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Abstract: Plastics and foaming agents are often used to prepare large-size and low-density bamboo
charcoal (BC) based composites. In this study, a plastic-free and foaming agent-free BC based
composite was prepared by substituting sodium silicate (SS) for plastics. The effect of both the
BC particle sizes and the usage amount of SS on the mechanical and adsorptive properties of the
BC/SS composites were investigated. The experimental results show that when the BC particle size is
270 µm and the mass ratio of BC to SS is equal to 10:5, the BC/SS composite has the optimal foaming
effect and best comprehensive properties. In addition, the foaming pores of the composite are caused
by water vapor, which has difficulty escaping the BC because of the blockage of SS during the hot
pressing process. In the BC/SS composite (10:5), the static bending intensity and the compressive
strength reach respectively 6.13 MPa and 5.5 MPa, and the average pore size and porosity are
557.85 nm and 52.03%, respectively. In addition, its formaldehyde adsorptionrate reaches 21.6%.
In view of good mechanical properties, formaldehyde adsorption, and environmentally friendly
performance, the BC/SS composite has a great potential as a core layer of interior building materials.

Keywords: bamboo charcoal; sodium silicate; composites; pores

1. Introduction

Bamboo charcoal (BC) is a solid residue generated by the pyrolysis of bamboo materi-
als under anaerobic or hypoxic high-temperature conditions [1,2] and possesses abundant
pore structure and high specific surface area, showing excellent functions in water purifica-
tion [3], electrical conductivity [4], air filtration [5], soil improvement [6], photocatalysis
degradation [7], formaldehyde adsorption [8], and sound insulation [9]. In daily life, BC
is usually made into small-size particles with various shapes for air or water purification,
but its scope of use is limited due to low usage amount and dust pollution. To address
the above-mentioned shortcomings, large-size BC based composites have been developed
in recent years [10]. Specifically, the BC/plastics composite board is widely reported due
to its high mechanical strength and ability to partially replace wood and reduce the large
consumption of forest resources, showing a great potential in building materials [11–13].
For example, the polylactic acid (PLA)/BC composite board could be prepared by mixing
BC and PLA and has good mechanical, thermal, and optical properties in the range of
BC content from 2.5 wt.% to 10 wt.% [14]. Li et al. [15] added electrically conductive
BC nanoparticles to polyethylene (PE) with high molecular weight to prepare BC/PE
composites, the resulting composites showed a segregated network structure and high
conductivity, and they were adequate for many electrical applications. In addition, a
thermoplastic polyester (PET) or polypropylene (PP)/BC composite could be obtained by
mixing PET or PP with BC particles injecting, and then molding. And comparing with
pure PET or PP, there is an obvious improvement for the mechanical properties [16].
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From the above, we can see that BC mainly acts as a filler and plays a role in perfor-
mance enhancement of BC/plastics; in other words, plastics could be used as adhesives
to prepare BC-based composites [10]. However, plastics are suffering from these dis-
advantages such as flammability, easy aging, high cost, etc. [17]. Meanwhile, the pore
structure of BC itself in the composites is easily blocked by plastics, leading to a reduc-
tion in its adsorption ability. Furthermore, plastics are highly polluting and recognized
as one of the materials which are most difficult to degrade naturally [18]. Therefore, to
improve the above-mentioned problems, large-size BC-based composites which are also
environmentally friendly need to be developed.

Organic or inorganic binders are also commonly used for preparation of biomass-
based composites. The traditional organic binders are of low curing temperature, but most
of them would begin to decompose when the temperature exceeds 300 ◦C and seriously
affect the strength of the composites [19]. Inorganic binders have lots of advantages, such as
high temperature resistance, excellent durability, and little harm to the environment [20,21].
For example, aluminophosphate, an inorganic binder, synthesized by the reaction between
Al(OH)3 and H3PO4, could be taken as adhesives and mixed with wood fibers to prepare
wood-based boards, and the wood-based boards show good porosity and high strength,
due to the addition of the aluminophosphate [22]. The phosphate-based adhesive could be
also used to improve the strength of concrete [23,24]. The above inorganic adhesives show
a good effect on improvement of the mechanical properties of biomass-based composites.
Sodium silicate (SS), as a non-toxic, easy to prepare, low-cost, and good bonding inorganic
adhesive, is also commonly used in these fields, such as refractory coatings, thermal insula-
tion materials, castings, etc. [13]. For example, SS is used to modify 2017A-aluminum alloy
to get a thick oxide functional surface with a good conductivity, high surface hardness, and
outstanding wear resistance. In addition, SS mixed with sodium hydroxide could be used
to improve the shear bond strength and compressive strength of the geopolymer [25–27].
Furthermore, SS is also able to act as a self-healing agent for some engineering compos-
ites [28]. From the above, we can see that SS is an excellent adhesive for preparation of
biomass-based composites.

