP level, vascular invasion,
Child-Pugh grade, American Joint Committee on Cancer (AJCC)
stage, recurrence status, and survival status. A total of 344 IR-
lncRNAs were identified by expression correlation analysis of im-
mune-related genes (IRGs) and lncRNAs (P < 0.001, cor >0.7).

Construction of an HCC DFS prognostic model in the training

cohort using nine IR-lncRNAs

In the training cohort, 100 IR-lncRNAs related to DFS were selected
through univariate Cox analysis, 13 IR-lncRNAs (Figures S1A–S1C)
were further screened using lasso-Cox regression, and nine IR-
lncRNAs were included in the multivariate Cox regression. We
used the multivariate Cox “stepwise regression method” to incorpo-
rate the nine core IR-lncRNAs related to DFS to establish a model
(Figure S1D) and calculate the risk score using the following formula:

risk score =
Pn

i
coefi � expðlncRNAiÞ, where coefi is the regression co-
1388 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
efficient, and expðlncRNAiÞ is the expression of
nine IR-lncRNAs (Table 2). We further per-
formed Kaplan-Meier curve survival analysis
of the nine IR-lncRNAs. The results showed
that high expression of AL031770, AC079328,
AC011603, AL031985, AC087294, and LINC02193 significantly
correlated with poor prognosis (P < 0.05, Figures S2A–S2G), while
high expression of WARS2-IT1 and LINC002481 indicated a better
prognosis (P < 0.1, Figures S2H and S2I).

HCC DFS prediction performance analysis of the 9-IR-lncRNA

model

In the training cohort, with an increase in the risk score, the patient’s
recurrence or mortality gradually increased (Figures 2A and 2B), and
the expression levels of WARS2-IT1 and LINC002481 decreased.
In addition, the expression levels of AL008718, AL031770, AC079
328, AC011603, AL031985, AC087294, and LINC02193 gradually
increased with an increase in the risk score (Figure 2C). The 3D-prin-
cipal components analysis diagram showed that the 9-IR-lncRNA
signature distinguished the high-risk and low-risk groups (Figure 2D).
Similar phenomena were observed in the verification cohort (Figures
2E–2H).

According to the median risk score of 1.02, the training cohort was
divided into a high-risk group (n = 80) and a low-risk group (n =
81). The DFS of the high-risk group was significantly lower than
that of the low-risk group (Figure 3A, P < 0.001). The median DFS
time of the high-risk group was 0.8 years and that of the low-risk
group was 3.8 years. Using the same threshold, the verification cohort
was divided into a high-risk group (n = 74) and a low-risk group (n =
84). Similar to the training cohort, the DFS of the high-risk group in
the verification cohort was significantly lower than that of the low-
risk group (Figure 3B, P < 0.001). The median DFS time of the
high-risk group was 1 year and that of the low-risk group was 3 years.
The receiver operating characteristic (ROC) curve was used to test the
model prediction performance. In the training cohort, the area under
the curve (AUC) values of the risk score for 1-, 2-, 3-, and 5-year DFS
were 0.784, 0.808, 0.768, and 0.797, respectively (Figure 3B). In the



Table 1. Clinical features of HCC patients with radical resection in each

cohort

Variables Training cohort
(n = 161)/(%)

Testing cohort
(n = 158)/(%)

p

Age 0.633

<50 32 (20) 33 (21)

50–59 51 (32) 41 (26)

60–69 53 (33) 53 (33)

R70 25 (15) 31 (20)

Gender 0.629

Male 113 (70) 106 (67)

Female 48 (30) 52 (33)

AFP (/ULN) 0.182

<1 58 (36) 47 (30)

1–50 42 (26) 36 (23)

R50 20 (12) 30 (19)

NA 41 (26) 45 (28)

Vascular Invasion 0.160

None 97 (60) 80 (51)

Yes 42 (26) 50 (32)

NA 22 (14) 28 (18)

Child-Pugh Grade 0.469

A 102 (63) 90 (57)

B 8 (5) 10 (6)

C 1 (1) 0 (0)

NA 50 (31) 58 (37)

AJCC Stage 0.175

Stage I 85 (53) 72 (46)

Stage II 36 (22) 43 (27)

Stage III 33 (20) 40 (25)

Stage IV 4 (23) 0 (0)

NA 3 (2) 3 (2)

Disease-Free Status 0.654

Disease Free 71 (44) 74 (47)

Recurred/Progressed 90 (56) 84 (53)

Survival Status 0.196

Alive 116 (72) 124 (78)

Death 45 (28) 34 (22)

Note: AFP, a-fetoprotein; AJCC, American Joint Committee on Cancer; HCC, hepato-
cellular carcinoma; NA, not available; ULN, upper limit of normal.

Table 2. Nine immune-related long noncoding RNAs were identified for the

construction of a prognostic model by a multivariate Cox regression

analysis in training cohort

Variables Univariate Analysis Multivariate Analysis

HR (95% CI) p coef HR (95% CI) p

LINC002481 0.81 (0.66–0.99) 0.044 �0.42 0.66 (0.52–0.83) 0.001

WARS2-IT1 0.81 (0.67–0.98) 0.028 �0.35 0.71 (0.58–0.87) 0.001

AC079328 1.38 (1.08–1.77) 0.011 0.26 1.29 (0.96–1.74) 0.092

AC011603 1.67 (1.19–2.35) 0.003 0.34 1.41 (0.92–2.16) 0.115

AL031770 1.42 (1.13–1.78) 0.003 0.23 1.25 (0.96–1.64) 0.101

AC087294 1.45 (1.16–1.80) 0.001 0.21 1.23 (0.97–1.56) 0.095

AL031985 1.55 (1.24–1.95) <0.001 0.30 1.35 (1.02–1.79) 0.038

LINC02193 1.32 (1.12–1.56) 0.001 0.20 1.22 (1.00–1.49) 0.054

AL008718 1.59 (1.25–2.02) <0.001 0.28 1.33 (1.02–1.72) 0.033

Note: CI, confidence interval; coef, coefficient; HR, hazard ratio.
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verification cohort, the AUC values of the risk score for 1-, 2-, 3-, and
5-year DFS were 0.773, 0.748, 0.678, and 0.679, respectively (Fig-
ure 3D). Furthermore, to test the advantages of our model, we
performed ROC curve analysis and compared the 1-year, 2-year, 3-
year, and 5-year AUCs of four published lncRNA recurrence
models,21,22 which demonstrated that our DFS model had a better
performance than previous models. In terms of 1-year recurrence
prediction, the AUC value of our model was 0.780, while previous
models ranged from 0.53 to 0.610 (Gu JX et al.19 3-lncRNA model,
AUC = 0.563; Gu JX et al.20 6-lncRNA model, AUC = 0.610; Zhang
Q et al.21 15-lncRNA model, AUC = 0.662; and Zhang ZJ et al.22

14-lncRNA model, AUC = 0.563). Similar results were found for
the 2-year, 3-year, and 5-year AUC values (Figures 3E–3H). These re-
sults indicated that the 9-IR-lncRNA model has moderate prediction
accuracy. Next, we analyzed the differential expression of the 9-IR-
lncRNAs in cancer and normal tissues in the entire TCGA-HCC
cohort. The results indicated that AL008718, AL031770, AC079328,
AC011603, AL031985, AC087294, LINC02193, and LINC002481
showed significantly high expression in tumors, while WARS2-IT1
showed low expression in tumors (Figure S3A). Similar results were
found in HCC cell lines (Figure S3B). Compared with normal tissues,
LINC002481 was significantly upregulated in HCC, leading to a better
prognosis. Interestingly, this phenomenon is slightly contradictory, as
some genes related to immune regulation have similar phenomena.
For instance, CXCL11 expression is significantly upregulated in colon
cancer but is associated with better prognosis; high CXCL11 expres-
sion results in a higher fraction of antitumor immune cells and a
lower fraction of protumor immune cells.23 These findings suggested
that WARS2-IT1 and LINC002481 may play an inhibitory role in
tumorigenesis and the immune microenvironment.

