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Abstract

Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human
cancers. However, standard automated method in tumour detection on both routine histochemical and immunohisto-
chemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which
can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in
comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the
process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where
excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the
experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different
types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique
greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and
provides a possibility for fully automated IHC quantification.
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Introduction

Tissue microarray (TMA) is an effective tool for high

throughput molecular analysis to help identify new diagnostic

and prognostic markers and targets in human cancers. The

technique allows rapid visualization of molecular targets in

thousands of tissue specimens at a time and facilitates rapid

translation of molecular discoveries to clinical applications; it has

been applied to the study of tumour biology, the development of

diagnostic tests, the investigation of novel molecular biomarkers,

laboratory quality assurance, and an excellent validation and

translation platform for other types of high-throughput molecular

research [1,2,3,4].

TMAs are produced by a method of re-locating tissue from

histologic paraffin blocks such that tissue from multiple patients

can be studied on the same slide (commonly, three to five tissue

cores are extracted from each donor block). This is done by using a

needle to biopsy a standard histologic sections and placing the core

into an array on a recipient paraffin block (Fig. 1a,b,c), using a

tissue microarrayer. The new block is then cut into 4-micron or 5-

micron thick sections that contain 40 to hundreds tissue specimens

(Fig. 1d), and these sections can then be stained using standard

laboratory methods such as immunohistochemistry for various

biomarker studies. In constructing TMAs, the location to sample

each tissue core from individual donor blocks is carefully selected

by an experienced pathologist at a region containing large

amounts of cancer cells of the top H&E section. Tumour is a

3D object and has irregular shape, and thus the obtained

cylindrical specimens (tissue cores) may not contain cancerous

cell for all TMA sections; as illustrated in Fig. 1e, the tissue core 1

in a number of TMA sections derived from the middle of the

cylindric specimens does not contain cancerous cell. In addition, it

is unpredictable how deep the tumour is. Hence, periodically

TMA slides are stained with H&E and pathologists have to visually

examine all the tissue cores across TMAs (Fig. 1d), which is an

extremely time consuming and labor-intensive process.

Immunohistochemistry (IHC) is widely used in investigation of

novel molecular biomarkers. The conventional approach for

protein expression quantification is for two pathologists to

independently score all tissue cores across all TMAs. However,

manual scoring is expensive, time consuming and subjective.

Moreover, the lengthy pathologist-based scoring process has

become the major bottleneck for this high throughput technique.

Hence, the demand for robust and reliable automated quantifi-

cation has become paramount. A technical challenge of quanti-

fying protein expression is that the measurement is required to be

conducted on the cancerous cells only. Existing research [5,6,7,8]

on IHC quantification make simplification to the measurement

problem by assuming the knowledge of tumour areas and requires

manual segmentation of tumour cells.

Computer-assisted image analysis of IHC has been shown to

reduce the variation in analysis of staining levels [9]. A variety of

studies have been published exploring the use of image analysis

and machine vision for tissue analysis and biomarker measurement

[5,10]. Camp et al. [10] have proposed a system called AQUA for

quantification of biomarker expression based on FISH where

specific fluorescent stains can be used for cell compartmentaliza-

tion to detect nuclei, cytoplasm and membranes [11]. Robust

automated approaches for IHC quantification are still under-

developed and require the empirical evaluation of algorithms
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which can both measure the intensity and distribution of

biomarker, but also do this within the architectural components

of the tissue sample that are relevant to the study.

As a result, the aim of this study is to develop an automated

cancerous cell segmentation method in both routine histochemical

H&E and IHC tissue images. Karacali and Tozeren [12]

presented an automated method to detect regions of interest in

whole slide H&E breast tissue slides for sampling tissue cores.

However, the method is for classification on large image blocks

and does not deal with small tissue cores or IHC images. In

addition, the breast tissue images used in [12] show distinctive blue

and red/pink stains in their Hematoxylin and Eosin (H&E)

images, which however do not apply to the lung tissue specimens

we used. In comparison, the lung tissue images in our experiments

appear low contrast features with red/pink stains, which makes

tumour detection more challenging.

In this paper, a robust tumour segmentation technique is

developed and tested on the two commonly used pathological

data, including routine H&E and IHC virtual slides. The method

includes a tissue architecture extraction approach and a tumour

texture learning model; the tissue architecture extraction approach

contains a stain separation method and an a unsupervised

multistage entropy-based segmentation method, and the tumour

texture learning is an MRF image segmentation system. The

method allows fine pixel based segmentation for small tissue cores,

and three classes of tissue morphology were defined, including

tumour, stroma and lymphoid/inflammatory cells/necrosis.