In conclusion, plastics could be used as adhesives for the preparation of BC based
composites with high strength, but there is poor environmental performance. SS, as an
inorganic adhesive, is almost pollution-free and as far as we know, SS is rarely reported in
the preparation of BC based composites. Thus, in this study, a plastic-free and porous BC
based composite is put forward by using SS as adhesives. The foaming mechanism of SS
and the physical and chemical properties of the BC/SS composites were investigated. The
BC/SS composite provides a new idea as a core layer of interior building materials.

2. Materials and Methods
2.1. Materials

BC particles with different sizes (1700 µm, 270 µm, 149 µm, and 74 µm) were pur-
chased from Jiangshan Lvyi bamboo charcoal Co., Ltd., Zhejiang, China. Liquid sodium
silicate (Na2O·nSiO2, modulus 2.25, solid contents of 30% (SiO2) and 13.75% (Na2O)), as ad-
hesives, was purchased from Jiashan county refractory materials Co., Ltd., Zhejiang, China.
Polytetrafluoroethylene (PTFE) films, 200 mm × 200 mm × 0.05 mm, were purchased from
Shanghai Guoqiang rubber plastic Co., Ltd., Shanghai, China.

2.2. Preparation of BC/SS Composites

First, SS was treated by an ultrasonic equipment for 30 min and then mixed with
BC particles in an agitator (SP-MDC60-5 dc electric mixer, dongguan zhiyu hardware
technology co., LTD., Guangdong, China) with a stirring speed of 50 rap/min for 20 min.
The mass ratio of BC to SS was set at 10:3, 10:4, and 10:5, respectively. Subsequently, the
above mixture was poured into a stainless-steel mold (length × width × height = 150 mm
× 150 mm × 20 mm) treated in advance with the PTFE film and preheated in an oven at
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60 ◦C for 0.5 h and was then kept at 80 ◦C for 1.5 h until the mixture was fully solidified.
Finally, the BC/SS composite was obtained after demolding and naturally cooling.

2.3. Porosity and Average Pore Size Test

The porosity and average pore size of the samples were tested by an autopore V
9600 automatic mercury injection device. The porosity (K) is estimated by the formula
K = (1 − ρb/ρa) × 100%, where ρb stands for volume density, ρa for apparent density.

2.4. Formaldehyde Adsorption Performance Test

Before testing, the BC/SS composites were dried at 100 ◦C for 24 h. Subsequently, the
composites were kept in a testing desiccator for 24 h and tested every 3 h. The formalde-
hyde adsorption rate is calculated by the formula that the formaldehyde adsorption rate
(AJ) = (mt − mo)/mo × 100%, where mo and mt stand for the mass before and after
adsorption, respectively.

2.5. Mechanical Properties and Aging Resistance Test

According to the physical and chemical properties test method of the Chinese standard
“GB/T17657-2013” [29], the samples are processed into two sizes of 150 mm × 3 mm × 3 mm
and 15 mm × 15 mm × 15 mm (length × width × height) by a table saw and used for the
static bending strength test (the span of 100 mm and the compression rate of 3 mm/min)
and the compressive strength test (the compression rate of 3 mm/min), respectively. The
samples of each size were divided into 2 groups, each group for 6 samples. One group was
directly used to test the static bending strength, elastic modulus, compressive strength, and
compressive modulus of elasticity by a universal mechanical testing machine (598X, Instron
company, Norwood, MA, USA). The other group was put into a constant temperature and
humidity box with the relative humidity of 55% to conduct aging test for a week.

