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Abstract In this paper, a simulation tool for modeling axon guidance is presented.
A mathematical framework in which a wide range of models can been imple-
mented has been developed together with efficient numerical algorithms. In our
framework, models can be defined that consist of concentration fields of guid-
ance molecules in combination with finite-dimensional state vectors. These vec-
tors can characterize migrating growth cones, target neurons that release guidance
molecules, or other cells that act as sources of membrane-bound or diffusible guid-
ance molecules. The underlying mathematical framework is presented as well as
the numerical methods to solve them. The potential applications of our simulation
tool are illustrated with a number of examples, including a model of topographic
mapping.

Keywords Axon guidance · Growth cone · Topographic mapping · Simulation ·
Numerical methods

1. Introduction

The proper functioning of the nervous system relies on the formation of cor-
rect neuronal connections. During development, neurons project long, thin exten-
sions, called axons, which grow out, often over long distances, to form synaptic
connections with appropriate target cells. Axons can find their target cells with
remarkable precision by using molecular cues in the extracellular space (for re-
views, see Tessier-Lavigne and Goodman, 1996; Dickson, 2002; Yamamoto et al.,
2003). They steer axons by regulating cytoskeletal dynamics in the growth cone

∗Corresponding author.
E-mail addresses: johannes.krottje@gmail.com (Johannes K. Krottje), arjen.van.ooyen@falw.vu.nl
(Arjen van Ooyen).



4 Bulletin of Mathematical Biology (2007) 69: 3–31

(Huber et al., 2003), a highly motile and sensitive structure at the tip of a growing
axon. Extracellular cues can either attract or repel growth cones, and can either be
relatively fixed or diffuse freely through the extracellular space. Target cells se-
crete diffusible attractants and create a gradient of increasing concentration, which
the growth cone can sense and follow (Goodhill, 1997). Cells that the axons have
to avoid or grow away from produce repellents. By integrating different molecular
cues in their environment, growth cones guide axons along the appropriate path-
ways and via intermediate targets to their final destination, where they stop grow-
ing and form axonal arbors to establish synaptic connections. The responsiveness
of growth cones to guidance cues is not static but can change dynamically during
navigation. Growth cones can undergo consecutive phases of desensitization and
resensitization (Ming et al., 2002), and can respond to the same cue in different
ways at different points along their journey (Shirasaki et al., 1998; Zou et al., 2000;
Shewan et al., 2002). Through modulation of the internal state of the growth cone,
attraction can be converted to repulsion and vice versa (Song et al., 1998; Song and
Poo, 1999).

Axon guidance is a very active field of research. Several families of molecules
have been identified and a few general mechanisms can account for many guidance
phenomena. The major challenge is now to understand, not only qualitatively but
also quantitatively, how these molecules and mechanisms act in concert to gener-
ate the complex patterns of neuronal connections that are found in the nervous
system.

To address this challenge, experimental work needs to be complemented by
modeling studies. However, unlike for the study of electrical activity in neurons
and neuronal networks (e.g., NEURON; Hines and Carnevale, 1997), there are
currently no general simulation tools available for axon guidance.

In Hentschel and van Ooyen (1999) a model is presented in which growing ax-
ons on a plain are modeled by means of differential equations for the locations
of the growth cones. These equations are coupled to diffusion equations that de-
scribe the concentration fields of diffusible chemoattractants and chemorepellents
(henceforth referred to as guidance molecules). The system is simplified by us-
ing quasi-steady-state approximations for the concentration fields. This approach
turns the problem of solving a system consisting of PDEs (partial differential equa-
tions) plus ODEs (ordinary differential equations) into a much simpler problem
where only ODEs have to be solved. This works fine as long as the whole plain is
used as a domain for the diffusion equations, but we also want to be able to con-
sider more general domains with, for example, areas where diffusion cannot take
place (“holes”) or with boundaries. Also, Krottje (2003a) showed that in Hentschel
and van Ooyen’s approach moving growth cones that secrete diffusible guidance
molecules upon which they respond themselves cause the speed of growth to be
strongly dependent on the diameter of the growth cone (a phenomenon that was
called self-interaction). The use of a quasi-steady-state approximation will then
result in heavily distorted dynamics.

