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ABSTRACT: Lead optimization, a critical step in early stage drug
discovery, involves making chemical modifications to a small-
molecule ligand to improve properties such as binding affinity. We
recently developed DeepFrag, a deep-learning model capable of
recommending such modifications. Though a powerful hypothesis-
generating tool, DeepFrag is currently implemented in Python and
so requires a certain degree of computational expertise. To
encourage broader adoption, we have created the DeepFrag
browser app, which provides a user-friendly graphical user interface
that runs the DeepFrag model in users’ web browsers. The browser
app does not require users to upload their molecular structures to a
third-party server, nor does it require the separate installation of
any third-party software. We are hopeful that the app will be a
useful tool for both researchers and students. It can be accessed free of charge, without registration, at http://durrantlab.com/
deepfrag. The source code is also available at http://git.durrantlab.com/jdurrant/deepfrag-app, released under the terms of the
open-source Apache License, Version 2.0.

■ INTRODUCTION
The process of discovering and developing a new drug is both
expensive and time-consuming. In the earliest steps,
researchers seek to identify hit compounds that are active
against a disease-implicated protein of interest. These hits must
then undergo lead optimization, which involves adding or
swapping chemical moieties with the goal of improving binding
affinity or other chemical properties related to absorption,
distribution, metabolism, excretion, and toxicity.1

Computer-aided drug discovery (CADD) can accelerate
these early stage steps. For example, structure-based virtual
screening (i.e., computer docking) can identify compounds
that are promising candidate hits for subsequent experimental
testing. Once a hit has been identified, a number of
computational techniques can also further lead optimization,
ranging from docking-based methods such as AutoGrow2−4 to
more advanced, molecular dynamics (MD) “alchemical”
methods5 such as thermodynamic integration,6 single-step
perturbation,7 and free energy perturbation.8

We recently created a 3D convolutional neural network
called DeepFrag9 that aims to further lead optimization. To
train DeepFrag, we assembled a large set of crystal structures
and systematically removed fragments from the cocrystallized
ligands. We then asked DeepFrag to predict a molecular
fingerprint (vector) describing the missing fragment. The
predicted fingerprints most closely matched the corresponding
missing fragments roughly 60% of the time when selecting
from a reference library of ∼6,500 fragments. Remarkably,

even when the network predicts the wrong fragment, the top
predictions are often chemically similar and may well be more
optimal. In prospective practice, DeepFrag can also be used to
add novel fragments to an identified lead, in addition to
swapping existing moieties.
To ensure usability, we took great care to document the

DeepFrag Python source code and even created a Google
Colab notebook so users can test the network without having
to download or locally install any software, libraries, or
dependencies,10 but even this approach limits accessibility to
those who are experts in the field. While the negative impact of
poor usability on software adoption among scientists should
not be understated, it is particularly problematic in educational
settings. Many students are unfamiliar with Python, and
expecting students to download, install, and use a command-
line program is often impractical.
To address these usability challenges, we have created the

DeepFrag browser app. By “browser app”, we mean software
that runs on users’ local computers, entirely in a web browser.
Browser apps have some notable advantages over server apps,
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which run calculations on remote resources (“in the cloud”).
For example, rather than require users to upload their
proprietary data to a third-party server, browser apps download
the software required to run the calculations locally in the
browser’s secure sandboxed environment. Thanks to this de
facto distributed approach, browser apps do not require an
extensive and difficult-to-maintain remote computer infra-
structure. Furthermore, calculations begin immediately on the
user’s own computer, so there is no need to wait in lengthy
queues for limited remote resources to become available.
The DeepFrag browser app will be a useful tool for the

CADD research and educational communities. A working
implementation can be accessed free of charge at http://
durrantlab.com/deepfrag, without registration. Its source code

is available at http://git.durrantlab.com/jdurrant/deepfrag-
app, released under the terms of the Apache License, Version
2.0.

