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Abstract: In this study, a first attempt has been made to deliver levosulpiride transdermally through
a thiolated chitosan microneedle patch (TC-MNP). Levosulpiride is slowly and weakly absorbed from
the gastrointestinal tract with an oral bioavailability of less than 25% and short half-life of about 6 h.
In order to enhance its bioavailability, levosulpiride-loaded thiolated chitosan microneedle patches
(LS-TC-MNPs) were fabricated. Firstly, thiolated chitosan was synthesized and characterized by
nuclear magnetic resonance (1HNMR) spectroscopy, attenuated total reflectance-Fourier transform
infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction
(XRD). Thiolated chitosan has been used in different drug delivery systems; herein, thiolated chitosan
has been used for the transdermal delivery of LS. LS-TC-MNPs were fabricated from different con-
centrations of thiolated chitosan solution. Furthermore, the levosulpiride-loaded thiolated chitosan
microneedle patch (LS-TC-MNP) was characterized by FTIR spectroscopic analysis, scanning electron
microscopy (SEM) study, penetration ability, tensile strength, moisture content, patch thickness, and
elongation test. LS-TC-MNP fabricated with 3% thiolated chitosan solution was found to have the
best tensile strength, moisture content, patch thickness, elongation, drug-loading efficiency, and drug
content. Thiolated chitosan is biodegradable, nontoxic and has good absorption and swelling in
the skin. LS-TC-MNP-3 consists of 100 needles in 10 rows each with 10 needles. The length of each
microneedle was 575 µm; they were pyramidal in shape, with sharp pointed ends and a base diameter
of 200 µm. The microneedle patch (LS-TC-MNP-3) resulted in-vitro drug release of 65% up to 48 h, ex
vivo permeation of 63.6%, with good skin biocompatibility and enhanced in-vivo pharmacokinetics
(AUC = 986 µg/mL·h, Cmax = 24.5 µg/mL) as compared to oral LS dispersion (AUC = 3.2 µg/mL·h,
Cmax = 0.5 µg/mL). Based on the above results, LS-TC-MNP-3 seems to be a promising strategy for
enhancing the bioavailability of levosulpiride.

Keywords: levosulpiride; thiolated chitosan; transdermal delivery; microneedle patches;
bioavailability enhancement; in-vitro evaluation; in-vivo evaluation
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1. Introduction

Levosulpiride (LS) is [5-(amino-sulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxy
benzamide]. It is the levo-enantiomer of racemic sulpiride. It has several pharmacological
properties, including antipsychotic and antidepressant action and also effective against
ulcer [1]. It is believed that these activities are mediated mainly by the selective inhibition of
the dopamine D2 receptor in the trigger zone, which is effective both in the gastrointestinal
tract and central nervous system [2,3]. Orally, levosulpiride is slowly and weakly absorbed
in the gastrointestinal tract (GIT) with a half-life of about 6 h and oral bioavailability of
less than 25% [4]. Levosulpiride is a biopharmaceutical classification system (BCS) class IV
drug; it has low water solubility and low permeability [5]. It is not readily metabolized,
as 70–90% of the intravenous dose and 15–25% of oral dose are excreted unchanged in
the urine [6]. As a result, levosulpiride is clinically used in higher doses (300 to 600 mg
orally) for the treatment of psychopathology of senes-cence, schizophrenia, and depression.
Additionally, the drug is useful in lower doses (75 mg orally) for the treatment of irritable
colon syndrome and duodenal or gastric ulcer related to psychosomatic stress [7]. Previ-
ously, several attempts, including self-micro-emulsifying carriers [8], micro-sponges [9],
solid dispersion [10], micro-capsules [11], and solid lipid nanoparticles [12] has been done
to overcome LS oral complications. However, the outcomes were inadequate, as these
attempts mainly ad-dresses the issue of poor aqueous solubility. Hence, other platforms are
needed to overcome the oral delivery challenges and enhance the pharmacological efficacy
of LS.

A transdermal drug delivery system (TDDS), compared to intramuscular and intra-
venous routes, is a non-invasive and painless drug delivery system. A TDDS is oftently used
drug delivery route for increasing the bioavailability of BCS class IV drugs. Patients can
self-administer TDDS easily and quickly, thus achieving higher patient compliance [13–15]
and preventing first-pass metabolism by the liver [16,17]. The skin, especially the upper
stratum corneum, is the main barrier to transdermal drug delivery [18]. Microneedles are
minimally noninvasive devices capable of penetrating the stratum corneum to overcome
barrier properties [19–22]. The biocompatibility and me-chanical properties of the materials
selected for microneedle (MN) fabrication are critical for MN performance. The most
important properties for MN material selection are lower production costs and higher
mechanical strength [23]. Depending on the composition of the material, MNs can be
divided into polymeric, inorganic or metal microneedles. Due to the unique advantages of
polymers, such as excellent biocompatibility, high drug loading, the easy and inexpensive
production process of polymeric MNs, these are the highly desirable transdermal drug
delivery systems [24]. Choosing the right material and geometry plays a vital role in the
design of the MN array.

Most water-soluble polymers (polysaccharides) are mechanically weaker than silicon
or non-soluble materials. Chitosan has shown interesting properties for drug delivery and
biomedical applications, but its use is limited by solubility issues, pH-dependent changes
in electrostatic charge, and low mucosal adhesion [25]. These issues could be solved by
thiolation of chitosan; thiolated polymers have been used in a variety of applications,
including drug delivery, tissue engineering, textile industry, water purification, and many
other biomedical applications [26]. As thiolated chitosan has excellent mechanical strength
and greater water uptake ability due to thiol moieties, thiolated chitosan (TC) was selected
as the microneedle fabrication material in this study. Therefore, the aim of this study
was focused on the synthesis of thiolated chitosan, thereafter, fabrication of microneedles
from synthesized thiolated chitosan. The investigation of the role of a thiolated chitosan
microneedles patch for enhanced transdermal drug delivery, in-vitro, ex-vivo, in-vivo
pharmacokinetic, and improvede bioavailability of levosulpiride.
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2. Materials and Methods
2.1. Materials

Levosulpiride (Biolabs, Islamabad, Pakistan); chitosan (low molecular weight, de-
gree of deacetylation 75–85%) (Merck, Darmstadt, Germany); thioglycolic acid (TGA
99%) (Merck, Darmstadt, Germany); 1-ethyl-3-(3-dimethylamino propyl) carbodiimide
hydrochloride (EDAC) (Merck, Darmstadt, Germany); 5,5-dithiobis (2-nitrobenzoic acid)
(Ellmans reagent) (Merck, Darmstadt, Germany); 2,4,6-trinitrobenzene sulfonic acid (TNBS)
(Merck, Darmstadt, Germany); potassium dihydrogen phosphate (Merck, Darmstadt, Ger-
many); disodium dihydrogen phosphate (Merck, Darmstadt, Germany); acetonitrile (Merck,
Darmstadt, Germany); methanol (Merck, Darmstadt, Germany); hydroxylamine (Merck,
Darmstadt, Germany); sodium hydroxide (Merck, Darmstadt, Germany); sodium chloride
(Merck, Darmstadt, Germany); dialysis membrane (cut-off value 12KD); glacial acetic acid
(Merck, Darmstadt, Germany).