Here, we present a general framework for the simulation of axon guidance to-
gether with novel numerical methods for carrying out the simulations. The two
major ingredients of the modeling framework are the concentration fields of the
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guidance molecules and the finite-dimensional state vectors representing the
growth cones and target neurons. For the latter two, ODEs must be constructed
that describe the interaction with the concentration fields. The dynamics of the
fields is described by diffusion equations, where we allow for domains with holes
or internal boundaries.

Numerical difficulties arise from small, moving sources for the diffusion equa-
tions (see Krottje, 2003a) and from the time integration of a system that is a com-
bination of highly nonlinear, non-stiff ODEs and stiff diffusion equations (see
Verwer and Sommeijer, 2001). To circumvent this last difficulty we consider the
use of quasi-steady-state approximations, and we will discuss some criteria on the
validity of such approximations.

The organization of the paper is as follows. We start with a description of the
simulation framework in Section 2. In Section 3 we will discuss some features of
the underlying mathematical model and in Section 4 the numerical methods are
discussed. Some simulation examples are given in Section 5. We will finish with a
discussion in Section 6.

2. Simulation framework

In this section, we will describe a modeling framework for axon guidance. In the
models that can be defined within this framework one can incorporate different
biological processes and mechanisms, some of which are displayed in Fig. 1. From
a mathematical perspective the framework consists of states, fields and their cou-
pling. We will now discuss these components and their biological interpretation, as
well as show how they are related through the model equations.

Fig. 1 Examples of biological concepts that can be incorporated in our framework.
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2.1. States

We define states to be finite-dimensional state vectors that represent objects that
interact with the concentration fields of guidance molecules. These objects can be,
for example, growth cones that move in response to the concentration fields, target
neurons that act as sources of guidance molecules, or locations where artificial
injection of guidance molecules takes place.

We will assume that the first two variables of the state vector will always repre-
sent its two-dimensional location, which we will denote by r. Whereas in the model
of Hentschel and van Ooyen a growth cone is completely characterized by its lo-
cation r, our description allows for a more general approach in which the state can
be extended with a vector s that further describes the characteristics of the growth
cone. Possible characteristics of growth cones and targets that can be modeled with
s are as follows:

Sensitivity: Growth cones can respond to different guidance molecules. Their sen-
sitivity to a particular molecule may vary over time (Shewan et al., 2002) and
can be influenced by the concentration levels of other guidance molecules as
well as by the level of signaling molecules inside the growth cone (Song and
Poo, 1999).

Growth cone geometry: It is known that growth cones can change their size while
moving through the environment (Rehder and Kater, 1996). The vector s
could model how this process depends on the concentration fields, or it could
model the way in which changes in growth cone size change the growth cone’s
sensitivity or behavior.

Internal state of growth cone: Inside a growth cone biochemical reactions take place
that determine the growth cone’s dynamics (Song et al., 1998; Song and Poo,
1999). With s, the concentrations of the different reactants and their effect on
growth cone dynamics and axon guidance can be modeled.

Production rates: The rate at which target cells produce guidance molecules may
depend on the concentration fields measured at the locations of the targets.
The vector s can be used to describe such dependencies. Alternatively, s can
describe production rates that are given explicitly as functions of time.

For the dynamics of the states we allow for two possibilities. In the first one, the
state (r, s) is given explicitly as a function of time t and the different concentration
levels of guidance molecules ρ j and their gradients ∇ρ j evaluated at position r,

(
r
s

)
=

(
Gr(t)

Gs(t, ρ1(r, t),∇ρ1(r, t), . . . , ρM(r, t),∇ρM(r, t))

)
. (1)

In the second possibility an ODE describes the dynamics of the states,

d
dt

(
r
s

)
= G(t, s, ρ1(r, t),∇ρ1(r, t), . . . , ρM(r, t),∇ρM(r, t)). (2)
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The functions Gr , Gs and G are used to model the different biological processes
and mechanisms. We will now discuss the fields ρ j ( j = 1, . . . , M).