Comparison of the 9-IR-lncRNA risk score to the combined

clinical score and each individual clinical feature

Clinical characteristics, such as age, gender, serum AFP level, Child-
Pugh grade, vascular invasion, and AJCC staging, were analyzed by
univariate and multivariate analyses. In the training cohort, univari-
ate analysis showed that the risk score (hazard ratio [HR] = 1.721, P <
0.001), vascular invasion (HR = 2.348, P < 0.001), and AJCC stage
(HR = 1.940, P < 0.001) were significantly different (Figure 4A).
Multivariate analysis showed that the risk score was an independent
risk factor for the prediction of HCC recurrence (HR = 1.824, P <
0.001) (Figure 4B). In the testing cohort, univariate analysis showed
that the risk score (HR = 1.177, P < 0.001), vascular invasion
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Figure 2. Relationship between the risk score and 9-IR-lncRNAs in the training cohort and testing cohort

(A) HCC patients were sorted by risk score. Red indicates high risk, and green indicates low risk. (B) DFS status of HCC patients. Dark blue indicates recurrence or dead, and

light green indicates disease free. (C) Heatmap of the expression of 9-IR-lncRNAs and (D) PCA in the training cohort. (E–H) Risk score, DFS status, heatmap, and PCA in the

testing cohort.
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(HR = 1.711, P = 0.037), and AJCC stage (HR = 1.688, P < 0.001) were
significantly different (Figure 4C). Multivariate analysis showed that
risk score (HR = 1.743, P < 0.001) and AJCC stage (HR = 1.207, P =
0.004) were independent risk factors for the prediction of HCC recur-
rence (Figure 4D). The clinical risk score was a weighted sum of clin-
ical characteristics, of which the weights were estimates from the
multivariable Cox regression analysis. The AUC was used to evaluate
the predictive performance of the 9-IR-lncRNA risk score, the clinical
risk score, and each clinical feature. In the training cohort, the AUC
value of the 9-IR-lncRNA risk score in the ROC curve of the 1-year
DFS was the highest (AUC = 0.784) followed by clinical risk score
(AUC = 0.719), AJCC stage (AUC = 0.698), AFP (AUC = 0.652),
vascular invasion (AUC = 0.645), Child-Pugh grade (AUC =
0.532), gender (AUC = 0.507), and age (AUC = 0.437) (Figure 4E).
The AUC values of the 2-year DFS ROC curve had the following order
from high to low in the training cohort (Figure 4F): 9-IR-lncRNA risk
score (AUC = 0.808) > clinical risk score (AUC = 0.702) > AJCC stage
(AUC = 0.702) > vascular invasion (AUC = 0.621) > AFP (AUC =
0.607) > age (AUC = 0.542) > Child-Pugh grade (AUC = 0.525) >
1390 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
gender (AUC = 0.487). Similar results were found in the verification
cohort. For the 1-year DFS ROC curve in the validation cohort, the
order of AUC values from high to low was as follows: 9-IR-lncRNA
risk score (AUC = 0.773) > clinical risk score (AUC = 0.748) >
AJCC stage (AUC = 0.711) > AFP (AUC = 0.616) > vascular invasion
(AUC = 0.557) > Child-Pugh grade (AUC = 0.532) > sex (AUC =
0.445) > age (AUC = 0.431) (Figure 4G). The order of AUC values
from high to low for the 2-year DFS ROC curve in the validation
cohort was as follows: clinical risk score (AUC = 0.763) > 9-IR-
lncRNA risk score (AUC = 0.748) > AJCC stage (AUC = 0.718) >
AFP (AUC = 0.585) > vascular invasion (AUC = 0.537) > age
(AUC = 0.505) > Child-Pugh grade (AUC = 0.481) > gender
(AUC = 0.431). These results showed that the accuracy of early liver
cancer recurrence prediction of the 9-IR-lncRNA model was better
than that of the clinical risk score and the existing clinical indicators,
such as AJCC stage, AFP, vascular invasion, and Child-Pugh grade.

To further explore the potential relationships between the risk score
and multiple clinicopathologic factors, correlation analysis was



Figure 3. Kaplan-Meier curve survival analysis and time-ROC curve analysis of the IR-lncRNA signature

(A) Kaplan-Meier curve survival analysis between the high-risk and low-risk groups of the training cohort. The red line indicates the high-risk group, and the blue line indicates

the low-risk group. (B) Time-ROC curve analysis of the 9-IR-lncRNA signature in the training cohort. The red, green, blue, and purple lines represent the 1-, 2-, 3-, and 5-year

DFS, respectively. (C and D) Kaplan-Meier curve survival analysis and time-ROC curve analysis of the 9-IR-lncRNA signature in the testing cohort. (E–H) Time-ROC curve

analysis of the 9-IR-lncRNA signature compared with other published models. (E) One-year DFS, (F) 2-year DFS, (G) 3-year DFS (H) and 5-year DFS. The red line represents

our 9-IR-lncRNA model, and the yellow line represents the 3-lncRNA model by Gu et al.19 The green line represents the 6-lncRNA model by Gu et al.20, and the blue line

represents the 15-lncRNA model by Zhang et al.21 The purple line represents the 14-lncRNA model by Zhang et al.22
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conducted via independent t tests. In the training and testing cohorts,
the risk scores of AJCC stage II and III/IV were higher than that of
stage I (P < 0.05, Figure S4A), and the risk scores of T2 and T3/4
were higher than that of T1 (P < 0.05, Figure S4B). Moreover, the
risk scores of N0, N1, and NX were not significantly different in the
training and testing cohorts (P > 0.05, Figure S4C). The patients
with macro- and microvascular invasion had higher risk scores
than patients with no vascular invasion (P < 0.05, Figure S4D). A
higher risk score was more commonly detected in patients with
increased AFP (P < 0.05, Figure S4E), but the risk scores of Child-
Pugh grades A and B were not significantly different (P > 0.05,
Figure S4F).

Construction of HCC DFS prognostic nomogram

In the entire TCGA-HCC cohort, we selected three parameters,
including risk score, AJCC stage, and vascular invasion, which ex-
hibited significant differences (P < 0.05) in univariate Cox regression
analysis (both training and testing cohorts), to construct the nomo-
gram model for predicting the combined risk of HCC recurrence
(Figure 5A). The calibration chart showed that the nomogram model
predicted DFS at 1, 2, and 3 years, exhibiting high consistency with
the actual observed DFS (Figures 5B–5D), and the C-index of the
DFS nomogram model was 0.732 (95% confidence interval 0.686–
0.778). The AUC value of the time ROC curve is used to evaluate
the combined risk score, risk score, AJCC stage, and vascular invasion
of the nomogram model to predict the accuracy of DFS for 1, 2, and 3
years. The results showed that the highest AUC value of the 1-year
DFS ROC curve was the combined risk score (AUC = 0.805) followed
by the risk score (AUC = 0.782), AJCC stage (AUC = 0.658), and
vascular invasion (AUC = 0.615) (Figure 5E). In the 2-year DFS
ROC curve, the highest AUC value was also the combined risk score
(AUC = 0.822) followed by the risk score (AUC = 0.777), AJCC stage
(AUC = 0.696), and vascular invasion (AUC = 0.614) (Figure 5F). The
same trend was also found in the 3-year DFS ROC curve with the
combined risk score AUC value being the highest (AUC = 0.750) fol-
lowed by the risk score (AUC = 0.718), AJCC stage (AUC = 0.645),
and vascular invasion (AUC = 0.592) (Figure 5G). These results
showed that the combined risk score of the nomogram model is
generally more accurate than the risk score, AJCC stage, and vascular
invasion in the prediction of HCC DFS.