2.2. Synthesis and Characterization of Thiolated Chitosan

Briefly, 1% (w/v) chitosan was dissolved in acetic acid solution 1% (v/v). Then,
thioglycolic acid (TGA) 500 mg was added to the chitosan solution; subsequently, 1-ethyl-3-
(3-dimethylamino propyl) carbodiimide hydrochloride (EDAC) was added as a coupling
reagent at a concentration of 100 mM. The addition of EDAC is necessary to stimulate
the carboxylic acid group of TGA. Then, the mixture was stirred for 5 h, and 10 M NaOH
was added to adjust the pH to 5.5. The thiolated polymer was dialyzed by membrane
tubing with a MW cut-off of 12–14 kDa in order to remove unbound sulfhydryl moieties;
the mixture was dialyzed five times at 10 ◦C in the dark for three days. The dialyses
were performed, once against 5 mM HCl (in 5 L of deionized water); then, to break the
ionic interactions between negatively charged sulfhydryl moieties and positively charged
polymer, the mixture was dialyzed 2 times against 5 mM HCl and NaCl 1% (w/v). Lastly, to
adjust the pH of the polymer, it was dialyzed twice against 1 mM HCl. After polymerization,
dialyzed polymer was stored at 4◦C [27].

2.2.1. Quantitation of Primary Amine and Thiol Content

The colorimetric 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay was performed to
quantify the primary amine functional groups of thiolated chitosan. Briefly, 0.5 mg polymer
was dissolved in a solution of 500 µL (0.5%, w/v) NaCl. Afterwards, the mixture was
incubated for 30 min at 25◦C. To every hydrated aliquot, 500 µL (0.1%, w/v) of TNBS
containing NaHCO3 (4%, w/v) was added. Absorbance was checked with a microtiter
plate reader (Molecular Devices, San Jose, CA, USA) at 410 nm after incubation of solution
at 37 ◦C for 3 h and centrifugation (33,527× g; 4 ◦C; 5 min). Calculations were made with
L-cysteine HCl standards.

Ellman’s reagent was used to quantify the degree of conjugation of thiol groups in
thiolated chitosan (TC). Briefly, 0.5 mg of thiolated chitosan was hydrated with 500 uL
(0.5 M, pH 8.0) phosphate buffer. Then, to every single aliquot, 500 µL of Ellman’s reagent
(3 mg in 10 mL of phosphate buffer 0.5 M) was added. After incubation for 3 h at room
temperature, a microtiter plate reader (Molecular Devices, San Jose, CA, USA) at 410 nm
was used to quantify the thiol content, L-cysteine standards were used for calculations [28].

After the polymer modifications, the extent of disulfide bond formation was quantified,
as reported earlier [28]. Tris buffer (pH 6.8; 0.05 M) 1 mL was added to a 15 mL Falcon
tube and then 0.5 mg TC was added and allowed to swell. After incubation for 30 min at
room temperature, sodium borohydride solution 4% (w/v) 1 mL was added dropwise into
the above reaction mixtures. The samples were then mixed for 3 h at 37 ◦C. Hereafter, a
solution of 5 M HCl (200 µL) was added to quench the mixture.

2.2.2. Nuclear Magnetic Resonance (1HNMR)

Modification of chitosan to thiolated chitosan was characterized by 1HNMR (H NMR;
500 MHz; Varian Medical Systems, Inc., Palo Alto, CA, USA) spectroscopy [29].
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2.2.3. Attenuated Total Reflectance-Fourier Transform Infrared (FTIR) Spectroscopy

Functional groups of chitosan and modified chitosan and the compatibility of LS
with TC in LS-TC-MNP, was investigated by FTIR. FTIR spectroscopy was performed over
the range of 4000–400 cm−1 by using an FTIR spectrophotometer (Bruker, Billerica, Ma,
USA) [30].

2.2.4. Differential Scanning Calorimetry (DSC)

DSC was performed by using SD Q600 (TA Instruments, Lukens, New Castle, DE,
USA) in the range of 25–300 ◦C, with heat flow rate set at 10 ◦C per min and nitrogen as
purging gas [30].

2.2.5. X-ray Diffraction (XRD)

XRD characterization was performed by a D2 Phaser (Bruker, Billerica, Massachusetts,
USA) over the 2θ range of 0–80◦ at a scan rate of 0.02 ◦/min [30].

2.2.6. Scanning Electron Microscopy (SEM) Study

The SEM analysis was performed by carefully placing the LS-TC-MNP on a carbon-
coated copper mesh. In order to obtain a better comparison, a sputter coater (Denton, Desk
V HP) was used, operated under vacuum at 40 mA for 15 s and the dried sample was
gold plated. The sample was then visualized using scanning electron microscope (JEOL
JSM 6500F SEM, Tokyo, Japan). SEM was used to visualize the surface and dimensions of
LS-TC-MNP (needle height, needle base, and needle distance) [31].

2.3. Fabrication of Levosulpiride Loaded Thiolated Chitosan Microneedle Patch (LS-TC-MNP)

Thiolated chitosan microneedle patch was fabricated by adding different concentra-
tions of thiolated chitosan solution into a PDMS mold. Thiolated chitosan solution (500 mg)
containing (25 mg) levosulpiride was casted on the mold to form a single layer. Then mold
was placed in a 50 mL flat-bottom centrifuge tube and centrifuged at 3000 rpm for 30 min.
The centrifugation step was repeated 4 times, for a total time of 2 h. In order to fabricate
microneedle patch base, a second layer of thiolated chitosan solution was added without
levosulpiride. The second layer would be on the surface of skin and does not penetrate
into the skin. Finally, the mold was again placed inside a 50 mL test tube and oven dried at
28 ◦C for three days without a stopper. Each LS-TC-MNP contained 25 mg of levosulpiride.
Tweezers were used to carefully remove the microneedle mold from the test tube and then
LS-TC-MNP was detached from mold using a heated scalpel [32].

2.4. Tensile Strength

The tensile strength of LS-TC-MNP was measured by using the method of Khan
et al. [33]. The LS-TC-MNP was placed between the jaws of auto tensile tester (Suzhou
Tophung Machinery Equipment Co., Ltd., Jiangsu, China) until the LS-TC-MNP split in
two parts. The tensile strength at breaking point was calculated by using Equation (1).