■ RESULTS AND DISCUSSION

Input Parameters Tab. To run the DeepFrag browser
app, users need only visit http://durrantlab.com/deepfrag,
where they will encounter the “Input Parameters” tab
illustrated in Figure 1, on the left. In the “Input Receptor
and Ligand Files” subsection (Figure 1A), users can specify the
protein receptor and ligand file for optimization in any of
several popular formats. The contents of these files are loaded
into the browser’s memory, but they are never transmitted/
uploaded to any third-party server. Users who wish to simply

Figure 1. Input parameters tab (on the left) includes the (A) “Input Receptor and Ligand Files” and (B) “Molecular Viewer” subsections, as well as
the (C) save/load and “Start DeepFrag” buttons. The Output tab (on the right) includes the (D) suggested-fragments table and (E) “Output Files”
subsections. Some components are not shown to simplify the presentation.
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test DeepFrag can instead click the “Use Example Files” button
(not shown) to load a preprepared structure of H. sapiens
peptidyl-prolyl cis−trans isomerase NIMA-interacting 1
(HsPin1p) bound to a small-molecule ligand (PDB 2XP911).
The “Molecular Viewer” subsection (Figure 1B) contains a

3Dmol.js molecular viewer12 where the specified files are
displayed. This subsection also includes two toggle buttons.
The “Delete Atom” button allows users to remove ligand
atoms from the structure by clicking on them. We included this
optional feature anticipating that many users will wish to use
DeepFrag to replace existing ligand moieties. The “Select Atom
as Growing Point” toggle button allows users to indicate which
ligand atom should serve as the growing point (i.e., connection
point) that connects the predicted fragments to the parent
ligand molecule. After users click the appropriate ligand atom,
a yellow transparent sphere indicates the location of the
growing point.
A slider allows the user to control the grid-ensemble size for

ensemble (consensus) predictions (not shown in Figure 1). In
the original DeepFrag publication,9 we evaluated the impact of
sampling multiple random grid rotations for each protein/
ligand input. A final ensemble fragment fingerprint was then
calculated by averaging the predicted fingerprints associated
with each rotated grid. This approach led to modest
improvements in accuracy (∼1.5% TOP-1 accuracy in our
tests when considering 32 rotations vs one9). To match the
original DeepFrag implementation, the browser app performs
the full 32 rotations by default. Users who wish to accelerate
the in-browser calculation can optionally specify fewer
rotations.
A checkbox allows users to control how the DeepFrag

browser app performs grid rotations (not shown in Figure 1).
In the original DeepFrag implementation,9 each of the
ensemble-member grids is rotated randomly. To match the
original implementation, the browser app also performs
random rotations by default, but users can optionally instruct
the browser app to (1) always rotate in 90° increments and (2)
further consider grid reflections. These operations can be
performed rapidly using the TensorFlow.js reverse and
transpose functions, thus speeding the in-browser calculation.
Given that the input structures are unlikely to have rotational
or reflection symmetry along any of the primary axes, using 90°
rotations and reflections should not introduce any bias into the
predictions, but this optional, accelerated approach does differ
from the thoroughly tested DeepFrag implementation
described in our previous manuscript.9 We therefore suggest
using the default browser-app settings to match the original
implementation precisely.
Several buttons are present at the bottom of the Input

Parameters tab (Figure 1C). The “Temporary Save” button
saves the specified parameters (i.e., receptor/ligand files,
growing point, etc.) to the browser’s session storage. These
same parameters can be later restored using the “Load Saved
Data” button. Otherwise, the user simply clicks the “Start
DeepFrag” button to begin the DeepFrag run.
The DeepFrag browser app then generates tensor(s) from

the input molecular structures and uses the trained model to
predict appropriate molecular fragments. The prediction
typically takes at most half a minute, even when running the
DeepFrag app on a mobile phone.
Output Tab. DeepFrag displays the “Output” tab once the

calculations are complete (Figure 1, illustrated on the right).
The “Visualization” subsection again displays the specified