Gene set enrichment analysis and immune-related

characteristic analysis of the high- and low-risk groups of HCC

To further explore the potential molecular mechanisms of immune-
related lncRNA signaling related to the risk of HCC recurrence, we
performed Kyoto Encyclopedia of Genes and Genomes (KEGG)
gene set enrichment analysis (GSEA) between the high-risk and low-
risk groups. The results showed that the high-risk group was mainly
enriched in nine KEGG pathways, including DNA replication, spliceo-
some, mismatch repair, homologous recombination, nucleotide
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1391
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Figure 4. Univariate and multivariate Cox regression analyses of clinical characteristics and the 9-IR-lncRNA risk score in the training cohort and testing

cohort

(A) Univariate and (B) multivariate Cox regression forest plots of clinical characteristics and the 9-IR-lncRNA risk score. (C) Univariate and (D) multivariate Cox regression forest

plots of clinical characteristics and the 9-IR-lncRNA risk score. (E) One-year and (F) 2-year DFS ROC curve analysis of the 9-IR-lncRNA risk score and six clinical char-

acteristics in the training cohort. The red, yellow, light green, green, light blue, blue, purple, and purplish red lines represent the 9-IR-lncRNA risk score, clinical risk score,

AJCC stage. vascular invasion, Child-Pugh grade, AFP, age, and gender, respectively. (G) One-year and (H) 2-year DFS ROC curve analysis of the 9-IR-lncRNA risk score

and six clinical characteristics in the testing cohort.
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excision repair, base excision repair, proteasome, RNA degradation,
and cell cycle (Figures S5A–S5I).

To explore immune-related characteristics, we compared the expres-
sion of immune checkpoint molecules, ESTIMATE ((Estimation of
STromal and Immune cells in MAlignant Tumor tissues using
Expression data) score, T cell inflammatory signature (TIS), and
mRNA-based stem-like index (mRNAsi) between the high-risk and
low-risk groups. Compared with the low-risk group, the high-risk
group showed a trend of decreased expression of seven genes
(CTLA-4, PD-L1, PD-L2, TIGIT, VISIR, LAG3, and TIM3), with
two of these genes (PD-L2 and TIGIT) being significantly different
1392 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
(p < 0.05) (Figure 6A). Similarly, the stromal score, immune score,
and ESTIMATE score in the high-risk group were significantly lower
than those in the low-risk group (Figure 6B). The TIS, which is used to
predict the response to anti-PD-L1 drugs,24 was significantly lower in
the high-risk group than that in the low-risk group (Figure 6C). How-
ever, the mRNAsi in the high-risk group was significantly higher than
that in the low-risk group (Figure 6D).

IR-lncRNAs regulate the infiltration of a variety of immune cells.
We used the CIBERSORT method to calculate the infiltration frac-
tion of 22 immune cells between the high-risk and low-risk groups,
and we analyzed the differences (Figures 7A and 7B). The fraction



Figure 5. Construction of the nomogram based on clinical characteristics and IR-lncRNA risk score in the entire TCGA cohort

(A) Nomogram for predicting 1-year, 2-year, and 3-year DFS in the entire TCGA cohort. (B–D) Calibration curves of the nomogram for the consistency between predicted and

observed 1-year, 2-year, and 3-year DFS in the entire TCGA cohort. The dashed line at 45� indicates a perfect prediction, and the actual performances of our nomogram are

shown as blue lines. (E–G) One-year, 2-year, and 3-year DFS ROC curve analysis of the combined risk score, 9-IR-lncRNA risk score, AJCC stage, and vascular invasion in

the entire TCGA cohort.
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of M0 macrophages in the high-risk group was higher than that in
the low-risk group (P < 0.05), and the fraction of M1 macrophages,
CD8+ T cells, resting memory CD4+ T cells, activated memory
CD4+ T cells, and naive CD4+ T cells was lower in the high-risk
group than in the low-risk group (P < 0.05). These results suggested
that the high-risk group is dominated by an increase in suppressor
immune cells and M0 macrophages and that the low-risk group is
dominated by an increase in killer and antigen-presenting immune
cells.

Construction of ceRNA regulatory network in HCC

To better understand the role of the nine-hub IR-lncRNAs screened
out in HCC and to further clarify the interaction between IR-lncRNAs
and miRNAs, we constructed a lncRNA-miRNA-mRNA related
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1393
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Figure 6. Comparison of immune checkpoint gene expression, ESTIMATE score, TIS, and mRNAsi between the high- and low-risk groups

Violin plot showing the expression of immune checkpoint genes (A), ESTIMATE score (B), TIS (C), and mRNAsi (D) between the high- and low-risk groups. The green bars

represent the low-risk group, and the red bars represent the high-risk group. *p < 0.05, **p < 0.01 and ***p < 0.001.
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ceRNAs network. First, we retrieved 70 interacting lncRNA and
miRNA pathways from two lncRNAs (WARS2-IT1 and AC087294)
and 67miRNAs from the miRcode database. First, we used TargetScan
target gene data to identify a total of 163,558 pathways of 27 miRNAs
targeting 17,781 mRNAs. Cytoscape software (version 3.7.3; https://
www.cytoscape.org/) was used to construct the ceRNA regulatory
network (Figure 8A), which consisted of two lncRNAs, 27 miRNAs,
and 69 mRNAs. To ensure the reliability of the results, we then crossed
the interaction pathways of the three databases (miRTarBase, miRDB,
and TargetScan) and identified a total of 566 pathways of 17 miRNAs
targeting 509 mRNAs (Figure 8B). Finally, Cytoscape software was
used to construct a stricter ceRNA regulatory network (Figure 8C),
which consisted of lncRNAs (WARS2-IT1), miRNAs (hsa-miR-
24-3p, hsa-miR-27a-3p, and hsa-miR-140-5p), and target genes
(SEMA7A, HDAC7, and CD34). These results suggested that
SEMA7A, HDAC7, and CD34 may be core genes that affect the recur-
rence of liver cancer. We further analyzed the expression of the three
target genes and three miRNA genes between cancer and normal sam-
ples. Compared with normal samples, the expression of hsa-miR-24-3p
and hsa-miR-27a-3p was significantly lower in tumors, and the expres-
sion of hsa-miR-140-5p was significantly higher in tumors (Fig-
ure S6A). In addition, the expression of CD34, HDAC7, and SEMA7A
1394 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
was significantly higher in tumors comparedwith normal samples (Fig-
ure S6B). We verified the expression of seven ceRNA regulatory
network genes in human normal hepatocellular (MIHA) cells and
two HCC cell lines (SNU-739 and SNU- 368). Compared with normal
hepatocellular cell lines, the expression of SEMA7A, HDAC7, and
CD34 was higher in HCC cell lines, and the expression of hsa-miR-
24-3p, hsa-miR-27a-3p, and hsa-miR-140-5p was lower in HCC cell
lines (Figure 8D). Due to different origins and molecular backgrounds
in cell lines, the expression of hsa-miR-24-3p was higher in SNU-368
cell lines than in MIHA normal hepatocellular cell lines and the
SNU-739 HCC cell lines.

DFS and OS Kaplan-Meier curve survival analysis showed that the
prognosis of patients was differentially correlated with the expression
levels of the three hub miRNAs and three mRNAs. Patients with high
expression of hsa-miR-24-3p had poor prognosis, as indicated by low
DFS and OS (Figure S7A and S7D; DFS, p = 0.005; OS, p = 0.046).
However, patients with high expression of hsa-miR-140-5p had low
DFS and better OS (Figures S7B and S7E; DFS, p = 0.184; OS, p <
0.001). Patients with high expression of hsa-miR-27a-3p had poor
prognosis as indicated by low DFS and OS (Figures S7C and S7F;
DFS, p = 0.017; OS, p = 0.016). Patients with high CD34 expression
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Figure 7. Immune cells infiltration landscape of HCC

patients in high- and low-risk groups

(A) Heatmap of 22 immune cell ratios (log10) between

high- and low-risk patients. The red and light green bars

represent the IR-lncRNA low- and high-risk groups,

respectively. (B) Correlation analysis of 22 immune cell

infiltrates between the high-risk and low-risk groups. The

red and dark green bars represent the IR-lncRNA low- and

high-risk groups, respectively.
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had a better prognosis as indicated by a better DFS and OS (Figures
S8A and S8D; DFS, p = 0.122; OS, p = 0.040). Patients with high
expression of HDAC7 had poor prognosis with low DFS and OS (Fig-
ures S8B and S8E; DFS, p < 0.001; OS, p = 0.001), and patients with
high expression of SEMA7A had better prognosis with better DFS
and OS (Figures S6C and S6F; DFS, p = 0.001; OS, p = 0.026).