2.6. Characterization

Surface morphologies of the BC/SS composites were observed by a scanning electron mi-
croscope (SS-550, Shimadzu company, Tokyo, Japan) with an acceleration voltage of 15.00 KV.
The composites were ground into powder and passed through a sieve with 200-mesh and then
analyzed to detect crystal structure by an X-ray diffractometer (XRD) with a copper target,
diffraction angle of 5–60◦, and current intensity of 18 A. Chemical construction of the samples
was detected using a Fourier infrared spectrometer (FTIR, Perkin Elmer, Akron, OH, USA) in
the scanning range of 400–4000 cm−1, by scanning 32 times.

3. Results and Discussion
3.1. Forming Mechanism of BC/SS Composites

As shown in Figure 1, both BC and SS were uniformly mixed together and then pressed
into BC/SS composites. SS acts as an adhesive and it was chosen because of its excellent
advantages, such as waterproof, bacteria-proof, heat-resistant, acid-resistant, UV-resistant, and
especially high-environmentally friendly performance [30]. In the hot-pressing and curing
process, the main chemical reaction might be that Na2O·nSiO2 reacts with H2O and generates
NaOH and Si(OH)4, which could be further dehydrated and condensed to produce a stabilized
silicon three-dimensional structure affording strong adhesion [27]. During the aging process,
the residual SS continued to react with CO2 and H2O in the air and to generate Na2CO3 and
Si(OH)4, and the silicon three-dimensional structure was enhanced by the dehydration and
condenses of Si(OH)4. When BC particles were in a certain size range, SS at the top of the
composites solidified first and formed a relatively dense solidified layer. The water vapor in
the inner of the composites did not have enough time to evaporate in the hot-pressing process,
due to the internal resistance and bubble pores formed. In addition, the high viscosity of SS
could make it difficult for the bubbles to escape [31]. In essence, SS, containing substantial
quantities of moisture, also acts as a foaming agent under the condition of heating, so the
porous BC/SS composites could be formed.
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Figure 1. Preparation process and forming mechanism of BC/SS composites.

3.2. Effect of BC Particle Size on Formation of Composites

As shown in Figure 2, when the BC particle size was 1700 µm (mark “1700 µm-BC”),
the distribution of SS in the composite was uneven at the mass ratio of 10:3~5 (BC/SS).
The reason for this is that large-size BC particles would form large gaps among each other,
which would allow SS to easily deposit to the bottom of the composite during the hot-
pressing, leading to the lack of adhesives at the top of the composite and failure of formation
(as shown in the red dotted line of Figure 2a) [32]. The composite with 270 µm-BC could be
successfully prepared and shows uniform pore structure, which is because the smaller-size
BC particles form smaller gaps and prevent SS from rapidly settling to its bottom during the
hot-pressing, resulting in more uniform distribution (as shown in Figure 2b). At 149 µm-
and 74 µm-BC, the composites show obvious bubbling and stratification (as shown in
the yellow dotted line of Figure 2c,d), which might be a result of the gaps among BC
particles being too small, making steam evaporation difficult during the hot-pressing. In a
comprehensive consideration, the composite with 270 µm-BC is the optimal result and its
properties and micro-structure would be studied in following.
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3.3. Surface Morphologies

As shown in Figure 3a, BC particles are irregularly shaped and have an orderly
arrangement of pore structure formed by bamboo conduits to the benefit of adsorption.
As shown in Figure 3b–d, the composites with the mass ratios of 10:3~5 (BC/SS) show
a similar surface structure, where gaps among BC particles are filled by SS which acts
as an adhesive and forms a connection among BC particles to enhance the mechanical
strength. However, the pore structure of BC would be mostly covered by SS, resulting in
the possible decrease in adsorption properties. Figure 3e,f show high-magnification images
of the micro structure of the composite (10:5). The BC particles are packaged by SS, but a
part of the pore structure formed from bamboo conduits could still be seen (Figure 3e), this
is one of the reasons for good adsorption properties. As shown in the red dotted line of
the high-magnification images, some pores of BC particles are choked up by a nail formed
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from the solidified SS, meaning the water vapor generated in the composites during the
hot-pressing could not escape.
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3.4. Chemical Component Analysis