2.2. Fields

The fields in our framework represent the concentration fields of the guidance
molecules. The dynamics of these fields are determined by diffusion, absorption
and some highly localized sources. With ρ the concentration field, d the diffusion
coefficient, k the absorption coefficient, and Stot a source term, this results in the
diffusion equation

∂tρ = d �ρ − kρ + Stot, on � ⊂ R
2, n · ∇ρ = 0, on ∂�, (3)

where the domain � may contain several holes (i.e., areas that are impenetrable
for guidance molecules) with piecewise smooth boundaries. Thus, on the boundary
of the domain we will assume that there is no in- or outflow of guidance molecules.
A domain is defined by specifying an outer boundary and possibly several internal
boundaries. In our framework all boundaries must be given by parameterizations
γi : [0, 1) → �. The parameterizations describe curves. If, for example, an internal
boundary is described by a circle, there will be no guidance molecules and there-
fore no gradients within the area specified by the circle (see also Example 2 in
Section 5).

A number of states is linked to a field. These states determine the total source
function Stot, which is the sum of source functions Si , each of them belonging to a
single state (r, s)i . To further specify the form of the Si , we make use of a transla-
tion operator Ty, which can by applied to arbitrary functions η : � → R and which
is defined for y ∈ � by (Tyη)(x) = η(x − y) for all x ∈ �. For the source functions
Si : � → R, we make the assumption that Si = σi (si )Tri S. Here, S is some general
function profile and σi (si ) ∈ R denotes the production rate.

We also allow for the possibility of having fields in steady state. A reason to
incorporate such fields is that the field dynamics might by significantly faster than
the dynamics of the growth cones or targets. In this case the fields equation will be

d �ρ − kρ + Stot = 0, on � ⊂ R
2, n · ∇ρ = 0, on ∂�, (4)

We will refer to them as quasi-steady-state equations because the source term Stot

may depend on time due to time dependent si and ri .

2.3. Coupling

The coupling between the states and the fields occurs through the arguments ρ j (ri )
and ∇ρ j (ri ) in G and the functions σ (si ) in Stot. An example of the coupling is
depicted in Fig. 2, where we have three states and two concentration fields. Here
an arrow from one object to another means that the dynamics of the latter object
depend on the former. For example, the dynamics of state 1 is determined by itself
and the fields A and B, whereas the dynamics of field A depend on states 1 and 2.
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Fig. 2 Example of a setting with three dynamic states and two fields.

The system of equations in this case might be

d
dt

(
r1

s1

)
= G1(t, s1, ρA(r1, t),∇ρA(r1, t), ρB(r1, t),∇ρB(r1, t)),

(
r2

s2

)
=

(
Gr

2(t)

Gs
2(t, ρB(r2, t),∇ρB(r2, t))

)

(
r3

s3

)
= G3(t) ≡

(
r0

3

s0
3

)
, (5)

∂tρA = d �ρA − kρA + σA,1(s1)Tr1 S + σA,2(s2)Tr2 S,

0 = d �ρB − kρB + σB,3(s3)Tr3 S.

We see that only the dynamics of state 1 depends on the state itself, which is
reflected in having an ODE for its dynamics, while the dynamics of the other two
states are given in a more explicit form.

3. Underlying mathematical model

In the framework, the complete simulation model consists of a number of state
vectors ui = (rT

i sT
i )T, i = 1, . . . , N, with their dynamics determined by (1) or (2),

together with concentration fields ρ j , j = 1, . . . , M, defined by diffusion equations
(3) or quasi-steady-state equations (4). We assume that for the first Md fields the
dynamics are given by the full diffusion equations and that for the other fields the
dynamics are given by quasi-steady-state equations. This results in field equations
of the form

∂tρ j = Ljρ j +
N∑

i=1

σ j i (si )Tri S, on �, j = 1, . . . , Md (6)

0 = Ljρ j +
N∑

i=1

σ j i (si )Tri S, on �, j = Md + 1, . . . , M (7)

n · ∇ρ j = 0, on ∂�, j = 1, . . . , M, (8)
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where Lj = dj � − kj . Here, we assume that S : � → R is an L2-function with com-
pact support with the property that

∫
�

S(x) dx = 1. This means that we can inter-
pret the σ j i as the production rate of the source attached to state (r, s)i with respect
to field ρ j .