Finally, we used the GSE76427 dataset to perform DFS and OS sur-
vival analysis verification of CD34, HDAC7, and SEMA7A (Figures
S7A–S7F), and the ICGC-LIRI cohort was used to verify the OS anal-
ysis of CD34, HDAC7, and SEMA7A (Figures S7G–S7I). Patients
with high CD34 expression had a better prognosis as indicated by a
better DFS and OS (Figures S8A, S8D, and S8G; GSE76427S cohort
DFS, p = 0.122; GSE76427S OS, p = 0.040; ICGC-LIRI cohort OS,
p = 0.004). Patients with high expression of HDAC7 had poor prog-
nosis with low DFS and OS (Figures S8B, S8E, and S8F; GSE76427S
cohort DFS, p = 0.014; GSE76427S OS, p = 0.932; ICGC-LIRI cohort
OS, p = 0.288). Patients with high expression of SEMA7A had better
prognosis as indicated by better DFS and OS (Figures S8A, S8D, and
S8G; GSE76427S cohort DFS, p = 0.343; GSE76427S OS, p = 0.056;
ICGC-LIRI cohort OS, p = 0.005).

DISCUSSION
Recurrence of HCC is a critical cause of death worldwide in HCC
patients due to the lack of a reliable method of prediction.25
Molecular Th
Although many studies in the past few decades
have been conducted to find reliable markers
to predict the risk of recurrence, more
research is required to construct a reliable sys-
tem to assess the risk of recurrence in HCC.
The majority of studies on predicting risk fac-
tors are focused on proteins encoding mRNAs
or miRNAs.26,27 Currently, lncRNAs, espe-
cially IR-lncRNAs, which have not been previ-
ously studied, have generated broad interest.
An increasing number of studies have revealed
that the aberrant expression of lncRNAs is
closely associated with the tumorigenesis,
development, and metastasis of HCC and
could become a potential biological marker
for early diagnosis, immune therapy, and
assessment of the risk of recurrence in
HCC.28 Therefore, to further determine the
value of IR-lncRNAs in the prediction of the recurrence of HCC,
we employed univariate, multivariate Cox regression and lasso-
Cox regression analyses to thoroughly screen the recurrence-
related IR-lncRNAs in HCC patients with radical resection from
TCGA database. Based on the screen, we constructed a 9-IR-
lncRNA model to predict recurrence in HCC and further validated
the model. The results indicated that the recurrence risk prediction
model has good reliability in predicting recurrence in HCC and is a
better predictor than currently used clinical markers, such as
AJCC, MVI, and AFP. To further improve the prediction, we con-
structed a nomogram by combining the 9-IR-lncRNA risk score
and clinical characteristics.

Our model differed from a previous lncRNA HCC prediction
model.29–31 First, we used a gene expression correlation analysis
to confirm IR-lncRNA. And followed by multiple step screening us-
ing univariate, lasso, and multivariate Cox regression analyses,
which ensured the reliability of the lncRNAs that were selected
for the model. In particular, the use of lasso regression allowed
the variables to be simultaneously screened, excluded variables
that contributed less to the model and selected the variables that
had the most impact on the model.32 Therefore, our approach,
which efficiently eliminated the collinearity of different variables
and prevented overfitting of the model, is suitable for analyzing
gene databases with large variables.33
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Figure 8. The ceRNAs regulatory network in

hepatocellular carcinoma

(A) Plot of the ceRNA network based on the TargetScan

database. The lncRNAs, miRNAs, and mRNAs are repre-

sented by nodes in pink, green, and blue. (B) Venn diagram

of miRNA-mRNA pathways among the miRTarBase,

miRDB, and TargetScan databases. (C) Plot of the hub

ceRNA network based on the miRTarBase, miRDB, and

TargetScan databases. (D) Bar plot of the expression of

seven ceRNA network genes in a human normal hepato-

cellular cell line and HCC cell lines. Gray bars indicate the

normal liver cell line (MIHA), the red and green bars indicate

SNU-739 and SNU-368 HCC cell lines, respectively. Data

are expressed as the mean ± SEM.
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Second, we used multiple approaches, including GSEA, ESTIMATE,
TIS, mRNAsi, and immune cell infiltration, to evaluate the 9-IR-
lncRNA risk score. We found that the high-risk group had a
significant increase in nine molecular pathways, including DNA
replication, spliceosome, mismatch repair, homologous recombina-
tion, nucleotide excision repair, base excision repair, proteasome,
RNA degradation, and cell cycle. Subsequently, we compared the
differences between the high- and low-risk groups regarding the
relative expression of immune checkpoint genes, immune score, stro-
mal score, TIS, and stem-like index. We found that the high-risk
group had a lower level of expression of immune checkpoint genes,
lower immune score, lower stromal score, lower TIS, and a higher
stem-like index. These findings indicated that high-risk patients
have a higher purity of tumor tissue with more stem-like features
1396 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
and less potential benefit from immune therapy.
Following immune infiltration analysis, we found
that the high-risk group had significantly lower
levels of CD8+ or CD4+ T cells. Third, while pre-
vious studies primarily focused on OS, we used
DFS to evaluate the risk of recurrence. The use
of DFS allowed us to evaluate the risk of recur-
rence in HCC patients and intervene promptly
for high-risk patients after surgery, leading to
improved survival post recurrence.

Finally, after predicting target genes using three da-
tabases (miRTarBase, miRDB, and TargetScan)
and investigating the potential mechanisms of
HCC recurrence with a ceRNA network, we con-
structed a ceRNA regulatory network consisting
of lncRNAs (WARS2-IT1), miRNAs (hsa-miR-
24-3p, hsa-miR-27a-3p, and hsa-miR-140-5p),
and target genes (CD34, SEMA7A and HDAC7).
Ye et al. and Yue et al. reported that lncRNA
WARS2-IT1 affects the prediction of HCC
recurrence.34,35 However, the mechanism behind
lncRNA in HCC recurrence has not been investi-
gated. Previous studies have indicated that the
hsa-miR-24-3p miRNA is associated with many
diseases, including atherosclerosis,36 ischemic chest pain,37 diabetes,38

and Parkinson disease.39 miR-24-3p plays a role in the development
of multiple cancers. The expression of miR-24-3p in breast cancer
has been found to be positively correlated with the expression of genes
involved in hypoxia,40 and miR-24-3p has been reported to inhibit the
growth of nasopharyngeal carcinoma by directly regulating Jab1/
CSN5.41 Chen et al. found that exosomes from cells with miR-24-3p
deletion effectively block EMT.42 All the data suggest that miR-24-3p
is associated with poor prognosis in multiple cancers, including
HCC, which is consistent with our finding that patients with high
expression of miR-24-3p had lower DFS and OS than those with low
expression. CD34 is a downstream target ofmiR-24-3p. As a character-
istic marker of blood vessel endothelium, elevated levels of CD34 in
cancer generally indicate increased angiogenesis in tumor tissues.
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Elevated angiogenesis may promote tumor growth and inhibit tumor
growth by recruiting inflammatory cells to mediate inflammation and
tumor immunity. Therefore, CD34 is a double-edged sword in cancer.