In experiments, we tested the method on two types of data,

including nine H&E lung tissue virtual slides and nine IHC slides

stained with BAX [13]. In evaluation, although many researchers

use object-based quantitative evaluation (as long as k% of the

object is accurately classified where k% can be set as 50%, it is

counted as correct), the object-based quantitative evaluation allows

pixel-based misclassification and tends to show better performance

results than real performance outcomes. Here, a much more strict

pixel-based quantitative evaluation was conducted by automati-

cally comparing the system outputs with the manually segmented

ground truth data. The experimental results show that the

presented system achieves 80% and 78% accuracy for pixel-based

segmentation in H&E and IHC respectively.

The outline of this paper is as follows. The automated tumour

detection method is introduced in section 0, and the experimental

results are displayed in section with quantitative performance

evaluation. The paper is concluded in section 0.4.

Methods

The intelligent tumour segmentation system contains a tissue

architecture extraction model and a tumour texture modelling

method based on the extracted tissue architecture patterns. The

tumour texture modelling method is based on a Markov Random

Field image segmentation model [14], and the theoretical

framework relies on Bayesian estimation via combinatorial

optimization (Metropolis algorithm/simulated annealing). The

final segmentation is obtained by classifying the pixels into

different pixel classes. In this work, four classes with similar tissue

morphology were defined, including tumour, stroma, lymphoid/

inflammatory cells/necrosis and background (see Fig.2), and

regions of individual classes were manually selected for supervised

learning.

0.1 Tissue Architecture Extraction
1. Stain separation. The Lambert-Beer’s law describes an

exponential relationship between the intensity of monochromatic

light transmitted through a specimen and the amount of stain

present in the specimen:

Figure 1. Tissue Microarray Construction. a. donor tissue blocks are selected, b. a needle is used to sample multiple cylindric tissue cores from
each donor block and the sampling locations are carefully chosen by an experienced pathologist based on the top H&E slide of the block, c. the
obtained tissue cores are assembled in a single microarray, d. the finished tissue microarray block is sectioned to create multiple TMAs where
periodically a TMA slide is stained with H&E with all tissue cores examined by an experienced pathologist to verify if cancerous cells exist, e. tumour is
with irregular shape and size; sections of cylindric tissue cores may not contain cancerous cells.
doi:10.1371/journal.pone.0015818.g001

Tumour Segmentation on Tissue Image
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I1(l)~I0(l) exp ({a:c(l)) ð1Þ

where I1(l) is the intensity of light of wavelength l transmitted

through the specimen (the intensity of light detected), I0(l) is the

intensity of light of wavelength l entering the specimen, a is the

amount of stain per unit area of the specimen, and c(l) is a

wavelength-dependent factor reflecting the absorption

characteristics of the particular stain.

The CCD RGB cameras use three broad-band filters to capture

color images in three channels. As the relative intensity Ir,Ig,Ib in

each of the RGB channels depends on the concentration of stain in

a nonlinear way [15], the intensity values of the image can not

directly be used for separation and measurement of each of the

stains, but the optical density (OD) for each channel can be

defined as

D~{ ln (
I1

I0
)~a:c ð2Þ

The OD for each channel is linear with the amount of stain,

given the absorption value, and can therefore be used for

extracting the amount of stain in a specimen. Each stain can be

characterized by a specific OD for the light in each of the three

RGB channels, which can be represented by a 3|1 OD vector

describing the stain in the OD-converted RGB color space [16].

Hence, in the case of two stains, the color system can be described

as

Ir1 Ig1 Ib1

Ir2 Ig2 Ib2

� �
ð3Þ

where each row represents a specific stain and each column

represents the OD as detected by RGB channels for individual

stain.

Color deconvolution [16] can be used to obtain independent

information about each stain’s contribution based on orthonormal

transformation of the RGB information, and the transformation

has to be normalized to achieve correct balancing of the

absorbtion factor for separate stains. For normalization, each

OD vector is divided by its total length to obtain a normalized OD

array M. If C is the 2|1 vector for amounts of the two stains at a

particular pixel, then the vector of OD levels detected at that

pixel is L~CM. Defining K~M{1 as the color-deconvolution

array, we can therefore obtain individual stain information by

C~KL.