receptor, ligand, and growing point for user convenience (not
shown). Below the molecular visualization, a table shows the
SMILES strings, molecular structures (generated using
SmilesDrawer13), and DeepFrag scores of the top 20 predicted
fragments, sorted from most to least promising (Figure 1D).
To generate a 3D structure of a given “fused” parent/fragment
composite molecule (e.g., for computer docking), users can
simply click the corresponding fragment SMILES string to
launch a separate molecule-preparation web app called Fuser
(see the Git repository for details). As with the original
DeepFrag implementation, fragment scores are calculated by
considering the cosine similarity14 between the predicted
fingerprint vector and the fingerprint vector of the correspond-
ing fragment.
The “Output Files” subsection (Figure 1E) allows users to

directly view DeepFrag output files. Users can also press the
associated “Download” buttons to save the files to disk. These
files include a more complete list of the predicted fragments
(TSV format), the 3D coordinates of the selected growing
point (JSON format), and the receptor and ligand files used for
analysis (PDB format).

Compatibility. We have tested the DeepFrag browser app
on the browser/operating-system combinations shown in
Table 1. It works well on both desktop and mobile operating
systems, as well as on all major browsers (e.g., Chrome, Edge,
Firefox, and Safari).

Example of Use: HsPin1p. In our original manuscript
describing the DeepFrag model,9 we provided several test cases
showing how it can be used for lead optimization.9 To show
that the original implementation and the browser app give
comparable results, we here reproduce one of those tests,
which focused on the cancer target HsPin1p15 bound to a
phenyl-imidazole ligand (IC50: 8 μM; PDB 2XP911). We chose
this protein/ligand complex because neither the protein nor
the ligand was included in the DeepFrag training or validation
sets. DeepFrag is nondeterministic because it randomly rotates
the voxel grids used as input; that is, the program by design
gives slightly different results every time it is run. We thus do
not expect the browser implementation to always suggest
fragments that are identical to those reported previously;
rather, we expect the fragments to be identical in many cases
and at least similar otherwise (Figure 2).
We first used the DeepFrag browser app to remove

carboxylate A (Figure 2, highlighted in pink) and to predict
appropriate replacement moieties at the same position. Like
the original DeepFrag implementation,9 the browser app also

Table 1. DeepFrag Browser and Operating-System
Compatibility Tests

browser operating system

Chrome 88.0.4324.87 macOS 10.14.5
Firefox 84.0 macOS 10.14.5
Safari 13.1.1 macOS 10.14.5
Chrome 87.0.4280.141 Windows 10.0.19041 Home
Firefox 84.0.2 Windows 10.0.19041 Home
Edge 87.0.664.75 Windows 10.0.19041 Home
Chrome 87.0.4280.141 Android 10
Firefox 84.1.4 Android 10
Safari 14 iPhone SE iOS 14.3
Chromium 87.0.4280.141 Ubuntu Linux 18.04.5 LTS
Firefox 84.0.2 Ubuntu Linux 18.04.5 LTS
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predicted the correct (known) carboxylate moiety. This choice
is sensible given that the carboxylate enables electrostatic
interactions with K63 and R69 and hydrogen bonds with C113
and S114.
We used the same approach to evaluate phenyl B (Figure 2,

highlighted in yellow). The original DeepFrag implementation
suggested a bicyclic replacement, *c1ccnc2c1C(=O)N(C)C2,
at this position.9 When run from the browser app, this same
fragment was ranked second, likely because it preserves π−π
interactions with H59 while improving hydrophobic inter-
actions with L122 and M130.9 The first browser-app-
predicted fragment was also a bicyclic replacement,
*c1ncnc2c1C(C)CC2O, that is similarly composed of a six-

member aromatic ring fused to a five-member nonaromatic
ring. Given these structural similarities, the top browser-app
fragment may adopt a similar binding pose within the HsPin1p
pocket.
Finally, we removed phenyl C (Figure 2, highlighted in

green) and similarly used the browser app to predict
appropriate replacements. The original DeepFrag implementa-
tion suggested methyl and ethyl replacements at this location,
likely because they maintain potential hydrophobic inter-
actions with the R68 side chain.9 The browser app suggested
the same two fragments, though it preferred the ethyl
replacement over the methyl.
This work demonstrates that the original DeepFrag

implementation and the browser app make comparable
fragment predictions, as expected given that the two
implementations are functionally identical.