We assume that the dynamics of the first No state vectors are given by ODEs,
i.e., equations of the form (2), and that the dynamics of the other vectors are given
explicitly as a function of time and the fields. When we make use of the notation
for vectors ρ(ri ), ∂xρ(ri ) and ∂yρ(ri ), that are defined by

ρ(ri ) j = ρ j (ri ), ∂xρ(ri ) j = ∂xρ j (ri ), ∂yρ(ri ) j = ∂yρ j (ri ),

this results in

∂t ui = Gi (t, ui , ρ(ri ), ∂xρ(ri ), ∂yρ(ri )), i = 1, . . . , No (9)

(
ri

si

)
=

(
Gr

i (t)

Gs
i (t, ρ(ri ), ∂xρ(ri ), ∂yρ(ri ))

)
, i = No + 1, . . . , N. (10)

In the functions Gi we have to implement the different mechanisms that are
involved in the behavior of the growth cones and targets when they measure the
levels of particular concentration fields and their gradients. To complete the sys-
tem we have to add initial conditions for the states ui and the fields ρ j .

3.1. Moving sources

Our framework also allows for the possibility that guidance molecules are released
by the growth cones themselves, i.e., we allow for moving sources. Although the
biological evidence for this is not so strong as for the release of guidance molecules
by target cells, it is certainly not implausible. Growth cones secrete various chemi-
cals that may operate as chemoattractants and chemorepellents. For example, mi-
grating axons are capable of secreting neurotransmitters (Young and Poo, 1983),
which have been implicated as chemoattractants (Zheng et al., 1994). The treat-
ment of moving sources that respond to guidance molecules they themselves se-
crete is mathematically challenging and will be dealt with in the Appendix.

3.2. Quasi-steady-state approximation

When we run a simulation using the whole system (6–10), we should use a time
integration technique that is suitable for the stiff diffusion equations in combina-
tion with the non-stiff ODEs. If the dynamics of all the diffusion equations are
fast compared to the state-dynamics, then it is possible to approximate the ρ j ,
j = 1, . . . , Md with solutions of the steady-state equations

0 = Ljρ j +
N∑

i=1

σ j i (si )Tri S on �, j = 1, . . . , Md. (6′)
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The original dynamical system, which had as its dependent variables the states ui

and the fields ρ j , is now replaced by a dynamical system that has only the ui as its
dependent variables. Although the system at hand is therefore reduced from an
infinite-dimensional to a finite-dimensional system, evaluation of the right-hand
side still involves solving a infinite-dimensional system. Determination of the val-
ues ρ j (ri ) requires solving Eqs. (6′–7). From a numerical perspective the advantage
is that we do not need a time integrator that can handle the combination of stiff
PDEs and non-stiff ODEs, but we can simply make use of a standard explicit time
integrator.

To investigate the validity of such an approximation we will consider a diffusion
Eq. (11) and its steady-state approximation (12)

{
∂tρ = d �ρ − kρ + S,

ρ(0, x) = ρ0(x)
on R

2 (11)

0 = d �ρ − kρ + S, on R
2. (12)

Some implications of using an approximation like (12) for (11) are discussed in
Krottje (2003a). There the case of self-interaction is considered, meaning that for
a particular field a source is attached to a state and the dynamics of the state is
determined by the same field. Here, we want to consider some more general crite-
ria as to when such a quasi-steady-state approximation might be valid for different
parameter values of the diffusion rate d, the absorption rate k, and the speed a
source moves through the domain v.