For example, given an IHC image, we first separate

independent DAB and Haematoxylin stain contributions by the

color deconvolution approach [16]. In this study, the normalized

optical density (OD) matrix, M, to describe the colour system for

orthonormal transformation is defined as follows:

M~

R G B

0:65 0:704 0:286 Haematoxylin

0:072 0:99 0:105 Eosin

0:268 0:57 0:776 DAB

0
BBB@

1
CCCA ð4Þ

Given C is 3|1 vector for amounts of the three stains at a

particular pixel, the vector of OD levels detected at that pixel is

equal to L~CM. Therefore, multiplication of the OD image with

the inverse of OD matrix results in orthogonal representation of

the stains forming the image (C~M{1L), and hence colour de-

convolution matrix is defined as:

K~M{1~

R G B

1:8801 {0:0736 {0:5952 Haema:

{1:0172 1:1353 {0:4826 Eosin

{0:5553 {0:1265 1:5733 DAB

0
BBB@

1
CCCA ð5Þ

The extracted Haematoxylin OD image is applied with the

multistage entropy-based segmentation method to extract tissue

nuclear architecture information.

Figure 2. Supervised cell segmentation on (a) a H&E lung tissue core image, (b) four classes of tissue morphologies are defined for
supervised learning, including ‘‘tumour’’, ‘‘stroma’’, ‘‘lymphoid/inflammatory cells/necrosis’’ and ‘‘background’’, (c) the
segmentation result.
doi:10.1371/journal.pone.0015818.g002

Tumour Segmentation on Tissue Image
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2. Multistage Entropy-Based Segmentation of Nuclear

Architecture. All statistical operations are performed on the

normalized image histogram, P~fp0,:::,p2c{1g where the valid

intensity scales from 0 to 2c{1, and image entropy E(P) is

calculated using discrete histogram P as follows.

H(A)~{
Xj

i~0

pi log pi ð6Þ

H(B)~{
X2c{1

i~j

pi log pi ð7Þ

Hj~{ log P(A){ log P(B){
H(A)

P(A)
{

H(B)

P(B)
ð8Þ

where j[f0:::2c{1g, A~f0:::jg and B~f2c{1:::jg.
The entropy maximum is calculated as max H(P), which

defines the cut-off point j for assigning image pixels into different

classes where H(P)~fH0:::H2c{1g.
After calculating 2D image histogram entropy function, we first

apply an eight stage maximum entropy function to automatically

separate input image into eight layers, and then a two stage

entropy function to extract potential regions of nuclei, which is

then processed by morphological operations to produce final

nuclear segmentation results. The algorithm is described below.

N divide histogram into four equal sub-histograms P1,P2,P3,P4,

obtaining j1,j3,j5 where j [ 0:::2c{1

N compute maximum entropy points j0,j2,j4,j6 for the four

different P intervals, where j0~ arg max H(P1),j2~ arg
max H(P2),j4~ arg max H(P3),j6~ arg max H(P4)

N use j0:::j6 to categorize input image into eight layers

N calculate new histogram P�

N compute j�~ arg max H(P�) and categorize input image into

2 categories, including nuclei and non-nuclei

N apply the morphological operations described below

The purpose of the morphological function is both to reduce

spurious false positive detection and increase low contrast true

negative detection. The method re-assigns each image pixel value

using the most frequent intensity level within its neighborhood.

Given an image I(X ,Y ) and neighborhood radius r, the output

image I ’(X ,Y ) is formulated as follows.

I ’(x,y)~ arg max
I

(#I(K ,L)) ð9Þ

where K~fx{r,:::,xzrg, L~fy{r,:::,yzrg, and r is empiri-

cally set as 3.

0.2. Tumour Texture Learning and Segmentation
1. Texture Feature Extraction. The H&E staining method

colors nuclei of cells blue by Hematoxylin, and the nuclear staining

is followed by counter-staining with Eosin, which colors other

structures in various shades of red and pink. Regarding bright field

immunohistochemistry staining method, Hematoxylin induces

blue staining of nuclei and DAB induces brown staining (protein

expression) of various cell compartments. In our previous study

[17], we discovered that the blue channel had higher

discriminative information in the classification of two types of

Non Small Cell Lung Carcinomas using H&E tissue images than

composite greyscale, red and green channels. In addition, the

morphology of nuclei is used as a common indication of cancerous

cells. Hence, the blue channel information is extracted as image

features for subsequent tumour cell segmentation.