Example of Use: DNA Gyrase B (24 kDa Domain).
Having applied the DeepFrag browser app to an established
test case (HsPin1p), we now provide a second, novel example
that illustrates how DeepFrag can suggest fragment additions
that improve binding affinity. We considered a recent
fragment-based lead-optimization project undertaken by
Ushiyama et al., which identified several E. coli DNA gyrase
B (24 kDa domain) inhibitors, including one in the low-
nanomolar range.17 Importantly, none of the crystal structures
associated with the Ushiyama study (PDB IDs: 6KZV, 6KZX,
6KZZ, and 6L0117) were included in the original training,
validation, or testing sets used to create the DeepFrag model.
While some unassociated structures of E. coli DNA gyrase B
were included in the training set, they were bound to ligands
that are quite distinct (PDB IDs: 4DUH,18 6F86,19 6F94,19

and 6F8J19).
A number of the inhibitors that Ushiyama et al. identified

share the same inhibitory 8-(methylamino)-2-oxo-N-phenyl-

Figure 2. A crystal structure of HsPin1p bound to a phenyl-imidazole
ligand (PDB 2XP911). We reassessed a carboxyl fragment (A, in pink)
and two phenyl fragments (B, in yellow; C, in green) using the
DeepFrag browser app. Select labeled protein residues are shown in a
sticks representation. The figure was rendered using BlendMol.16

Figure 3. An inhibitory scaffold bound to E. coli DNA gyrase B. The protein is shown as a blue ribbon, and key amino acids are shown as thin sticks
(PDB ID 6KZZ17). The scaffold is shown as thick sticks, with the relevant atomic coordinates taken from the 6KZZ ligand.17 The benzene para and
meta positions are marked with a dagger and a double dagger, respectively. A 2D depiction of the scaffold is overlaid, with its experimentally
measured IC50 value (per Ushiyama et al.17). DeepFrag-suggested fragment additions at the para and ortho positions are ranked in the table below,
with the associated IC50 values.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://doi.org/10.1021/acs.jcim.1c00103
J. Chem. Inf. Model. 2021, 61, 2523−2529

2526

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00103?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00103?rel=cite-as&ref=PDF&jav=VoR


1,2-dihydroquinoline-3-carboxamide scaffold, which itself has
an IC50 value of 0.24 μM per isothermal titration calorimetry.17

We applied DeepFrag to this scaffold to see if it could identify
the same fragment additions that Ushiyama et al. selected and
experimentally tested. There is no crystal structure of the
scaffold itself bound to DNA gyrase B, but multiple crystal
structures of bound analogues containing the scaffold are
nearly superimposable. We therefore created a model of the
receptor/scaffold complex from the 6KZZ structure17 by
simply removing any ligand atoms that did not belong to the
scaffold itself.
Ushiyama et al. tested a number of fragment additions at the

phenyl para position. We used the DeepFrag browser app to
evaluate this same position (Figure 3). The top DeepFrag-
suggested addition was an acetic acid, *CC(=O)O, which
Ushiyama et al. had also selected and tested. In their hands,
this addition improved the IC50 value to 0.018 μM,17 likely
because it enables electrostatic interactions with R136 and
perhaps R76. The second DeepFrag-suggested fragment
addition at the para position was a carboxyl group. This
compound had also been tested and was found to have an
improved IC50 value of 0.0017 μM.17

Ushiyama et al. also found that fragment additions at the
ortho position improved IC50 values, albeit more modestly.
The top DeepFrag-suggested addition at this position was a
carboxyl group (Figure 3), an addition that Ushiyama et al. had
also tested (IC50 0.21 μM).17 The second DeepFrag addition
was an acetic acid, *CC(=O)O, which had an experimentally
measured IC50 value of 0.16 μM.17

These examples illustrate that the DeepFrag browser app can
suggest fragment additions similar to those a trained medicinal
chemist might select and that those additions can in some
cases dramatically improve binding affinity.