Hentschel and van Ooyen (1999) used the approximation on the basis of com-
paring the time scales of growth and diffusion. Here, however, the absorption pa-
rameter plays also a role. To determine criteria that take also k into account we
will follow two approaches. In the first approach we consider the time needed for
setting-up a concentration field. In the second approach we compare the concen-
tration profile produced by a point source moving with constant speed with its
quasi-steady-state approximation.

3.3. Field set-up time

To examine how the time for setting up the concentration field depends on d and k,
we consider the solution of (11) with S being a point source at the origin, S(x, t) =
δ(x), and an initial field ρ = 0 at time t = 0. The solution is rotation symmetric,
making it dependent only on the distance to the source r and the time t , ρ(r, t). In
the Appendix it is shown that it approaches a steady-state solution ρ(r,∞). To see
how fast the field approaches the steady-state field, we consider

c(r, t) = ρ(r,∞) − ρ(r, t)
ρ(r,∞)

,

which represents how close the field is to its limit value. For example, a value
c(r, t) = 0.01, means that at time t the field is for 99% set up, at location r . In the
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Appendix we derive

c(r, t) ∼ 1

2K0

(
r
√

k
d

) e−kt

kt
, (13)

where K0 is a modified Bessel function of the Second Kind (Abramowitz and
Stegun, 1964). This can be used to get an indication of the time scale of the field
dynamics. Such an indicator is important if we want to work with fields in which
the sources do not move through the domain. In case of moving sources, one might
wonder how the speed of a source influences the produced field. To this end we
examine the solution of (11) with a point source that moves with constant speed.

3.4. Field produced by moving source

Consider Eq. (11) with a point source that moves with constant speed v along the
x-axis in positive direction, i.e., S(x, t) = δ(x − vt), with v = (v, 0)T. In the Ap-
pendix it is shown that we get a stable constant profile solution that moves also
with constant speed v.

Here, we want to compare how close the quasi steady-state-approximation so-
lution ρs is to this moving profile solution ρp. It turns out that in the vicinity of the
source the moving profile is smaller than the steady-state-approximation, and on
approaching the location of the source they tend to become equal. In the Appendix
it is derived that the area around the source for which the difference between the
quasi-steady-state approximation ρs and the moving profile solution ρp is smaller
than some threshold, is circular in first-order approximation in the distance to the
source

r � 2e−γE

√
d
k

(
1 + v2

4dk

) 1
2(γ−1)

=⇒ γ �
ρp

ρs
≤ 1. (14)

If we choose γ = 0.99, we get an indication of the radius r of the region around
the source where the difference between the moving profile and the quasi-steady-
state solution is less than about 1%, given the values of the diffusion rate d, ab-
sorption rate k and moving speed v.

3.5. Typical parameter ranges

Based on in vitro data of chick spinal sensory axons, chick retinal axons and leuko-
cyte chemotaxis, Goodhill (1998) gives some estimates for the ranges of some rel-
evant parameters. Table 1 shows a list with parameter ranges. The ratio of the
maximal and minimal concentration for gradient detection ρmax/ρmin can be used
together with the diffusion constant d to find an upper bound on the possible values
of the absorption parameter kj . Assume that the ratio ρmax/ρmin is 100/10−2 = 104

and that we have a point source located at the origin that produces the steady-
state field ρs(r). Then using the assumptions that the maximal distance over which
a cone can be guided Lpath is 1 mm and the growth cone radius equals 0.005 mm,
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Table 1 Parameter ranges.

Quantity Symbol Order of magnitude Units

Diffusion constant dj 10−5 to 10−4 mm2/s
Production rate σ j i 10−7 nMol/s
Minimal concentration for ρmin 10−2 to 10−1 nMol/l

gradient detection
Maximal concentration for ρmax 100 nMol/l

gradient detection
Minimal relative detectable gradient Lcone|∇ρ j |/ρ j 0.01 to 0.02
Growth cone diameter Lcone 10−2 to 2 × 10−2 mm
Growth speed v 10−6 to 10−4 mm/s
Growth range Lpath 10−1 to 1 mm

we find

ρs(0.005)
ρs(1.0)

= K0

(
0.005

√
kj

dj

) /
K0

(√
kj

dj

)
� 104 =⇒

√
kj

dj
� 60. (15)

Here, we used an expression for ρs that is derived in the Appendix. We can
derive a lower bound for the absorption constant kj by considering the ratio
Lcone|∂rρs(r)|/ρs(r) which decreases with r and increases with kj . If we assume
it to be greater than 0.01, for all r ≤ 1, this yields a bound

√
kj/dj ≥ 0.60.