OIP5-AS1 regulates the HDAC7 epigenetic regulatory factor through
miR-140-5p to promote metastasis of non-small cell lung cancer.43

miR-140-5p plays a role in the recurrence of glioblastoma,44 and the
expression of miR-140-5p gradually decreases during the transforma-
tion of normal colon mucosa to tumor tissue with a further reduction
in liver metastasis.45 As such, miR-140-5p has been considered a crit-
ical regulator in the development and metastasis of colon cancer.
Although miR-140-5p is associated with the poor prognosis of colon
cancer, the relationship between miR-140-5p and the prognosis of
HCC has not been reported. HDAC7 is a histone deacetylase that reg-
ulates tumorigenesis and tumor development in multiple cancers. In
thoracic cancer, HDAC7 promotes tumorigenesis through downregu-
lation of miR-4465, leading to upregulation of EphA2. HDAC7 has
become a potential therapeutic target in thoracic cancer.46 After
analyzing TCGA data, Kim Freese et al. found that high expression
levels of HDAC7 in HCC correlate with poor OS. However, there is
no mechanistic study on the function of HDAC7 in HCC.47

The expression of miR-27a-3p is elevated in multiple cancers,
including triple-negative breast cancer,48 glioblastoma,49 and osteosar-
coma,50 and the expression level of miR-27a-3p is correlated with OS
in these cancers. From the TCGA database, Xu et al. found that the
expression of miR-27a-3p is elevated in HCC,51 but they did not
further perform prognostic analysis or investigate the related mecha-
nism. Semaphorin 7A (SEMA7A) is a highly effective immune regu-
lator that is expressed in active lymphocytes and bone marrow cells.
SEMA7A is significantly elevated in natural killer (NK) cells when
stimulated by cytokines, specifically tagging active NK cells, leading
to a strong capability of interferon-g release.52 In lung adenocarcinoma
clinical samples, high levels of SEME7A predict poor response to
EGFR-TKI therapy.53 In breast cancer, SEMA7A is expressed in breast
cells during gland degeneration, leading to changes in macrophage
biology and the formation of lymphatic vessels, thereby promoting
breast cancer metastasis. Overexpression of SEMA7A in estrogen re-
ceptor-positive (ER+) cells promotes cell growth.54 Crump et al. re-
ported that SEMA7A confers drug resistance to Fulvestrant in primary
tumors and induces lung metastasis in ER+ breast cancer.23 However,
the study of SEMA7A in HCC has not been reported.

In conclusion, our research showed that the 9-IR-lncRNAmodel pre-
dicts the risk of HCC recurrence and that the lncRNA(WARS2-IT1)-
miRNA(hsa-miR-24-3p, hsa-miR-27a-3p, and hsa-miR-140 -5p)-
mRNA (CD34, SEMA7A, and HDAC7) regulatory network is closely
related to the prognosis of HCC, which is expected to become a po-
tential target for HCC recurrence prediction and immunity therapy.

MATERIALS AND METHODS
Data acquisition and processing

RNA-sequencing (RNA-seq) data of HCC patients and clinical data
of HCC samples were downloaded from the TCGA program
(https://portal.gdc.cancer.gov). The RNA-seq data were normalized
using the trimmed mean of M-values (TMM) method in the “edgeR”
package. The mean gene expression levels with a logarithmic fold
change of >1 in all samples were retained. The normalized expression
levels were further transformed using log2 (x+1) transformation. The
initial dataset contains 374 HCC tissues and 50 adjacent normal
tissues. Samples without radical resection treatment and complete
survival data were removed, resulting in 319 radical resection HCC
samples with complete clinical information for subsequent analysis
in our study.
Identification of IR-lncRNAs

The IRGs were obtained from theMolecular Signatures Database v7.0
(Immune system process M13664, Immune response M19817).55,56

The IR-lncRNAs were identified by a Pearson correlation analysis be-
tween the IRGs and lncRNA expression levels in the HCC samples
(Pearson correlation coefficient >0.7, p < 0.001). The “caret” package
in R was used to randomly divide the samples into the training cohort
(161 samples) and the testing cohort (158 samples). The expression
levels of the IR-lncRNAs were generated from both the training
cohort and testing cohort.
Construction of an IR-lncRNA signature and combined clinical

risk score associated with DFS

The “survival,” “survminer,” and “forestplot” packages in R were used
to perform univariate and multivariate Cox regression analyses. The
“glmnet” package in R was used to perform a lasso regression analysis.
IR-lncRNAs with a significant prognostic value (p < 0.05) were
screened. In the multivariate Cox regression analysis, the IR-lncRNA

signature was expressed as follows: risk score =
Pn

i
coefi � lncRNAi. The

median risk score served as a cutoff value to classify the patients in the
training cohort into the high- and low-risk groups. The testing cohort
was also divided into high- and low-risk groups using the same cutoff
value. We constructed a combined clinical characteristic risk score
weighted sum of those clinical characteristics, of which the weights
were estimates from the multivariable Cox regression analysis. The
clinical risk score formula was as follows:

Clinical_risk_score = 0.190*AJCC_stage+0.767*Vascular_invasion+
0.500*Child_grade+0.332*AFP+0.128*Age-0.188* Gender. The “surv-
miner” package in R was used to plot Kaplan-Meier survival curves.
The “survivalROC” package in R was used to investigate the prog-
nostic value of the IR-lncRNA risk score over time. A two-sided log
rank p < 0.05 was considered significant in the survival analysis.
Construction of recurrence risk prediction nomogram based on

clinical characteristics and IR-lncRNA risk score

A prognostic model was constructed by obtaining the independent
prognostic factors and IR-lncRNA risk score. A time-dependent
ROC curve was employed to compare the models. The most appro-
priate independent prognostic factors were selected for the prognostic
model to construct a nomogram in the entire TCGA cohort. The
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1397
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calibration plot and concordance index (C-index) were used to
evaluate the capability of the nomogram to calibrate and discriminate
against different factors (by a bootstrap method with 1,000
resamples).57

Gene set enrichment analysis

To understand the KEGG pathways of the IR-lncRNA signature, a
GSEA58 was used to analyze the enrichment terms in the entire
TCGA cohort. GSEA software version 4.1.0 (Cambridge, MA) was
used to perform the analysis, and p < 0.05 was considered statistically
significant.

ESTIMATE score, TIS, mRNAsi, and immune cell infiltration

ESTIMATE59 is a tool to predict the tumor purity from gene signa-
tures and calculate the following three scores: (1) stromal score, which
predicts the presence of stromal cell types in tumor bulk; (2) immune
score, which infers the infiltration of immune cells in tumor tissue;
and (3) estimate score, which estimates the tumor purity. All patients
were divided into high-risk and low-risk groups. Gene set variation
analysis from the GSVA60 package in R was performed to obtain
the immune profile of the HCC samples. This function performs a
nonparametric, unsupervised analysis for estimating variation of
the given gene sets through the samples in the expression matrix, re-
turning an enrichment score for each sample. The TIS scored with the
GSVA method was used to predict the putative response to an anti-
PD-L1 drug.61 This is a genetic profile reported as an acceptable pre-
dictor of clinical response to pembrolizumab across a wide variety of
tumor types. In addition, the mRNAsi, which reflects gene expression,
was adopted by means of one class logistic regression machine
learning to quantify cancer stem-like indices.62,63 The fraction of 22
immune cell types infiltrated in tumor tissue was assessed using the
“CIBERSORT” algorithm.64

Construction of the ceRNA network

We used an miRcode database65 to predict the interaction pairs be-
tween lncRNAs and miRNAs. mRNAs targeted by the miRNAs
were retrieved from the miRDB, miRTarBase, and TargetScan data-
bases.66–68 Candidate mRNAs were those identified by all three data-
bases. Based on miRNA-lncRNA and miRNA-mRNA interaction
pairs, the ceRNAs network was constructed and visualized using Cy-
toscape software (version 3.7.3; https://www.cytoscape.org/).