Tensile strength
(

N
mm2

)
= breaking force (N) sectional area of sample (mm2) (1)

2.5. Moisture Content

The moisture content of the LS-TC-MNP was measured according to previously devel-
oped method [34]. The percent water content of LS-TC-MNP was determined with a Q500
Thermo Gravimetric Analyzer (TA Instruments, Elstree, Hertfordshire, UK). Samples were
heated from ambient temperature to 600 ◦C at a heating rate of 10 ◦C min−1. The data from
thermogravimetric analysis experiments were analyzed with TA Instruments Universal
Analysis 2000 software, version 4.4A (TA Instruments, Elstree, Hertfordshire, UK).
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2.6. Thickness

A digital absolute micrometer (Mitutoyo, Kawasaki, Japan) was used to check the
average thickness of LS-TC-MNP at different points. Firstly, thickness of the glass slide
was measured and then the LS-TC-MNP was placed between the two glass slides and the
micrometer measurement was repeated. The thickness of the LS-TC-MNP was obtained by
subtracting the thickness of the glass slide [35].

2.7. Elongation

The percentage elongation of the LS-TC-MNP was measured until it was divided
into two parts. An auto tensile testing machine was used to measure the starting and
ending length of the LS-TC-MNP and the elongation at breaking point was calculated using
Equation (2) [33].

Percentage enlongation =
Final length of patch at breaking point

Initial length of patch
× 100 (2)

2.8. Penetration Ability

Parafilm-M was used to evaluate the penetration ability of LS-TC-MNP [36]. Parafilm-
M was folded to achieve 8 layers with a thickness of about 1 mm. The film was placed
on a flat surface and LS-TC-MNP was forced manually on it, for 30 s. The LS-TC-MNP
was removed from the parafilm-M. Parafilm-M was unfolded and the number of holes was
checked in each layer with the help of microscope. The shape of the microneedles before
and after insertion was checked under a microscope and measurements were made with a
micrometer.

2.9. Drug Loading Efficiency

The LS-TC-MNP was dissolved in methanol: water mixture. Then, it was diluted with
sufficient quantity of mobile phase and was analyzed by HPLC according to the previously
developed HPLC method by our research group [37]. The loading efficiency of LS in the
LS-TC-MNP was then calculated using the Equation (3).

Amount of drug loaded = (Co ×Volume)− C1 ×
(

volume− ∆M
ρ

)
(3)

where Co is the concentration of the solution prior to addition MN patches, ∆M is the
difference in mass of the MN patch before and after loading, C1 is the concentration of the
solution after addition to MN patches, and ρ is the density of water [38].

Drug loading was calculated by Equation (4).

Loading Content =
Total amount o f drug added− Amount o f unentrapped drug

Total mass o f polymer
× 100 (4)

2.10. In-Vitro Drug Release Studies

A modified Franz diffusion cell apparatus was used to check the in vitro release of
LS from LS-TC-MNP. LS-TC-MNP (with 25 mg of LS) was attached to the Parafilm-M and
placed between the donor and receptor chambers of Franz diffusion cell. The sides of the
Franz cell were sealed with clamps and petroleum jelly. The LS-TC-MNP was hydrated with
phosphate buffer (pH 7.4). The receptor compartment was filled with 10 mL of phosphate
buffer (pH 7.4) and kept at 37 ± 1 ◦C during the entire study, with water circulation system.
After predetermined time intervals (1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, and 48 h), 0.5 mL
samples were removed from the arm of the receptor compartment and replaced with an
equal volume of fresh phosphate buffer (pH 7.4) kept at 37 ± 1 ◦C. As reported earlier,
samples were then analyzed by HPLC [37]. The in-vitro release profile was then subjected
to mathematical modeling by using free DD Solver software (Microsoft Excel add-in).
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2.11. Ex-Vivo Permeation Study

The ex-vivo skin permeation study was performed on mouse skin samples. Mouse
skin was shaved, and remaining hairs were carefully removed by depilatory cream. LS-TC-
MNP (LS = 25 mg) was firmly attached to the skin sample and hydrated with phosphate
buffer (20 µL, pH 7.4). Then, this skin was placed between the donor and receptor chamber
of the Franz diffusion cell. The system was maintained at 37 ± 1 ◦C during the entire
study. The receptor chamber was filled with 10 mL of phosphate buffer (pH 7.4). After
predetermined time intervals (1, 2, 3, 4, 6, 8, 12, 16, and 24 h), 500 µL of sample was drained
and refilled with fresh buffer. The samples were then analyzed by HPLC [37].

2.12. Skin Distribution Study

After a 24 h ex-vivo permeation study, the skin was removed from the Franz diffusion
cell and homogenized with a tissue homogenizer. Homogenate was soaked in methanol
under stirring overnight to extract LS. The extract was filtered through 0.45 syringe filter
and analyzed by HPLC [37].

2.13. In-Vivo Tolerance and Safety Study

The standard Draize skin irritation test was performed to measure erythema and
edema, after removal of LS-TC-MNP [39]. Mice weighing 24 ± 5 g were anesthetized
using gas anesthesia of isoflurane in oxygen (2–4% (v/v)). The hairs of each mouse were
removed from the back area with a professional pet clipper, 24 h prior to the study. Before
insertion of LS-TC-MNP, the application area of each animal was monitored for any signs
of inflammation. A visual scoring system was employed to assess the intensity of erythema.
According to the Draize skin irritation test, erythema scores were recorded at 1, 6, 24,
and 48 h after application. These were compared with control animals (no LS-TC-MNP).
Primary irritation index (PII) was calculated by previously reported method [40].

2.14. In-Vivo Study

In in-vivo study, the average mouse weight was 24 ± 5 g. Mice were acclimated for
7 days prior to the study and fasted for 24 h before the study. All in-vivo experiments
were approved by the ethical committee, Faculty of Pharmacy, Gomal University (No:
10/ERB/GU). The mice were anesthetized under gas anesthesia (i.e., isoflurane in oxygen
(2–4% (v/v))). Bulk hairs were removed with an electrical clipper and then a depilatory
cream was applied to remove the remaining hair that could interfere with the insertion
of LS-TC-MNP [41,42]. Hairs were removed from the back area of mouse at 4 h prior
to experiment. Mice were divided into two groups (n = 16 per group (total: 32)); oral
(given the oral LS dispersion) and transdermal (LS-TC-MNP inserted in skin). Mice in the
oral group received an oral LS dispersion of (200 mg/kg). The transdermal group was
the LS-TC-MNP treatment group, in which each mouse was treated with (LS = 25 mg)
LS-TC-MNP. To facilitate the insertion of LS-TC-MNP, the mice were anesthetized by gas
anesthesia. The mice skin was pinched, and LS-TC-MNP attached to self-adhesive margins
was inserted with firm finger pressure onto the back of each mouse. Blood samples were
withdrawn by bleeding the tail vein at predetermined time intervals. The study plan was
16 mice per group and a maximum of (n = 3) blood samples was withdrawn from each
mouse. Each mouse was bled twice a day. After 1 and 4 h, blood was withdrawn from the
first 4 mice; the next 4 mice were bled after 2 and 6 h; the next four mice at 8 and 24 h; the
remaining 4 mice at 12 h; and all mice (n = 16) at 48 h. The area under the curve and other
pharmacokinetic parameters were measured by using Pk solver software (Microsoft Excel
add-in programm).