4. Numerical methods

In this section, we will consider the numerical methods we use for solving Eqs. (6–
10). We will start with the spatial discretization for solving the field equations. This
will be followed by a description of the time integration techniques.

For solving the field equations we use an unstructured spatial discretization
based on an arbitrary set of nodes situated in the domain. This approach facilitates
dealing with complex domains, refinement and adaptivity; the latter is needed in
cases where we have moving sources with small support. A thorough description
of the method can be found in Krottje (2003b); we will briefly outline it here.

4.1. Function approximation

Given function values on the nodes, we use a local least-squares approximation
technique to determine for every node a second-order multinomial that is a lo-
cal approximation of the function around that node. For this we use the func-
tion values on a number of neighboring nodes. Because every second-order multi-
nomial can be written as the linear combination of six basis functions, we must
choose at least five neighbors for every node to determine such an approximating
multinomial.

With this procedure a set of function values is mapped onto a set of local ap-
proximations around every node. If we assign to every node a part of the domain
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for which we assume the local approximation to be valid, such that the whole do-
main is covered, this results in a global approximation. For a given set of function
values in a vector w ∈ R

N, we denote the global approximation by F(w) ∈ L1(�),
where L1(�) is the space of integrable real functions defined on � ⊂ R

2.

4.2. Voronoi diagrams

For choosing neighboring nodes of nodes, as well as for assigning parts of the do-
main to the nodes, we use the Voronoi diagram (Fortune, 1987). It assigns to every
node a Voronoi cell, which is the set of points closer to the node than to every
other node, hence dividing the domain and at the same time creating neighbors in
a natural way.

Because a Voronoi diagram extends to all of R
2, we will truncate it by connecting

the nodes on the boundary by straight lines, resulting in a bounded diagram. From
now on all our diagrams will be truncated ones, but we will still refer to them as
Voronoi diagrams. Determination of such a diagram can be done in O (N log(N))
operations, where N is the number of nodes (de Berg et al., 2000). We store the
diagram in a totally disconnected edge list (de Berg et al., 2000), so that searching
neighboring nodes for every node becomes a process of O (N) operations.

4.3. Variational problem

Solving equations of the form (7) can be done by solving the variational problem
of minimizing A(w,w) − L(S, w) over w ∈ H1 (Atkinson and Han, 2001; Krottje,
2003b), where

A(v,w) =
∫

�

1
2 d ∇v · ∇w + 1

2κvw dx, (16)

L(S, w) =
∫

�

Sw dx. (17)

A direct discretization of this problem is to minimize A(F(w), F(w)) −
L(F(S), F(w)), over all w ∈ R

N, where S ∈ R
N is the vector of S-values at the

nodes. It can be shown (Krottje, 2003b) that sparse matrices Â and L̂ exist such
that 1

2 wT Âw = A(F(w), F(w)) and ST L̂w = L(F(S), F(w)). If Â is non-singular
the discrete problem has a unique solution w = Â−1S. With the algorithm for find-
ing the Voronoi diagram comes a lexicographical ordering of the nodes that will
give the sparse matrices a band structure, which is advantageous when solving the
system directly using an LU-decomposition.

Convergence tests show that the solution is second-order convergent in the L2-
norm, with respect to the maximum distance between neighboring nodes (Krottje,
2003b).

4.4. Choosing nodes

To distribute nodes appropriately over a domain we make use of Lloyd’s algo-
rithm (Du et al., 1999). This algorithm is based upon the determination of Voronoi
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diagrams and the process of shifting nodes to centroids of Voronoi cells. An alter-
nating sequence of these two operations distributes the nodes equally over the
domain, in the sense that distances between neighbors will tend to become equal
throughout the diagram.