Expression level of seven ceRNA network genes in cell lines as

detected by a qRT–PCR assay

Total RNA was extracted from the SNU-739 and SNU-368 HCC cell
lines as well as the normal human hepatocellular cell line (MIHA
cells). Total RNA was prepared using Total RNA Kit I (Omega,
R6834-01), and cDNA was synthesized using a reverse transcription
kit (TaKaRa Biotechnology, Shiga, Japan) according to the manufac-
turer’s protocol. Quantitative real-time PCR (qRT–PCR) was per-
formed using SYBR Green Mix (TaKaRa RR820A, Japan) and a
C1000 system (Bio-Red, Hercules, CA). Target gene expression values
were normalized to human GAPDH, and target miRNA expression
values were normalized to human U6.
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Statistical analysis

Statistical analyses were performed using SPSS software version 26.0
(Armonk, NY) and R software version 4.0.2 (Auckland City, New
Zealand). The c2 test or Fisher’s exact test was used to evaluate the
qualitative variables as appropriate. All comparisons between the
high-risk and low-risk groups were analyzed using Wilcoxon tests,
as variables were either not normally distributed or variances were
not equally distributed between groups. For all tests applied, differ-
ences were considered significant when p < 0.05.

DATA AVAILABILITY
The authors confirm that the data supporting the findings of this
study are available within the article.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2021.11.006.

ACKNOWLEDGMENTS
This study was supported partly by grants from the Natural Science
Basic Research Program of Shaanxi (Program No. 2021JZ-35) and
National Natural Science Foundation of China (81572699).

AUTHOR CONTRIBUTIONS
H.-M.Z. and X.-X.W. designed the study and contributed to study
materials and consumables. H.-M.Z., X.-X.W., and L.A. conducted
the study. X.-X.W., L.-H.W., L.A., W.P., J.-Y.R., and Q. Z. collected
data. H.-M.Z., X.-X.W., and L.-H.W. performed the statistical ana-
lyses and interpreted the data. X.-X.W. and L.-H.W. wrote the manu-
script. All authors approved the final manuscript.

DECLARATION OF INTERESTS
All authors declared no competing interests and approved the final
manuscript.

REFERENCES
1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018).

Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424.

2. de Martel, C., Georges, D., Bray, F., Ferlay, J., and Clifford, G.M. (2020). Global
burden of cancer attributable to infections in 2018: a worldwide incidence analysis.
Lancet Glob. Health 8, e180–e190.

3. Roayaie, S., Obeidat, K., Sposito, C., Mariani, L., Bhoori, S., Pellegrinelli, A., Labow,
D., Llovet, J.M., Schwartz, M., and Mazzaferro, V. (2013). Resection of hepatocellular
cancer </=2 cm: results from two Western centers. Hepatology 57, 1426–1435.

4. Diaz-Gonzalez, A., Reig, M., and Bruix, J. (2016). Treatment of hepatocellular carci-
noma. Dig. Dis. 34, 597–602.

5. Chan, A., Zhong, J., Berhane, S., Toyoda, H., Cucchetti, A., Shi, K., Tada, T., Chong,
C., Xiang, B.D., Li, L.Q., et al. (2018). Development of pre and post-operative models
to predict early recurrence of hepatocellular carcinoma after surgical resection.
J. Hepatol. 69, 1284–1293.

6. Kim, J., Piao, H.L., Kim, B.J., Yao, F., Han, Z., Wang, Y., Xiao, Z., Siverly, A.N.,
Lawhon, S.E., Ton, B.N., et al. (2018). Long noncoding RNA MALAT1 suppresses
breast cancer metastasis. Nat. Genet. 50, 1705–1715.

7. Li, C.H., and Chen, Y. (2016). Insight into the role of long noncoding RNA in cancer
development and progression. Int. Rev. Cell Mol. Biol. 326, 33–65.

https://www.cytoscape.org/
https://doi.org/10.1016/j.omtn.2021.11.006
https://doi.org/10.1016/j.omtn.2021.11.006
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref1
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref1
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref1
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref2
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref2
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref2
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref3
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref3
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref3
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref4
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref4
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref5
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref5
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref5
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref5
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref6
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref6
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref6
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref7
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref7


www.moleculartherapy.org
8. Goodall, G.J., andWickramasinghe, V.O. (2021). RNA in cancer. Nat. Rev. Cancer 21,
22–36.

9. Momen-Heravi, F., and Bala, S. (2018). Emerging role of non-coding RNA in oral
cancer. Cell Signal. 42, 134–143.

10. Zhang, Y., Li, Z., Chen, M., Chen, H., Zhong, Q., Liang, L., and Li, B. (2019).
Identification of a new eight-long noncoding RNA molecular signature for breast
cancer survival prediction. DNA Cell Biol. 38, 1529–1539.

11. Majidinia, M., and Yousefi, B. (2016). Long non-coding RNAs in cancer drug resis-
tance development. DNA Repair (Amst) 45, 25–33.

12. Hu, X., Sood, A.K., Dang, C.V., and Zhang, L. (2018). The role of long noncoding
RNAs in cancer: the dark matter matters. Curr. Opin. Genet. Dev. 48, 8–15.

13. Carpenter, S., and Fitzgerald, K.A. (2018). Cytokines and long noncoding RNAs. Cold
Spring Harb. Perspect. Biol. 10: a028589.

14. Zhang, L., Xu, X., and Su, X. (2020). Noncoding RNAs in cancer immunity: functions,
regulatory mechanisms, and clinical application. Mol. Cancer 19, 48.

15. Wei, L., Wang, X., Lv, L., Liu, J., Xing, H., Song, Y., Xie, M., Lei, T., Zhang, N., and
Yang, M. (2019). The emerging role of microRNAs and long noncoding RNAs in
drug resistance of hepatocellular carcinoma. Mol. Cancer 18, 147.

16. Sun, Y., Zhang, F., Wang, L., Song, X., Jing, J., Zhang, F., Yu, S., and Liu, H. (2019). A
five lncRNA signature for prognosis prediction in hepatocellular carcinoma. Mol.
Med. Rep. 19, 5237–5250.

17. Yan, J., Zhou, C., Guo, K., Li, Q., and Wang, Z. (2019). A novel seven-lncRNA signa-
ture for prognosis prediction in hepatocellular carcinoma. J. Cell Biochem. 120,
213–223.

18. Yang, Z., Yang, Y., Zhou, G., Luo, Y., Yang, W., Zhou, Y., and Yang, J. (2020). The
prediction of survival in hepatocellular carcinoma based on A four long non-coding
RNAs expression signature. J. Cancer 11, 4132–4144.

19. Gu, J., Zhang, X., Miao, R., Ma, X., Xiang, X., Fu, Y., Liu, C., Niu, W., and Qu, K.
(2018). A three-long non-coding RNA-expression-based risk score system can better
predict both overall and recurrence-free survival in patients with small hepatocellular
carcinoma. Aging (Albany NY) 10, 1627–1639.

20. Gu, J.X., Zhang, X., Miao, R.C., Xiang, X.H., Fu, Y.N., Zhang, J.Y., et al. (2019). Six-
long non-coding RNA signature predicts recurrence-free survival in hepatocellular
carcinoma. World J. Gastroenterol. 25, 220–232.

21. Zhang, Q., Ning, G., Jiang, H., Huang, Y., Piao, J., Chen, Z., et al. (2020). 15-lncRNA-
Based classifier-clinicopathologic nomogram improves the prediction of recurrence
in patients with hepatocellular carcinoma. Dis. Markers 2020, 9180732.

22. Zhang, Z., Weng, W., Huang, W., Wu, B., Zhou, Y., Zhang, J., et al. (2020). A novel
molecular-clinicopathologic nomogram to improve prognosis prediction of hepato-
cellular carcinoma. Aging (Albany NY) 12, 12896–12920.

23. Crump, L.S., Wyatt, G.L., Rutherford, T.R., Richer, J.K., Porter, W.W., and Lyons,
T.R. (2021). Hormonal regulation of semaphorin 7a in ER(+) breast cancer drives
therapeutic resistance. Cancer Res. 81, 187–198.

24. Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Kaufman, D.R.,
Albright, A., Cheng, J.D., Kang, S.P., Shankaran, V., et al. (2017). IFN-gamma-related
mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–
2940.