2.15. Data Analysis

Statistical analysis of results was performed by one-way analysis of variance (ANOVA)
and Mann–Whitney U-test; p-value < 0.05 was considered statistically significant. All data



Polymers 2022, 14, 415 7 of 29

were expressed as mean ± standard deviation (SD) and all experiments were repeated at
least three times.

3. Results and Discussion
3.1. Synthesis and Characterization of Thiolated Chitosan (TC)

Thiolated chitosan was synthesized by the covalent linkage between chitosan and thio-
glycolic acid. During the reaction, an amide bond is formed between the carboxylate groups
of the sulfhydryl moiety and the amino group of chitosan (Figure 1) [28]. Chitosan was
successfully modified into thiolated chitosan (TC) by 1-ethyl-3-(3-dimethylamino propyl)
carbodiimide hydrochloride (EDAC) coupling, as shown in Figure 1. The lyophilized TC
appears as a white fibrous material. The number of sulfhydryl groups attached to chitosan
were 448 ± 23 µmol/g polymer and the number of disulfide bonds per gram of TC were
158 ± 37 µmol. The thiol group was successfully immobilized on the chitosan backbone by
the carbodiimide chemical method using EDAC to generate thiolated chitosan [43]. The
sulfhydryl groups and disulfide bonds were quantified, which confirmed the successful
synthesis of the thiolated polymer.

Figure 1. Reaction scheme for thiolation of chitosan by formation of covalent bond between thiogly-
colic acid and chitosan via EDAC coupling.

3.2. Nuclear Magnetic Resonance (1HNMR) Spectroscopy

The 1HNMR spectra of chitosan in Figure 2 show a small peak at 1.79 ppm, attributable
to the −CH3 of the N-acetyl glucosamine residue. A peak at 3 ppm is assigned to the H2 of
N-acetyl glucosamine, and the peaks from 3.56–3.74 ppm correspond to the H3, H4, H5,
and H6 of the methane protons of N-acetyl glucosamine. An intense peak at 5.23 ppm
is related to the H1 of N-acetyl glucosamine [44,45]. The structural characterization of
thiolated chitosan by 1HNMR is displayed in Figure 2, containing a peak at 2.1 ppm that
may corresponds to the protons of the newly attached side chain. The peak at 0.8 ppm
corresponds to the –CH2-SH of the newly attached thiol group in thiolated chitosan, and
a strong signal was detected at 4 ppm that may correspond to the remaining protons of
the amine group (-NH2-) after the derivatization of chitosan. A strong peak at 5 ppm was
associated with proton H1 of the hydroxyl group [46,47].
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Figure 2. Nuclear magnetic resonance (1HNMR) spectra of chitosan and thiolated chitosan synthe-
sized by covalent bond formation between thioglycolic acid and chitosan via EDAC coupling.

3.3. Fourier-Transform Infrared-Attenuated Total Reflectance (ATR-FTIR) Spectroscopy

Chitosan (CS) characteristic peaks are present at 3350–3281.27 cm−1, associated with
amine NH symmetrical stretching vibrations, and overlapped by the broad absorption of
the –OH group at 3300 cm−1 (Figure 3). The presence of residual N-acetyl groups was
found in bands at about 1641.89 cm−1 (C=O stretching of amide-I) and 1376.52 cm−1 (C-N
stretching of amide-III), and a small band at 1586.67 cm−1 that corresponds to the N-H
bending of amide II [48]. The CH2 bending and CH3 symmetrical deformations were
confirmed by the presence of bands at around 1419.99 cm−1 and 1376.52 cm−1, respectively.
Bands at 1641.89 cm−1 (N–H deformation), 2922 cm−1 and 2871.02 cm−1 (C–H stretch),
1150.23 cm−1 (asymmetric stretch of C-O-C bridge), 1586.67 cm−1 (NH bend), 1026 cm−1

(C–O stretch, primary hydroxyl group), 1059.67 cm−1 (C–O stretch, secondary hydroxyl
group) are present, as reported in the literature [49,50]. The representative peaks appearing
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at 1316 cm−1 are due to –CH3 symmetrical deformation, C–O stretching vibrations from
(C–O–C) are at 1201 cm−1 and 1071 cm−1 [51].

Figure 3. Fourier-transform infrared-attenuated total reflectance (ATR-FTIR) spectra of chitosan and
thiolated chitosan synthesized by covalent bond formation between thioglycolic acid and chitosan
via EDAC coupling.

ATR-FTIR analysis was performed to confirm the coupling of thioglycolic acid (TGA)
with CS (Figure 3). The peak observed at 1632.41 cm−1 (C = O stretching amide I) and
the deformation of the signal observed at 3282.87 cm−1 (-NH stretching amide) proves
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the formation of the amide bond (C-NH). The peak at 1522.69 cm−1 was assigned to the
amide II band (NH bend and CN stretching) in CS-TGA. The peak at 2883.80 cm−1 due
to stretching proves the existence of thiols as terminal groups connected to the chitosan.
The presence of the peaks at 1253.73 cm−1 (C-SH stretching) and 898.53 cm−1 (S-S bisulfide
bond) in thiolated chitosan confirms the presence of the thiol band, since such peaks are not
seen in pure chitosan FTIR spectra. The absorption band at 3332.98 cm−1 was for CS-TGA-
OH. The band from 997.19 to 1065.76 cm−1 resulted from CO, and the 2883.80–2900 cm−1

band was due to aliphatic CH stretch. The weak peak at 2580.44 cm−1 corresponds to SH,
confirming the conjugation between the primary amine of CS and the thioglycolic acid
CS-TGA. TC has three characteristic peaks at 1243 cm−1, corresponding to the vibration of
the C-S bond [29,52].

3.4. Differential Scanning Calorimetry (DSC)

The DSC thermogram of chitosan, shown in Figure 4, indicates an endothermic peak
between 33–124 ◦C with heat of enthalpy (DH) at −132.70 J/g and peak area of −570.60 mJ.
The exothermic peak between 200–280 ◦C has a heat of enthalpy (DH) at 19.9068 J/g and a
peak area of 55.292 mJ. The endothermic peak, also called dehydration temperature (TD),
is assigned to the loss of water associated with the hydrophilic groups of chitosan. In a
solid state, the chitosan polysaccharide has a disordered structure and a strong affinity for
water; as a result, it can be easily hydrated. This peak suggested that chitosan was not
completely dried and that there was still some water molecules bound to it that may not be
removed during drying. The exothermic peak is assigned to the thermal degradation of
chitosan (monomer dehydration, glycoside bond cleavage, dehydration of the saccharide
rings, depolymerization, and decomposition of the acetyl and deacetylated units) [53].