To achieve refinement at certain points, we use a variation of Lloyd’s algorithm.
Here, after shifting the nodes to their centroids, an extra shift in the direction
of neighboring nodes is added. To determine for a particular node which of its
neighbors are attracting this node, all nodes are given an integer type. Nodes will
then be attracted to the neighbors with higher type than their own type.

To get refinement around a certain point in the domain, a node is fixed at that
point and several rings of decreasing node type are defined around it. The ex-
tended Lloyd’s algorithm then moves nodes around, which results in a refinement
around the fixed node.

In contrast to methods where refinement is based on local error estimation, here
refinement takes place around the source locations. This is done because we know
in advance that only at those locations, and possibly at the boundary, refinement
is required for optimal accuracy. Doing it in this way instead of using an error
estimation process will speed up the refinement process.

Having discussed the spatial discretization method we will now focus on the time
integration. We will consider three different cases that can be distinguished by the
field dynamics in the model.

4.5. Time integration with static fields

We first consider the case with static fields only. In this case we only have ODEs
which need the solutions of the fields for the evaluation of their right-hand sides.
These fields are determined at the start of the simulation by solving the elliptic
equations, giving the approximations to the field solutions ρ1, . . . , ρM. After this
the growth cone dynamics can be solved using a standard explicit ODE solver.

For the fields to be static we need a number of static states that make up the
sources of the fields. Let us assume that of all the states only the last Ns are static,
i.e., (ri , si ) = constant, and that the rest of the states do not influence the field
dynamics. Thus, we must have

σ j i ≡ 0, for all

{
j = 1, . . . , M, (all fields)

i = 1, . . . , N − Ns (all dynamic states).
(18)

Then given the Ns static positions ri , i > N − Ns , we have to solve

si = Gs
i (ρ(ri ), ∂xρ(ri ), ∂yρ(ri )), i = N − Ns + 1, . . . , N. (19)

Ljρ j +
N∑

i=N−Ns+1

σ j i (si )Tri S = 0, on �, (20)

n · ∇ρ j = 0, on ∂�, j = 1, . . . , M.
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This system can be solved by solving first the field Eq. (20). Using the inverse
operators of Lj with respect to the boundary conditions, we get

ρ j = −
N∑

i=N−Ns+1

σ j i (si )L−1
j Tri S, on �. (21)

When combined with Eq. (19), evaluation of these field solutions and their gradi-
ents in the given ri , results in a closed algebraic system with respect to si , ρ j (ri ),
∂xρ j (ri ) and ∂yρ j (ri ). We will assume that this nonlinear system can be solved,
although the solvability depends on the ri and the functions σ j i .

Therefore, to solve numerically the fields ρ j we first have to solve numerically
the fields L−1

j Tri S, using the spatial discretization above. After evaluation of these
fields (i.e., their numerical approximations) and their derivatives in all locations ri ,
the algebraic system can be built by substituting (21) into (19). We can solve this
system by using, for example, Newton iterations and use the si to determine the
solutions ρ j .

Once the fields and static states (i > N − Ns) are solved we can start solving the
non-static states from the equations

∂t ui = Gi (t, ui , ρ(ri ), ∂xρ(ri ), ∂yρ(ri )), i = 1, . . . , No (22)

(
ri

si

)
=

(
Gr

i (t)

Gs
i

(
t, ρ(ri ), ∂xρ(ri ), ∂yρ(ri )

)
)

, i = No + 1, . . . , N − Ns . (23)

where No was defined above Eq. (9). For solving the ODEs we choose an explicit
integration scheme because the ODEs are non-stiff (and nonlinear). We will use
the classical fourth-order RK (see, for example Hundsdorfer and Verwer, 2003)
for this. Note that for the function evaluations we have to determine local approx-
imations of the fields and their gradients. A slight difficulty arises here because the
local least-squares approximations are discontinuous from one Voronoi cell to an-
other. Therefore, if the integration process crosses the edge of a cell during a time
step, there will be loss of order with respect to the size of the time step. To prevent
this we make sure that during a time step we use for every state only one local field
approximation for all function evaluations used in the scheme. Because the local
field approximation is a multinomial the order of the scheme will be retained.