Given a set of sites S~fs1,s2,:::,sng of an image and the

corresponding set of image observation F~ffsgs[S , attributes of

each class a to learn in the training set include the mean ma and

variance s2
a of F . The learned class attributes were then sent to

MRF image segmentation model to find MAP estimation.

ma~
1

jSaj
X
s[Sa

fs ð10Þ

s2
a~

1

jSaj
X
s[Sa

(fs{ma)2 ð11Þ

where Sa denotes the set of pixels in the training set of class a and

fs is the image observation value at pixel s.

2. MRF Segmentation. Given a set of sites S~fs1,s2,:::,sng
and a set of image data F~ffsgs[S , each site belongs to any one

of four classes defined. A global discrete labelling W assigns one

label ws to each site s in F . Thus, the pair (W ,F ) specifies a

segmentation. To find the optimal labelling ŴW with maximum the

posterior probability p(W jF ), using independence assumption

[18] and Bayesian theorem p(W jF )~(1=p(F ))p(F jW )p(W ),
p(W jF )!p(F jW )p(W ). Thus, the MAP estimation (ŴW~

arg maxWp(F jW )p(W )) is given by

ŴW~ arg max
w[W

P
s[S

p(fsjws) P
c[C

exp ({Vc(Wc)) ð12Þ

where Vc denotes the clique potential of clique c [ C having the

label configuration Wc. Assuming that p(fsjws) is Gaussian, the

energy function U(W ,F ) is given by

Table 1. Pixel-based quantitative evaluation on tumour
detection results in H&E tissue images.

Accuracy TP rate FP rate FN rate TN rate Precision

1 0.84 0.84 0.18 0.16 0.82 0.92

2 0.8 0.78 0.17 0.22 0.83 0.87

3 0.74 0.95 0.88 0.05 0.12 0.76

4 0.84 0.81 0.15 0.19 0.85 0.62

5 0.84 0.71 0.11 0.29 0.89 0.71

6 0.85 0.71 0.09 0.29 0.91 0.78

7 0.82 0.62 0.06 0.38 0.94 0.86

8 0.77 0.66 0.16 0.34 0.84 0.73

9 0.71 0.49 0.1 0.51 0.9 0.81

Aver. 0.8 0.73 0.21 0.27 0.79 0.79

TP: number of true positive pixels; TN: number of true negative pixels; FP:
number of false positive pixels; FN: number of false negative pixels;
Accuracy = (TP+TN)/(TP+TN+FP+FN); TP rate = TP/(TP+FN); FP rate = FP/(FP+TP);
FN rate = FN/(FN+TP); Precision = TP/(TP+FP).
doi:10.1371/journal.pone.0015818.t001
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Figure 3. Evaluation outputs of tumour detection on routine H&E. green = TP, red = TN, yellow = false negative, and blue = false positive.
doi:10.1371/journal.pone.0015818.g003
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U(W ,F )~
X

s

( log (
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ws

q
)z

(fs{mws
)2

2s2
ws

)za
X

Vc(Wc) ð13Þ

The local energy of any labeling ws is:

u~ log (
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ws

q
)z

(fs{mws
)2

2s2
ws

za
X

cs

Vcs (wcs ) ð14Þ

where a is the weight of the prior term and is experimentally set as

0.9.

The problem is reduced to a combinatorial optimization

problem, that is to minimizing a non-convex energy function

ŴW~ arg min U(W ,F ). Each clique corresponds to a pair of

neighboring pixels, and the clique potential is designed to favor

similar classes in neighboring pixels.

Vc~Vfs,rg(ws,wr)~f
{1 ,ws~wr

1 ,ws=wr

ð15Þ

According to Hammersley-Clifford theorem [19], p(W )

follows a Gibbs distribution, p(W )~
1

Z
exp ({U(W ))~

1

Z
exp ({

X
c[C

Vc(Wc)), where Z~
P

W exp ({U(W )) is the

partition function. Therefore, the full prior is:

p(W )~
1

Z
exp ({

X
s,r[C

Vfs,rg(ws,wr)) ð16Þ

The estimation of ŴW is then computed through the energy

minimization using a relaxation method. Four methods were

tested initially, including Metropolis algorithm [20], Modified

Metropolis algorithm (MMD) [21], Iterated Conditional Mode

(ICM) [18] and Gibbs sampling [19], and the preliminary

experiments show that Metropolis algorithm obtains best segmen-

tation results and is thus used in the experimental section.

3. Parameter Definition. The number of pixel classes is

defined as four, including ‘‘tumour’’, ‘‘stroma’’, ‘‘lymphoid/

inflammatory cells/necrosis’’ and ‘‘background’’ (see Fig.2).