After thiolation, the endothermic peak of thiolated chitosan was present between
43–93 ◦C with a heat of enthalpy (DH) −16.29 J/g and a peak area of −60.29 mJ. The broad
exothermic peak was found around 250–300 ◦C with a heat of enthalpy (DH) 200.6942 J/g
and a peak area of 230.80 mJ (Figure 4). These peaks show that the structure of chitosan has
been changed due to the thiol modification and reduced crystalline nature of chitosan. TC is
a hygroscopic material; due to the water loss during degradation, it has a broad exothermic
peak. The exothermic peak shows the degradation of thiol groups in thiolated chitosan,
dehydration of the saccharide rings, depolymerization, and decomposition of the acetyl
and deacetylated units. TC degradation starts at higher temperature (250 ◦C) compared to
chitosan due presence of the amide bond (NCO-CH2-SH) formed during thiolation. Our
observations are consistent with the literature [30].
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Figure 4. Differential scanning calorimetry thermogram of chitosan and thiolated chitosan synthe-
sized by covalent bond formation between thioglycolic acid and chitosan via EDAC coupling.

3.5. X-ray Diffraction (XRD)

In the spectrum (Figure 5), chitosan exhibited two sharp peaks at 2θ = 10◦ and 2θ = 25◦,
indicating the regular crystal lattice of chitosan (crystal form I and crystal from II, respec-
tively) [54]. As compared to the XRD pattern of chitosan [55], there was a noticeable change
in the peaks of thiolated chitosan (Figure 5), suggesting the assimilation of –SH– groups
in the chemical structure of chitosan and indicating a change in the crystallinity, which
might be due to alterations in the inter polymeric atomic density [30]. The characteristic
peak of chitosan was decreased and shifted to 2θ = 23.5◦ in thiolated chitosan, that is due
to the reduction in number of free amino groups and reduction in intra molecular and
intermolecular hydrogen bonding, which led to the lower crystallinity of TC [44].
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Figure 5. X-ray Diffraction spectra of chitosan and thiolated chitosan synthesized by covalent bond
formation between thioglycolic acid and chitosan via EDAC coupling.

3.6. Fabrication of Levosulpiride-Loaded Thiolated Chitosan Microneedle Patch (LS-TC-MNP)

Most of the water-soluble polymers (polysaccharides) are mechanically weaker than
silicon or other non-soluble materials. Chitosan (CS) has exciting potential for drug delivery
and biomedical applications. However, its use is, in some cases, limited due to its solubility
issues, pH-dependent changes in electrostatic charge, and low mucosal adhesion. In order
to overcome these limitations and make CS a more tunable polymer, various chemical
modifications have been reported, such as quaternized CS, amphiphilic CS, steroidal/fatty
acid derivative CS, aryl/alkyl derivative CS, and thiolated CS. These grafted polymers have
been used in a variety of applications, including drug delivery, tissue engineering, in the
textile industry, water purification, and many other biomedical applications [26]. Hence,
thiolated chitosan (TC) has excellent mechanical strength and high water uptake ability,
which may be due to the thiol moieties; therefore, thiolated chitosan (TC) was selected as
the manufacturing material for the microneedle patch (MNP). Thiolated chitosan was also
chosen due to its well-known biocompatibility and biodegradability [25]. In this study, a
levosulpiride-loaded thiolated chitosan microneedle patch (LS-TC-MNP) was fabricated
that could efficiently and sustainably deliver LS into the blood stream. The process of
fabrication of microneedles should be moderate and well-controlled to avoid degradation of
the LS. Microneedle patches were fabricated by using different concentrations of thiolated
chitosan (Table 1). Different MNPs loaded with LS were successfully fabricated. Among the
fabricated MN patches (LS-TC-MNP-1 to LS-TC-MNP-5), the MN patch fabricated by 3%
TC (LS-TC-MNP-3) appears to be the best MN patch. The obtained LS-TC-MNP-3 has 100
needles, each with a length of 575 µm and a base diameter of 200 µm. Under microscopic
observation, the needles appeared with pointed ends. The LS-TC-MNP-3 fabricated from
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TC (3%) showed the best performance in terms of ease of manufacturing, sharpness of
needle, and tensile strength. Lower concentrations of TC solution result in bubble formation
in the MNP during drying, alsoit is difficult to pour higher concentrations of TC into the
mold to fill the pores.

Table 1. Different formulations of microneedle patch with their respective thiolated chitosan solution
concentration and resultant levosulpiride-loaded thiolated chitosan microneedle patches with images,
observation, and comments.

Formulation Code Composition MNP Obtained after Drying Observation and Comment

LS-TC-MNP-1 1% thiolated chitosan
solution

Resultant MNP was full of bubbles
and brittle after dryning, no

microneedles obtained.

LS-TC-MNP-2 2% thiolated chitosan
solution

MNP formed with bubbles covering
the surface of patch and no

microneedles are visible

LS-TC-MNP-3 3% thiolated chitosan
solution

MNP formed with full length
microneedles after drying.

LS-TC-MNP-4 4% thiolated chitosan
solution

MNP obtained is brittle with no
microneedles

LS-TC-MNP-5 5% thiolated chitosan
solution

MNP is not obtained, due to very
thick solution

3.7. Characterization of Microneedle Patch

Simply filling the microneedle molds with chitosan solution and then drying will not
produce solid, strong microneedles. This can be attributed to void structure formation in the
microneedle array after evaporation of water [25]. To overcome this issue, we used 3% TC to
fill the mold twice using a two-step casting process. During the casting process, horizontal
centrifugal force is utilized to fill the TC inside the microneedle mold. Characterization of
LS-TC-MNP was performed by different techniques and tests as described below.
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3.7.1. Scanning Electron Microscopy Study

The morphology of LS-TC-MNP-3 was analyzed by SEM. Figure 6 shows that LS-
TC-MNP-3 has complete pyramidal-shaped microneedles, with a length of 575 µm, sharp
pointed ends, and base diameter of 200 µm. The base and surface of needle was smooth,
indicating that the whole LS-TC-MNP-3 was successfully fabricated. The SEM analysis of
LS-TC-MNP-3 confirmed the existence of polyhedral pyramidal-shaped microneedles with
sharp pointed ends and smooth surfaces. The patch consists of 100 needles in 10 rows each
with 10 needles.

Figure 6. SEM image of LS-TC-MNP-3, showing polyhedral pyramidal-shaped microneedles with a
smooth surface. The patch consists of 100 needles in 10 rows each with 10 needles. The length of the
needle was 575 µm having sharp pointed end and base diameter of 200 µm.