The chemical structure of the composites was analyzed by FTIR, and the result is
shown in Figure 4. Compared with pure BC, both the SS and BC/SS composites show
a stronger absorption peak at 3421cm−1 due to the bending vibration of –OH bond [33],
proving that a certain amount of moisture from SS stays in the interior of the compos-
ites and SS in the interior is incompletely dehydrated and solidified. The absorption
peaks at 1100 cm−1, 800 cm−1, and 458 cm−1 are caused by the antisymmetric stretching
vibration, symmetric stretching vibration, and bending vibration of the Si–O–Si bond,
respectively [34]. The absorption peak at 1455cm−1 comes from CO3

2− and the asymmetric
stretching of C–H bond shows two absorption peaks at 2860 cm−1 and 2920 cm−1, indicat-
ing that there is HCO3− generating in the composites and corresponding to the speculation
of the formation mechanism in Figure 1 [35,36], as well as illustrating that a part of SS is
completely dehydrated and solidified in the hot-pressing and curing process. The solid-
ification could improve the aging resistance and mechanical strength of the composites.
Compared with pure BC and SS, the BC/SS composites have no new absorption peaks,
proving that there is no chemical reaction between BC and SS, only physical bonding.
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To test the change of their crystal degree, the composites were analyzed by XRD,
with the pure BC as a contrast. As shown in Figure 5, the pure BC shows two diffraction
peaks in the vicinity of 43◦ and 24◦, respectively, which are caused by graphite crystallite
crystal plane (002) and (001). The intensity of the diffraction peaks was reduced with the
decrease in BC content, and the peak area gradually decreased. This is because the SS in
the composites was not completely dehydrated and solidified, the solidification formed
as a result of the water evaporation leads to the precipitation and full dehydration of the
silica gel in the composite surface. The semi-solidified state of SS is conducive to improve
the aging property and the mechanical strength of the composites.
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3.5. Densities and Moisture Content

Normally, the densities of the BC/SS composites should increase with the increase in
the SS proportion, due to a higher density of SS than BC, but it shows a different situation
due to the influence of the foaming condition. As shown in Figure 6a, the densities of
the composites first went up, and then down, with the increase in SS. This is because the
foaming effect of the composites (10:3~4) was poor as a result of the low content of SS, and
the density arose with the increase in SS. However, at the mass ratio of 10:5, the composite
showed a good foaming effect, so the density decreased because a lot of water could escape
through these foaming pores. At the mass ratio of 10:3~4, the densities of the composites
were from 0.68 g/cm3 to 0.71 g/cm3, the minimum density appeared at (10:5) and was
0.59 g/cm3. After aging for seven days, the densities of the composites showed a similar
change to that before aging, which depends on the content of SS and the foaming effect
of the system. (10:5) exhibited no large change because the moisture evaporation reached
equilibrium to the moisture absorption, and the densities of (10:3~4) decreased, which is
caused by moisture evaporation in the composites during the cooling and aging process.

As shown in Figure 9a, before aging, the static bending strength of the composites
(10:3~5) was 3.59 MPa, 6.72 MPa, and 5.2 MPa, respectively. This is mainly related to
the content of SS and the foaming status of the composites, corresponding to the change
in trend of their densities. After aging for seven days, the static bending strength of all
of the composites relatively enhanced and reached 4.5 MPa, 7.98 MPa, and 6.13 MPa,
respectively. This is due to the high-intensitive hydrated silica gel, which is formed by the
reaction between SS and CO2, as well as H2O in the air. The static bending strength of the
composites had an improvement after aging, indicating that SS mainly causes dehydration
and solidification during the hot-pressing and is conducive to the formation of the initial
strength of the composites, followed by a sustainable reaction with CO2 in the air and
further improving the strength of the composites. The static modulus of elasticity of
the composites showed relatively little change (as shown in Figure 9b) before and after
aging, indicating that the reaction between SS and CO2 could improve the strength of the
composites and had little effect on the static modulus of elasticity.
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As shown in Figure 6b, the moisture content of the pure BC was 8.9% and went up to
12.23% after aging by absorbing moisture from the air. The moisture content of the composites
(10:3~5) shows a similar change in trend to their densities. This is because with the increase
in SS content, the moisture content of the composites increased, so the moisture content of
(10:4) was higher than that of (10:3). However, since (10:5) had a good foaming effect, most
of the moisture in SS could be out of the pore holes formed from foaming, so even though
the content of SS increased, the moisture content still decreased. The moisture content of both
(10:3~4) during the cooling and aging process was gradually reduced, illustrating that the poor
foaming is not conducive to the absorption of moisture. Therefore, during the seven-day aging
process, the composites were mainly dehydrated and showed less hygroscopic function, so
both the moisture content and the densities decreased at the same time. However, the density
of (10:5) had no obvious change, which might be the reason that the good foaming of the
composites (10:5) is beneficial to moisture evaporation in the curing process, resulting in lower
density [37]. The composites absorb moisture in the air and the residual SS reacts with CO2
and H2O in the air, which makes adsorption and desorption reach a balance, explaining why
compared with the others, the composite (10:5) had a more apparent response to the change in
humidity was able to better absorb moisture.