Although the aim of the study is to separate cancerous cells

from other cells and background where only three classes

(‘‘tumour’’, ‘‘non-tumour’’, ‘‘background’’) are needed, our

preliminary exploration showed that tumour cell detection

performs better when the non-tumour class is further divided

into two classes (‘‘stroma’’ and ‘‘lymphoid/inflammatory cells/

necrosis’’) as these two subtypes have distinctively different

morphology. A training set was obtained for supervised learning

by manually selecting representative regions on the input image.

In supervised image segmentation, the mean ma and standard

deviation sa of each class was computed from the training set.

After MRF image segmentation described in the previous sections,

pixels assigned to the two non-tumour subtypes were merged into

one non-tumour class for evaluation in the next section.

Results

The presented tumour cell detection system is evaluated with

nine H&E tissue core images of lung carcinoma and nine bright field

immunohistochemistry tissue core images of lung carcinoma with a

biomarker named BAX [13]. Regarding the image dimension, it is

300|300 for H&E tissue cores on average and 500|500 for

immunohistochemistry tissue cores. For quantitative performance

evaluation, a ground truth dataset was produced by independent

manually marking. As for immunohistochemistry, some regions

such as poorly differentiated cases can be difficult for even an

experienced pathologist to define whether they are cancerous cells

or not. In evaluation, the pixels of these regions are excluded.

The outputs by the presented method were then compared with

the ground truth data to generate confusion matrices [22] and

other performance indices were generated, including accuracy,

true positive rate, true negative rate, false positive rate, false

negative rate and precision for quantitative performance evalua-

tion on cancerous cell segmentation.

0.3. Histological Slides: H&E
The quantitative results are shown in Table 1. Overall, the

presented system achieves 80% accuracy and 79% precision in

pixel based cancerous cell segmentation, and the image outputs

based on the evaluation results are displayed in Fig.3, showing that

the technique is able to in identify cancerous cell on low contrast

H&E lung tissue core images.

0.4 Bright Field Immunohistochemistry
The quantitative results are shown in Table 2. Overall, the

presented system achieves 78% accuracy and 89% precision in

pixel based cancerous cell segmentation, and the image outputs

based on the evaluation results are displayed in Fig.4. The results

show that the technique is able to identify cancerous cell on

immunohistochemistry tissue core images.

Discussion

We have demonstrated an automated technique to automati-

cally segment cancerous cells, for TMA construction and IHC

quantification, on lung tissue images. The supervised image

segmentation system includes a feature extraction function and an

MRF based Bayesian estimation method for modelling four types

of texture based on the tissue morphology defined. The system is

demonstrated to be able to identify cancerous cells and achieve

Table 2. Pixel-based quantitative evaluation on tumour
detection results in Immunohistochemistry tissue images.

Accuracy TP rate FP rate FN rate TN rate Precision

1 0.79 0.7 0.09 0.3 0.91 0.91

2 0.93 0.73 0.01 0.27 0.99 0.94

3 0.75 0.71 0.14 0.29 0.86 0.94

4 0.79 0.77 0.14 0.23 0.86 0.94

5 0.68 0.57 0.17 0.43 0.83 0.83

6 0.82 0.51 0.03 0.49 0.97 0.89

7 0.73 0.66 0.21 0.34 0.79 0.75

8 0.85 0.88 0.23 0.12 0.77 0.91

9 0.7 0.65 0.18 0.35 0.82 0.91

Aver. 0.78 0.69 0.13 0.31 0.87 0.89

TP: number of true positive pixels; TN: number of true negative pixels; FP:
number of false positive pixels; FN: number of false negative pixels;
Accuracy = (TP+TN)/(TP+TN+FP+FN); TP rate = TP/(TP+FN); FP rate = FP/(FP+TP);
FN rate = FN/(FN+TP); Precision = TP/(TP+FP).
doi:10.1371/journal.pone.0015818.t002
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80% accuracy and 79% precision on routine histochemical images

and 78% accuracy and 89% precision on IHC images, based on

pixel based evaluation results. The presented technique greatly

reduces the workload of pathologists, speeds up the process of

TMA construction and provides a possibility for fully automated

IHC quantification. In future work, we plan to improve the

technique by enhance the simple tumour texture feature extraction

process and further apply the technique to different IHC slides.

Moreover, we would like to develop a fully automated biomarker

quantification system based on the outputs of this method.
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