■ CONCLUSIONS

Our original DeepFrag model serves as a useful tool that aims
to help trained medical chemists and structural biologists in
their lead-optimization efforts, but as originally implemented,
DeepFrag is a stand-alone Python program tailored primarily
to expert computationalists. To enable use by a broader
audience, we have implemented DeepFrag as a browser app.
Researchers, educators, and students can easily experiment
with DeepFrag optimization in their browsers, without ever
having to upload possibly proprietary structures to a third-
party server and without ever having to install any separate
software.
The DeepFrag browser app will be a useful tool for the

CADD research and education community. It is functionally
identical to the original implementation and so yields
comparable results, but the browser-app version additionally
provides a user-friendly interface for setting up a DeepFrag run
and for viewing predicted fragments. It is freely accessible at
http://durrantlab.com/deepfrag. A copy of the source code
can be obtained free of charge from http://git.durrantlab.com/
jdurrant/deepfrag-app, released under the terms of the Apache
License, Version 2.0.

■ IMPLEMENTATION

We relied on several web technologies to implement the
original DeepFrag model as a browser app. Our implementa-
tion can be broadly divided into setup, calculation, and results.

The workflow is illustrated in Figure 4 and described in detail
below.

Setting up a DeepFrag Calculation. To simplify the
process of setting up a DeepFrag calculation, we created a
browser-based GUI so users can easily (1) load their receptor
and ligand structures into the browser’s memory, (2) select the
growing point, and (3) specify other DeepFrag parameters
(Figure 4). To build the GUI, we used the same approach that
we have used previously.20 In brief, the interface is written in
the open-source Microsoft TypeScript programming language,
which compiles to JavaScript and so can run in any modern
web browser. It uses the open-source Vue.js framework
(https://vuejs.org/) to provide reusable, consistently styled
HTML-like components (e.g., buttons, input fields, etc.).
Many of these components are derived from the open-source
BootstrapVue library (https://bootstrap-vue.js.org/), which
makes it easy to implement the color, size, and typography
specifications of the Bootstrap4 framework (https://
getbootstrap.com/). We also adapted our existing molecular-
visualization Vue.js component20 for use in the DeepFrag app.
This component leverages the 3Dmol.js JavaScript library,12

which displays molecular structures without requiring any
separate installation or browser plugin.
To compile and assemble our TypeScript codebase and the

third-party libraries described above, we used Webpack, an
open-source module bundler (https://webpack.js.org/). This
compilation process included Google’s Closure Compiler
(https://developers.google.com/closure/compiler), which au-
tomatically optimizes TypeScript/JavaScript code for size and
speed.

Running a DeepFrag Calculation. The DeepFrag model
requires tensor grids as input. To convert molecular structures
to grids in the browser, we first created a pure-Python
implementation of the GPU-accelerated grid-generation code
described in the original DeepFrag publication9 and transpiled
it to JavaScript using the Transcrypt compiler (https://www.
transcrypt.org/) (Figure 4).
To run the DeepFrag model itself in a browser environment,

we used the Open Neural Network Exchange framework21 to

Figure 4. DeepFrag browser-app workflow can be broadly divided
into components for setup, calculation, and displaying results. The
setup and results include graphical user interfaces (GUIs) powered by
Vue.js, and the calculations themselves depend on Transcrypt-
compiled code and TensorFlow.js. 3Dmol.js12 and SmilesDrawer13

are useful JavaScript libraries for molecular visualization.
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convert our PyTorch model to the equivalent Tensorflow
model.22 We then used TensorFlow.js (https://www.
tensorflow.org/js) to run the model in the browser. Internally,
the browser implementation is functionally identical to the
stand-alone version.
Viewing DeepFrag Results. To view DeepFrag results

(i.e., suggested fragments), we again created/reused the
appropriate Vue.js components (Figure 4). Graphical
depictions of the suggested fragments are generated from the
output SMILES strings using the SmilesDrawer JavaScript
library.13
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