3.7.2. Fourier-Transform Infrared-Attenuated Total Reflectance (ATR-FTIR) Spectroscopy

The ATR-FTIR spectrum of levosulpiride shown in Figure 7. It shows the characteristic
peaks of levosulpiride in the regions of 3369.35, 3245.56, and 3108.62 cm−1, corresponding
to the N−H of the sulfonamide, amide, and aromatic groups, respectively. The bands at
2966.44–2814.12 cm−1 represented the C−H of the methylene and methyl groups. The band
at 1615.98 cm−1 was for the C=O of the amide group. Skeletal stretching of the benzene
ring was seen at 1588.07 cm−1. The C−O of the methoxy group was seen at 1245.84 and
1165.49 cm−1. The absorption bands at 1551.97, 1337.48, and 834.20 cm−1 were assigned
to N−H, SO2, and C−H, respectively [56,57]. After the fabrication of LS-loaded TC-MNP,
there was no interaction among the ingredient and drug, as shown in Figure 7.
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Figure 7. Fourier-transform infrared-attenuated total reflectance (ATR-FTIR) spectra of levosulpiride
and levosulpiride-loaded thiolated chitosan microneedle patch.

3.7.3. Tensile Strength

The tensile strength of LS-TC-MNP is shown in Figure 8. The LS-TC-MNP-3 with
3% TC showed a significant (p-value < 0.042) tensile strength of 0.052 mPa. The average
tensile strength of LS-TC-MNP-1, LS-TC-MNP-2, LS-TC-MNP-4 LS-TC-MNP-5 were from
0.043 ± 0.038 to 0.047 ± 0.027 mPa. The tensile strength and percentage elongation of
MNP play an important role in the complete removal of the dry patch from the mold. In
addition, tensile strength and percentage elongation play an important role in handling and
application on the skin [58]. Due to the presence of disulfide bonds, the final LS-TC-MNP-3
with 3% TC exhibits good tensile strength and reasonable percentage elongation due to
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the attachment of thiol groups, which may also increase the swelling properties of the
polymer. An essential feature of polymer microneedles is the adequate mechanical strength
for insertion into the skin. Factors affecting the mechanical strength of microneedles include
material composition, geometry, and aspect ratio [25,36,59,60].

Figure 8. Evaluation of tensile strength of five different formulations of LS-TC-MNP fabricated with
different concentrations of thiolated chitosan.

3.7.4. Moisture Content

The moisture content of the LS-TC-MNP was found to be 3.1 to 3.4% (Figure 9). The
presence of moisture in the formulation or environment can adversely affect water-soluble
polymers. TC has only a few OH groups as compared with other water-soluble polymers,
such as hyaluronic acid and polyvinyl alcohol; because of its low water absorption rate
(8.0%), it can maintain its mechanical strength and needle shape, even when the relative
humidity is high (80%) [61]. The moisture content of LS-TC-MNP-3 has a significant amount
of 3.2% (p-value < 0.0407), just enough to retain the mechanical properties of the MNP.



Polymers 2022, 14, 415 17 of 29

Figure 9. Evaluation of moisture content of five different formulations of LS-TC-MNP fabricated
with different concentrations of thiolated chitosan.

3.7.5. Patch Thickness

The thickness of the resulting LS-TC-MNP is shown in Figure 10, and it was from
0.044 ± 0.0043 to 0.045 ± 0.0030 mm. The results show that the change in thickness was
non-significant (p > 0.05), indicating homogeneity during mold filling and patch fabrication.
These results are consistent with previous studies [62]. The thickness of the LS-TC-MNP
was measured at various points with a micrometer. This is important to find out the
uniformity of MNP thickness because it is directly related to the accuracy of the dosage in
the patch. The MNP showed good uniformity, indicating the uniformity of drug loaded
without loss of ingredients during fabrication.
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Figure 10. Evaluation of average thickness of five different formulations of LS-TC-MNP fabricated
with different concentrations of thiolated chitosan.

3.7.6. Percentage Elongation

An auto tensile tester was used to measure the percentage elongation of LS-TC-MNP.
The results shown in Figure 11 indicate that the LS-TC-MNP-3 formulation has significant
(p-value < 0.0284) elongation of 36 ± 4.4%.
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Figure 11. Evaluation of percentage elongation of five different formulations of LS-TC-MNP fabri-
cated by different concentrations of thiolated chitosan.

3.7.7. Penetration Ability

LS-TC-MNP insertion studies were performed on parafilm-M to check the penetration
ability. The results of the modified parafilm-M test are shown in Figure 12. The outcomes of
the test were: LS-TC-MNP-3 could pierce first four layers of parafilm-M, reaching a depth
of 500 µm. The number of holes was counted under microscope and 100 holes were found
in the parafilm-M, confirming that the needles were intact and retained their tips, thereby
forming 100 holes. The needles were also examined microscopically after removal, and no
deformation was observed.

LS-TC-MNP-3 needles could pierce to a depth of 500 µm, which is equivalent to 87% of
the total length of the microneedles (575 µm). More than 95% of the needles retained their
shape after removal from skin. Some needles lost their tips and were found in the parafilm-
M. For LS-TC-MNP-1, LS-TC-MNP-2, LS-TC-MNP-4, and LS-TC-MNP-5 the percentage of
intact needles was 0%, 20%, 18%, and 0%, respectively. The fragile nature of the needles
indicates their brittleness due to the higher concentration of polymer that cannot withstand
pressure. Similarly, at lower concentrations, the lower mechanical strength of the polymer
leads to greater needle damage. It is known that the stratum corneum mainly acts as a major
barrier to drug permeation through the skin. Herein, we showed that the LS-TC-MNP-3
can provide sufficient deep skin insertions, enhancing the pharmacological effects through
enhanced LS bioavailability. The microscopic images of parafilm-M after the LS-TC-MNP-3
penetration study are shown in Figure 13A–D.
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Figure 12. Measurement of the insertion depth of LS-TC-MNPs and percentage of hole formation in
parafilm-M to study the penetration ability of microneedle patches.

Figure 13. Microscopic image of parafilm-M layers: (A) first layer, (B) second layer, (C) third layer,
and (D) fourth layer after insertion of LS-TC-MNP-3 in order to study the penetration ability of
LS-TC-MNP-3.

3.7.8. Drug-Loading Efficiency

The drug-loading efficiency of all LS-TC-MNPs was between 38.46± 1.67 and 99± 1%.
Lower concentrations of TC solution produce bubbles in the MNP after drying, and it is
difficult to pour higher concentrations of TC into the mold and fill the pores of the mold.
LS-TC-MNP-3 had a maximum loading efficiency of 99 ± 1% and a loading content of 20%.
The TC 3% solution can easily fill the mold and the resultant LS-TC-MNP-3 contained full
microneedles, giving it a larger capacity to hold the drug. Thiolated chitosan concentration,
MN geometry, the number of microneedles, and the height of the needles in the array will
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affect the drug-loading capacity. In addition, the polyhedral shape has a longer length and
a higher loading capacity compared to cylindrical microneedles [63].