25. Forner, A., Reig, M., and Bruix, J. (2018). Hepatocellular carcinoma. Lancet 391,
1301–1314.

26. Pinyol, R., Montal, R., Bassaganyas, L., Sia, D., Takayama, T., Chau, G.Y., Mazzaferro,
V., Roayaie, S., Lee, H.C., Kokudo, N., et al. (2019). Molecular predictors of preven-
tion of recurrence in HCC with sorafenib as adjuvant treatment and prognostic fac-
tors in the phase 3 STORM trial. Gut 68, 1065–1075.

27. Fu, Q., Yang, F., Xiang, T., Huai, G., Yang, X., Wei, L., Yang, H., and Deng, S. (2018).
A novel microRNA signature predicts survival in liver hepatocellular carcinoma after
hepatectomy. Sci. Rep. 8, 7933.

28. Klingenberg, M., Matsuda, A., Diederichs, S., and Patel, T. (2017). Non-coding RNA
in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets.
J. Hepatol. 67, 603–618.
29. Zhao, Q.J., Zhang, J., Xu, L., and Liu, F.F. (2018). Identification of a five-long non-
coding RNA signature to improve the prognosis prediction for patients with hepato-
cellular carcinoma. World J. Gastroenterol. 24, 3426–3439.

30. Wang, Z., Wu, Q., Feng, S., Zhao, Y., and Tao, C. (2017). Identification of four prog-
nostic LncRNAs for survival prediction of patients with hepatocellular carcinoma.
PeerJ 5, e3575.

31. Liao, X., Yang, C., Huang, R., Han, C., Yu, T., Huang, K., Liu, X., Yu, L., Zhu, G., Su,
H., et al. (2018). Identification of potential prognostic long non-coding RNA bio-
markers for predicting survival in patients with hepatocellular carcinoma. Cell
Physiol. Biochem. 48, 1854–1869.

32. Gao, J., Kwan, P.W., and Shi, D. (2010). Sparse kernel learning with LASSO and
Bayesian inference algorithm. Neural Netw. 23, 257–264.

33. McNeish, D.M. (2015). Using lasso for predictor selection and to assuage overfitting:
a method long overlooked in behavioral sciences. Multivariate Behav. Res. 50,
471–484.

34. Ye, J., Zhang, J., Lv, Y., Wei, J., Shen, X., Huang, J., Wu, S., and Luo, X. (2019).
Integrated analysis of a competing endogenous RNA network reveals key long non-
coding RNAs as potential prognostic biomarkers for hepatocellular carcinoma. J. Cell
Biochem. 120, 13810–13825.

35. Yue, C., Ren, Y., Ge, H., Liang, C., Xu, Y., Li, G., and Wu, J. (2019). Comprehensive
analysis of potential prognostic genes for the construction of a competing endoge-
nous RNA regulatory network in hepatocellular carcinoma. Onco. Targets Ther.
12, 561–576.

36. Li, Y.Y., Zhang, S., Wang, H., Zhang, S.X., Xu, T., Chen, S.W., Zhang, Y., and Chen, Y.
(2021). Identification of crucial genes and pathways associated with atherosclerotic
plaque in diabetic patients. Pharmgenomics Pers. Med. 14, 211–220.

37. Wei, W., Peng, J., and Shen, T. (2019). Rosuvastatin alleviates ischemia/reperfusion
injury in cardiomyocytes by downregulating hsa-miR-24-3p to target upregulated
uncoupling protein 2. Cell Reprogram. 21, 99–107.

38. Demirsoy, I.H., Ertural, D.Y., Balci, S., Cinkir, U., Sezer, K., Tamer, L., and Aras, N.
(2018). Profiles of circulating MiRNAs following metformin treatment in patients
with type 2 diabetes. J. Med. Biochem. 37, 499–506.

39. Uwatoko, H., Hama, Y., Iwata, I.T., Shirai, S., Matsushima, M., Yabe, I., Utsumi, J.,
and Sasaki, H. (2019). Identification of plasmamicroRNA expression changes inmul-
tiple system atrophy and Parkinson’s disease. Mol. Brain 12, 49.

40. Camps, C., Saini, H.K., Mole, D.R., Choudhry, H., Reczko, M., Guerra-Assuncao, J.A.,
Tian, Y.M., Buffa, F.M., Harris, A.L., Hatzigeorgiou, A.G., et al. (2014). Integrated
analysis of microRNA and mRNA expression and association with HIF binding re-
veals the complexity of microRNA expression regulation under hypoxia. Mol.
Cancer 13, 28.

41. Wang, S., Pan, Y., Zhang, R., Xu, T., Wu, W., Zhang, R., Wang, C., Huang, H., Calin,
C.A., Yang, H., et al. (2016). Hsa-miR-24-3p increases nasopharyngeal carcinoma
radiosensitivity by targeting both the 3’UTR and 5’UTR of Jab1/CSN5. Oncogene
35, 6096–6108.

42. Chen, Q.L., Xie, C.F., Feng, K.L., Cui, D.Y., Sun, S.L., Zhang, J.C., Xiong, C.M., Huang,
J.H., and Chong, Z. (2020). microRNAs carried by exosomes promote epithelial-
mesenchymal transition and metastasis of liver cancer cells. Am. J. Transl. Res. 12,
6811–6826.

43. Mei, J., Liu, G., Wang, W., Xiao, P., Yang, D., Bai, H., and Li, R. (2020). OIP5-AS1
modulates epigenetic regulator HDAC7 to enhance non-small cell lung cancer metas-
tasis via miR-140-5p. Oncol. Lett. 20, 7.

44. Bo, L.J., Wei, B., Li, Z.H., Wang, Z.F., Gao, Z., and Miao, Z. (2015). Bioinformatics
analysis of miRNA expression profile between primary and recurrent glioblastoma.
Eur. Rev. Med. Pharmacol. Sci. 19, 3579–3586.

45. Zhai, H., Fesler, A., Ba, Y., Wu, S., and Ju, J. (2015). Inhibition of colorectal cancer
stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression
of Smad2 and autophagy. Oncotarget 6, 19735–19746.

46. Li, Q.G., Xiao, T., Zhu, W., Yu, Z.Z., Huang, X.P., Yi, H., Lu, S.S., Tang, Y.Y., Huang,
W., and Xiao, Z.Q. (2020). HDAC7 promotes the oncogenicity of nasopharyngeal
carcinoma cells by miR-4465-EphA2 signaling axis. Cell Death Dis. 11, 322.

47. Freese, K., Seitz, T., Dietrich, P., Lee, S., Thasler, W.E., Bosserhoff, A., and
Hellerbrand, C. (2019). Histone deacetylase expressions in hepatocellular carcinoma
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1399

http://refhub.elsevier.com/S2162-2531(21)00281-X/sref8
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref8
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref9
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref9
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref10
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref10
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref10
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref11
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref11
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref12
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref12
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref13
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref13
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref14
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref14
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref15
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref15
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref15
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref16
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref16
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref16
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref17
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref17
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref17
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref18
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref18
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref18
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref19
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref19
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref19
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref19
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref20
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref20
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref20
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref21
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref21
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref21
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref22
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref22
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref22
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref23
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref23
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref23
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref24
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref24
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref24
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref24
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref25
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref25
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref26
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref26
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref26
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref26
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref27
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref27
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref27
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref28
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref28
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref28
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref29
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref29
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref29
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref30
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref30
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref30
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref31
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref31
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref31
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref31
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref32
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref32
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref33
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref33
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref33
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref34
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref34
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref34
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref34
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref35
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref35
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref35
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref35
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref36
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref36
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref36
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref37
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref37
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref37
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref38
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref38
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref38
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref39
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref39
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref39
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref40
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref40
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref40
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref40
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref40
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref41
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref41
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref41
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref41
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref42
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref42
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref42
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref42
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref43
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref43
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref43
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref44
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref44
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref44
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref45
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref45
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref45
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref46
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref46
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref46
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref47
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref47
http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
and functional effects of histone deacetylase inhibitors on liver cancer cells in vitro.
Cancers (Basel) 11: 1587.