3.6. Porosity and Average Pore Size

As shown in Figure 7, the porosity of the pure BC and the composites (10:3~5) went
up with the increase in SS and was 40.82%, 48.56%, 48.74%, and 52.03%, respectively,
indicating that with the increase in SS content, the foaming effect is gradually obvious.
This is because SS acts as an adhesive and plays a role in a foaming agent, making the
composites produce a certain number of pores. The average pore sizes of the composites
show a similar changing trend to the porosity. With the addition of SS content, the average
pore sizes of the composites became great, maximally reaching 557.85 nm at the one (10:5).
This is because the moisture in the interior of the composites was more seriously blocked,
preventing water vapor from smoothly venting and producing foaming pores during water
evaporation. The average pore sizes of the composites became larger under the dual action
of micropore plugging and foaming.

3.7. Formaldehyde Adsorption Performance

The formaldehyde adsorption capacity of the composites was estimated by a static
adsorption test. As shown in Figure 8, the formaldehyde adsorption rate of the samples
went up with time extension. The formaldehyde adsorption mainly occurred from 3 to 18 h,
and gradually reached a saturation tendency after 18h, the formaldehyde adsorption rate
of (10:5) was up to 21.6% at 24 h. Compared with the pure BC, the composites show a better
adsorption ability for formaldehyde adsorption, and with the increase in SS, the static
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formaldehyde adsorption capacity gradually increased. This is because the increase in SS
could improve the porosity of the composites and be good for formaldehyde adsorption.
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3.8. Mechanical Performance

Before aging, the compressive strength of the composites had a similar change as the
static bending strength (as shown in Figure 9c) and was 5.15 MPa, 8.4 MPa, and 5.59 MPa,
respectively. After aging, the static bending strength of all the composites decreased to
4.94 MPa, 6.44 MPa, and 5.5 MPa, respectively. (10:4) appears significantly lower at the static
bending strength, which might be associated with the decrease in its density (as shown in
Figure 6a). The compressive elastic modulus of the composites had no obvious change after
aging (as shown in Figure 9d). However, the compressive elastic modulus was less than the
static modulus of elasticity, indicating that the composites exhibit greater brittleness. While a
certain plastic deformation was generated in the compression process, the deformation ability
decreased with the increase in SS content. Overall, the 270 µm-BC and the mass ratio of 10:5
(BC/SS) are the optimal conditions for the preparation of the composites.
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4. Conclusions

SS could be successfully used as an adhesive to prepare plastic-free BC/SS composites
by mixing SS with BC and then hot-pressing. In addition, SS also plays the role of a foaming
agent and makes the composites produce foaming pores due to the blasting of water vapor
blockage by SS. According to the experimental results, both the BC particle size and the
usage amount of SS have a significant effect on the forming effect and properties of the
composites. At 270µm-BC and the mass ratio of 10:5 (BC/SS), the composite reached
the optimal value and showed the most obvious foaming (a porosity of 52.03%) and
the least density (0.59 g/cm3). With the increase in SS content, both the formaldehyde
adsorption performance and the mechanical strength of the composite (10:5) increase and
the maximum reached respectively 21.6% and 6.13 MPa after aging for seven days. This
is due to the reinforcement of the solidification by the reaction between the residual SS
and CO2, as well as H2O in the air. Due to simple preparation and good environmentally
friendly performance, the composites could play a role in the adsorption and humidity
control and be potential as a core layer of interior building materials.
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