3.7.9. In-Vitro Drug Release Studies

The release curve showed sustained release up to 48 h and the maximum release was
found to be 60% (Figure 14). The mathematical modeling results of the release data are
shown in Table 2. Based on the value of R2, the LS-TC-MNP-3 follows the Korsmeyer–
Peppas model. The value of n was 1.214, indicating that the release was super fall II.

Figure 14. Graph showing the percentage drug release vs. time, from the five LS-TC-MNPs fabricated
with different concentrations of thiolated chitosan (mean ±, n = 3).

Table 2. Table showing in-vitro release kinetic modeling of five LS-TC-MNPs fabricated with different
concentrations of thiolated chitosan.

Formulations
Code

Zero-Order Korsmeyer–Peppas Higuchi Hixson–Crowell First-Order
R2 Ko R2 N R2 KH R2 KHC R2 K1

LS-TC-MNP-1 0.675 0.540 0.928 0.610 0.630 3.523 0.648 0.006 0.725 0.013
LS-TC-MNP-2 0.725 0.620 0.935 0.690 0.675 3.652 0.588 0.005 0.736 0.015
LS-TC-MNP-3 0.936 0.913 0.955 1.214 0.845 5.941 0.762 0.009 0.915 0.030
LS-TC-MNP-4 0.885 0.715 0.940 0.698 0.585 1.868 0.513 0.006 0.812 0.021
LS-TC-MNP-5 0.715 0.620 0.928 0.580 0.435 1.415 0.412 0.005 0.655 0.023

The drug release mechanisms of biodegradable polymer-based formulations are di-
vided into four categories: passive diffusion, matrix degradation, osmotic pumping, and
controlled swelling [64]. In a controlled swelling-based system, the penetration of the
solvent into the matrix can control the release rate. This is usually much slower than the
diffusion of the drug [65]. The diffusion from swollen matrices is principally responsible
for drug release; matrix degradation may also be effective for these systems [66]. It is
believed that the LS-TC-MNP-3 in this study can provide the sustained release of LS over
an extended period of time to overcome the shortcomings of multiple dosing regimen.

The mathematical modeling of the in-vitro release data provides information about
the transport mechanisms that control the release of the drug from the delivery system.
Zero-order release kinetics is required to achieve the desired sustained release mode in drug
delivery [67]. This is mainly controlled by Fick’s law of diffusion under two mechanisms:
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(i) Fickian diffusion and non-Fickian diffusion [68]. As shown in Table 2, various models
were applied to analyze the release kinetics of LS from LS-TC-MNP. Based on the R2

value, LS-TC-MNP-3 follows the Korsmeyer–Peppas model. The diffusion exponent, n,
is an important indicator of various release mechanisms [69]. When the value of n is
0.5, the release mechanism follows Fickian diffusion (indicating diffusion-controlled drug
release); 0.5 < n <1 (superposition of both phenomena) indicates an anomalous transport
mechanism; n = 1 represents case II transport (representing relaxation/corrosion-controlled
drug release); n > 1 represent super case II transport (representing drug release controlled by
cross-linked polymer relaxation). In this study, the diffusion exponent (n) of the Korsmeyer–
Peppas model showed that the release of LS was super fall II [68].

3.8. Ex-Vivo Permeation Study

The results of the ex-vivo permeation study is shown in Figure 15. The results show
that LS permeation from LS-TC-MNP-3 was successful, with nearly 12 mg/cm2 permeating
through the mouse skin (24 h). The LS-TC-MNP-3 was not completely dissolved until
24 h. Thiolated chitosan (TC) is designated as a “thiomer”; these are widely used in non-
invasive drug delivery [70]. TC has excellent potential for the control and maintenance of
pH-dependent drug release [71]. TC has a higher degree of swelling under acidic pH values,
ranging from 2 to 5, and a low degree of swelling under highly alkaline pH [72]. The pH
of the skin surface is weakly acidic, between 4.5 and 5.5, and may vary with wounds and
skin diseases. This acidic pH is a prerequisite for maintaining skin integrity, permeability,
and homeostasis. The pH of the deep layers of the skin is close to neutral pH (7.4) to
maintain natural compatibility with blood and body fluids [73,74]. This neutral pH limits
the swelling behavior of TC. Therefore, after the insertion of LS-TC-MNP-3 (at neutral pH)
in the deeper skin, the desired control release is expected.

Figure 15. Graph showing cumulative amount of drug permeated vs. time through mice skin from
the five LS-TC-MNPs fabricated with different concentrations of thiolated chitosan (means±, n = 3).
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It is very important to increase the permeability of the stratum corneum with LS-TC-
MNP. LS-TC-MNP-3 (25 mg loading of LS) can significantly improve the permeation of LS
through the skin within 24 h (p < 0.05). The micropores created by LS-TC-MNP-3 promote
more effective transport (about 12 mg/cm2) of LS to deeper skin layers and ultimately to
the blood vessels. The ex-vivo permeation through LS-TC-MNP-1, LS-TC-MNP-2, LS-TC-
MNP-4, and LS-TC-MNP-5 was below 5 mg mg/cm2. The reason for low permeation is the
shortness in the length of microneedles in the microneedle patch. During the formulation
of microneedles with different concentrations of thiolated chitosan, the concentration of
thiolated chitosan was increased in increments of 1, 2, 3, 4, 5%. When the concentration of
thiolated chitosan was very low or high, the process of filling the microneedle mold was
incomplete and resultant microneedle patch had bubbles, short and broken microneedles,
fewer microneedles in the microneedles patch, and incomplete microneedle patch formation.
All these shortcomings will result in improper insertion of the microneedles into the skin,
meaning that the microneedle patch cannot properly deliver the drug. As the number and
length of microneedles is shorter there will be lower drug loading, lower drug release,
and lower permeation of the LS through LS-TC-MNP. LS-TC-MNP-3 formulated with
3% thiolated chitosan contains fully formed microneedles of 575 µm in length, a total
100 microneedles with no broken microneedles. LS-TC-MNP-3 formed needles of 575 µm in
length, meaning that they cross the stratum corneum, epidermis, and viable epidermis, and
reaches the dermis containing blood vessels. Hence, increased permeation was achieved
with LS-TC-MNP-3. The presence of thiol groups significantly controls the absorption of
water by LS-TC-MNP-3, which leads to moderate swelling and higher viscosity, thereby
achieving a lasting effect in a longer time. The amount of the drug in the skin tissue was
also quantified; 3.4% of the drug was found in the skin tissue, indicating that the total
permeated amount of LS was 15 mg/cm2 (61.6%) from LS-TC-MNP-3.