48. Banerjee, S., Kalyani, Y.S., and Karunagaran, D. (2020). Identification of mRNA and
non-coding RNA hubs using network analysis in organ tropism regulated triple nega-
tive breast cancer metastasis. Comput. Biol. Med. 127, 104076.

49. Salmani, T., Ghaderian, S., Hajiesmaeili, M., Rezaeimirghaed, O., Hoseini, M.S.,
Rakhshan, A., Nasiri, M.J., Ghaedi, H., and Akbarzadeh, R. (2021). Hsa-miR-27a-
3p and epidermal growth factor receptor expression analysis in glioblastoma FFPE
samples. Asia Pac. J. Clin. Oncol. 17: e185-e190.

50. Luo, T., Yi, X., and Si, W. (2017). Identification of miRNA and genes involving in os-
teosarcoma by comprehensive analysis of microRNA and copy number variation
data. Oncol. Lett. 14, 5427–5433.

51. Xu, W., Yu, S., Xiong, J., Long, J., Zheng, Y., and Sang, X. (2020). CeRNA regulatory
network-based analysis to study the roles of noncoding RNAs in the pathogenesis of
intrahepatic cholangiocellular carcinoma. Aging (Albany NY) 12, 1047–1086.

52. Ghofrani, J., Lucar, O., Dugan, H., Reeves, R.K., and Jost, S. (2019). Semaphorin 7A
modulates cytokine-induced memory-like responses by human natural killer cells.
Eur. J. Immunol. 49, 1153–1166.

53. Kinehara, Y., Nagatomo, I., Koyama, S., Ito, D., Nojima, S., Kurebayashi, R.,
Nakanishi, Y., Suga, Y., Nishijima-Futami, Y., Osa, A., et al. (2018). Semaphorin
7A promotes EGFR-TKI resistance in EGFR mutant lung adenocarcinoma cells.
JCI Insight 3:e123093.

54. Elder, A.M., Tamburini, B., Crump, L.S., Black, S.A., Wessells, V.M., Schedin, P.J.,
Borges, V.F., and Lyons, T.R. (2018). Semaphorin 7A promotes macrophage-medi-
ated lymphatic remodeling during postpartum mammary gland involution and in
breast cancer. Cancer Res. 78, 6473–6485.

55. Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel,
A.C., Sandy, P., Meylan, E., Scholl, C., et al. (2009). Systematic RNA interference re-
veals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112.

56. Lin, Y., Pan, X., Chen, Z., Lin, S., and Chen, S. (2020). Identification of an immune-
related nine-lncRNA signature predictive of overall survival in colon cancer. Front.
Genet. 11, 318.

57. Iasonos, A., Schrag, D., Raj, G.V., and Panageas, K.S. (2008). How to build and inter-
pret a nomogram for cancer prognosis. J. Clin. Oncol. 26, 1364–1370.
1400 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
58. Damian, D., and Gorfine, M. (2004). Statistical concerns about the GSEA procedure.
Nat. Genet. 36, 663.

59. Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., Trevino, V., Shen, H., Laird, P.W., Levine, D.A., et al. (2013). Inferring tumour
purity and stromal and immune cell admixture from expression data. Nat.
Commun. 4, 2612.

60. Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation anal-
ysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7.

61. Ott, P.A., Bang, Y.J., Piha-Paul, S.A., Razak, A., Bennouna, J., Soria, J.C., Rugo, H.S.,
Cohen, R.B., O’Neil, B.H., Mehnert, J.M., et al. (2019). T-Cell-Inflamed gene-expres-
sion profile, programmed death ligand 1 expression, and tumor mutational burden
predict efficacy in patients treated with pembrolizumab across 20 cancers:
KEYNOTE-028. J. Clin. Oncol. 37, 318–327.

62. Malta, T.M., Sokolov, A., Gentles, A.J., Burzykowski, T., Poisson, L., Weinstein, J.N.,
Kaminska, B., Huelsken, J., Omberg, L., Gevaert, O., et al. (2018). Machine learning
identifies stemness features associated with oncogenic dedifferentiation. Cell 173,
338–354.

63. Lian, H., Han, Y.P., Zhang, Y.C., Zhao, Y., Yan, S., Li, Q.F., Wang, B.C., Wang, J.J.,
Meng, W., Yang, J., et al. (2019). Integrative analysis of gene expression and DNA
methylation through one-class logistic regression machine learning identifies stem-
ness features in medulloblastoma. Mol. Oncol. 13, 2227–2245.

64. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D.,
Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration of cell subsets from tissue
expression profiles. Nat. Methods 12, 453–457.

65. Jeggari, A., Marks, D.S., and Larsson, E. (2012). miRcode: a map of putative
microRNA target sites in the long non-coding transcriptome. Bioinformatics 28,
2062–2063.

66. Agarwal, V., Bell, G.W., Nam, J.W., and Bartel, D.P. (2015). Predicting effective
microRNA target sites in mammalian mRNAs. Elife 4:e05005.

67. Chou, C.H., Chang, N.W., Shrestha, S., Hsu, S.D., Lin, Y.L., Lee, W.H., Yang, C.D.,
Hong, H.C., Wei, T.Y., Tu, S.J., et al. (2016). miRTarBase 2016: updates to the exper-
imentally validated miRNA-target interactions database. Nucleic Acids Res. 44,
D239–D247.

68. Wong, N., and Wang, X. (2015). miRDB: an online resource for microRNA target
prediction and functional annotations. Nucleic Acids Res. 43, D146–D152.

http://refhub.elsevier.com/S2162-2531(21)00281-X/sref47
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref47
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref48
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref48
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref48
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref49
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref49
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref49
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref49
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref50
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref50
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref50
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref51
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref51
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref51
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref52
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref52
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref52
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref53
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref53
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref53
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref53
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref54
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref54
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref54
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref54
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref55
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref55
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref55
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref56
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref56
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref56
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref57
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref57
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref58
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref58
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref59
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref59
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref59
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref59
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref60
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref60
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref61
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref61
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref61
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref61
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref61
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref62
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref62
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref62
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref62
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref63
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref63
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref63
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref63
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref64
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref64
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref64
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref65
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref65
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref65
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref66
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref66
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref67
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref67
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref67
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref67
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref68
http://refhub.elsevier.com/S2162-2531(21)00281-X/sref68

	Construction of an HCC recurrence model basedon the investigation of immune-relatedlncRNAs and related mechanisms
	Introduction
	Results
	Clinical characteristics and IR-lncRNA identification of 319 patients in the TCGA-HCC cohort
	Construction of an HCC DFS prognostic model in the training cohort using nine IR-lncRNAs
	HCC DFS prediction performance analysis of the 9-IR-lncRNA model
	Comparison of the 9-IR-lncRNA risk score to the combined clinical score and each individual clinical feature
	Construction of HCC DFS prognostic nomogram
	Gene set enrichment analysis and immune-related characteristic analysis of the high- and low-risk groups of HCC
	Construction of ceRNA regulatory network in HCC

	Discussion
	Materials and methods
	Data acquisition and processing
	Identification of IR-lncRNAs
	Construction of an IR-lncRNA signature and combined clinical risk score associated with DFS
	Construction of recurrence risk prediction nomogram based on clinical characteristics and IR-lncRNA risk score
	Gene set enrichment analysis
	ESTIMATE score, TIS, mRNAsi, and immune cell infiltration
	Construction of the ceRNA network
	Expression level of seven ceRNA network genes in cell lines as detected by a qRT–PCR assay
	Statistical analysis

	Data availability
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