3.9. Skin Distribution Study of LS-TC-MNP

The amount of LS in the skin was quantified by extraction of drug from the skin tissue.
The results showed that 1.1 ± 0.6%, 2.3 ± 1.8%, 3.4 ± 2.4%, 1.9 ± 1.6%, 0.9 ± 0.9% of
LS was present in the skin tissues after delivery through, LS-TC-MNP-1, LS-TC-MNP-2,
LS-TC-MNP-3, LS-TC-MNP-4, LS-TC-MNP-5 respectively. The results show that a lower
percentage of LS was delivered by LS-TC-MNP-1, LS-TC-MNP-2, LS-TC-MNP-4, and LS-
TC-MNP-5 to the skin, due to fragile, broken, and incomplete microneedles that could not
penetrate the skin. When compared to all LS-TC-MNPs, the LS delivered by LS-TC-MNP-3
was significant (p-value < 0.0376), 3.4 ± 2.4%, as a result of the good penetration and slow
dissolution of microneedles in the skin.

3.10. In Vivo Tolerance and Safety Studies

One hour after the removal of LS-TC-MNP-3, the erythema score was 1, but there was
no edema. However, the erythema was improved within 24 h, the erythema level was 0,
and the skin had completely recovered from the redness after 48 h. The primary irritation
index of the animals treated with LS-TC-MNP-3 was 2.3, indicating the medium value
(because the PII of the medium value is between 2.0 and 4.9). An in vivo biocompatibility
study for skin was performed to measure the skin irritation potential. Compared with the
control group, the LS-TC-MNP-3 group displayed mild or moderate irritation at 1 h after
LS-TC-MNP-3 removal. These symptoms may be caused by a higher number of needles,
which may be parallel to the increase in the number of pores per unit area of the skin [75,76].
However, these local skin reactions disappeared in mice and no erythema was observed
after 6 h. Therefore, these results indicate that the material and formulation are safe for
skin application.

3.11. In-Vivo Study

The in-vitro and ex-vivo studies indicate that the LS-TC-MNP-3 had enhanced in-
vitro sustained release of 60% and ex vivo permeation of 61.6%. Therefore, LS-TC-MNP-3
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was selected for in vivo studies. In the transdermal treated group, one LS-TC-MNP-3
was applied on the back of each mouse. As shown in the graph of the plasma profile
(Figure 16), LS was detected in mice plasma at a concentration of 5 ± 0.51 µg/mL at 1 h of
the administration of LS-TC-MNP-3. The microneedles are made up of thiolated chitosan;
after the insertion of LS-TC-MNP-3 into the skin, the polymer absorbs the interstitial fluid
from the skin. After absorption of the interstitial fluid, the polymer starts to swell, causing
the slow diffusion of the drug into the blood.

Figure 16. Graph showing the plasma concentration–time profile of LS-TC-MNP-3 fabricated with
thiolated chitosan (applied on the back of the mouse) (Mean ± SD, n = 4).

As a result of absorption of interstitial fluid, the thiolated chitosan swells more and
more, releasing the drug into the skin and bloodstream. Therefore, the concentration in-
creased to 24.5± 1.57 µg/mL after six hours and then slightly decreased to 19± 1.69 µg/mL
after 24 h.

The second group of mice received an oral dispersion of LS (200 mg/kg). As shown
in the plasma profile graph (Figure 17), the concentration of LS in mice plasma was
0.3 ± 2.58 µg/mL after 1 h of oral feeding. The plasma concentration of LS is very low
after oral administration because it is a BCS class IV drug. It has poor water solubility and
poor permeability through the stomach lining. Therefore, less drug reaches the systemic
circulation.

Due to low water solubility and low permeability, the desired therapeutic concen-
tration of levosulpiride could not be achieved after oral administration. At 1 h, the LS
concentration increased to a maximum of 0.5 ± 1.94 µg/mL. Then, after 2 and 4 h, the
concentration decreased to 0.2 and 0.18 µg/mL, respectively. Then, at 6 h, the concentration
of LS increased to 0.4 ± 1.37 µg/mL and then continuously decreased until 24 h (till the
end point). These results are consistent with the previous studies, which reports that LS
exhibits bi- or multi-phasic oral absorption peaks with low absorption, due to the different
absorption sites and rates available for LS in the upper GIT [77]. Therefore, compared to the
oral control group, the transdermal group has enhanced blood concentration and increased
bioavailability of levosulpiride. No edema was observed at the application site.
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Figure 17. Graph showing the plasma concentration–time profile of levosulpiride after administration
oral dispersion of levosulpiride to mice (at a dose of 200 mg/kg) (mean ± SD, n = 4).

As shown in the Table 3, the t1/2 of the LS-TC-MNP-3 increased to 11.04± 4.2 h, which
is higher than that of the oral LS dispersion (5.24 ± 2.1 h). LS-TC-MNP-3 has a Cmax of
24.5 ± 1.35 µg/mL, which is enhanced as compared to the oral dispersion with a Cmax of
0.5 ± 0.2 µg/mL. AUC of LS-TC-MNP-3 was 986 ± 11.5 µg.hr/mL as compared to the oral
dose. which was 3.2 ± 1.4 µg.hr/mL. All these pharmacokinetic results showed that the
t1/2, Cmax, and AUC of LS-TC-MNP-3 was increased as compared to the oral dose. Thus,
the transdermal treatment with LS-TC-MNP-3 will be a promising strategy for enhancing
the bioavailability of levosulpiride and to overcome low oral bioavailability issues.

Table 3. Pharmacokinetic parameters of in vivo study up to 48 h after administration of oral dose and
LS-TC-MNP-3 fabricated from thiolated chitosan (applied on the back of mice) (mean ± SD, n = 4).

Parameters with Units Oral LS-TC-MNP-3

t1/2 (h) 5.24 ± 2.1 11.04 ± 4.2
Tmax (h) 2.1 ± 1.03 6.07 ± 3.4

Cmax (µg/mL) 0.5 ± 0.2 24.5 ± 1.35
AUC (µg/mL·h) 3.2 ± 1.4 986 ± 11.5

4. Conclusions

In the current study, levosulpiride was successfully delivered through transdermal
route by using LS-TC-MNP-3. Chitosan was modified into thiolated chitosan (TC) by
thioglycolic acid and EDAC coupling. Microneedle patches were fabricated by different
concentrations of thiolated chitosan solution. Among all the prepared LS-TC-MNPs, LS-
TC-MNP prepared with 3% TC (LS-TC-MNP-3) was proven to be the best MNP. The
maximum drug loading efficiency of LS-TC-MNP-3 was 99 ± 1%. The in vitro release was
sustained over 48 h, with a maximum release of 60%. The ex vivo results showed that the
levosulpiride was successfully permeated by LS-TC-MNP-3, with nearly 61.6% permeated
through the mouse skin (24 h). In vivo results showed the enhanced bioavailability of
levosulpiride as compared to oral delivery. In conclusion, the levosulpiride-loaded thiolated
chitosan microneedle patch was a stable, safe, and effective formulation for increasing the
permeability and bioavailability of levosulpiride. As the field of microneedle technology
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progresses, it is important to consider different types of anti-schizophrenic drugs that can
be delivered transdermally.
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