4.6. Quasi-steady-state approximation

When using quasi-steady-state approximations for the fields, the system we have
to solve is

∂t ui = Gi (t, ui , ρ(ri ), ∂xρ(ri ), ∂yρ(ri )), i = 1, . . . , No (24)

(
ri

si

)
=

(
Gr

i (t)

Gs
i (t, ρ(ri ), ∂xρ(ri ), ∂yρ(ri ))

)
, i = No + 1, . . . , N, (25)

Ljρ j + ∑N
i=1 σ j i (si )Tri S = 0, on �,

n · ∇ρ j = 0, on ∂�,

}
j = 1, . . . , M. (26)
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Here we use, as in the previous case, an explicit time integrator for the ODEs in
(24). To evaluate the right-hand side of the equations we need to solve the fields ρ j

for given values of (ri , si )n, i = 1, . . . , No, and tn, where n denotes the time level. To
find these we have to determine the fields again by solving a non-linear algebraic
system as is done in the case with static fields. Here, the system will have as its
unknowns the ρ j (ri ), ∂xρ j (ri ) and ∂yρ j (ri ) for all combinations of fields ρ j and
states ri , together with all si , for i > No.

In contrast to the case with static fields, every function evaluation in the right-
hand side of (24) requires solving Eq. (26) and evaluation of the resulting solution
fields and their gradients. Also, because the source terms in (26) depend on the
states ui , it may be necessary to redefine the nodes used to solve the field equations.
Therefore, solving such a system is computationally much more expensive than
solving a system with static fields only.

4.7. Full system

Solving the full system, i.e., Eqs. (6–10), requires a numerical method that can deal
with both the nonlinear, non-stiff ODEs and the stiff diffusion equations. Verwer
and Sommeijer (2001) use for a system similar to the combination of (6) and (9)
the RKC method, which is explicit and can deal with moderately stiff systems due
to a long narrow stability region around the negative real axis. Lastdrager (2002)
used a Rosenbrock method with approximate Jacobians for the same system so
that effectively the field equations are integrated implicitly and the state equations
explicitly, as with IMEX (IMplicit-EXplicit) methods (Hundsdorfer and Verwer,
2003).

We use an Runge–Kutta IMEX scheme, in particular an IMEX-midpoint
scheme, which can be seen as a combination of an implicit and an explicit mid-
point step. For a system ẋ = f1(t, x) + f2(t, x) it is given by

xs = xn + 1
2
τ f1

(
tn + 1

2
τ, xs

)
+ 1

2
τ f2(tn, xn),

(27)

xn+1 = 2xs − xn + τ

(
f2

(
tn + 1

2
τ, xs

)
− f2(tn, xn)

)
,

where the s in xs refers to the intermediate stage. For our system the part f1,
which is treated implicitly, contains the linear operators Li from Eq. (6), while
the explicit part f2 contains the source terms of Eq. (6) and the functions Gi from
Eq. (9). This is a second-order time integration method and the implicit part, i.e.,
the implicit midpoint method, is A-stable. Also, using this scheme for the systems
at hand never revealed any stability problems.

In the next section, we will show some example models. Although our frame-
work can deal with non-static fields (as discussed earlier), in these examples we
will consider only cases in which the fields are static.
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5. Simulation examples

In this section, we will discuss simulations of some example models. We want to
stress that the models used here are still simple and only serve to show the different
possibilities of our framework. To model the growth cones and the sources of the
guidance molecules, such as target cells, we have to choose state vectors (ri , si )
that characterize these objects and accompanying functions G that describe the
dynamics through Eqs. (1) and (2).

5.1. Growth cone model

As a first example of a growth cone model we consider growth cones characterized
by three-dimensional state vectors. To the position ri = (x, y) we add a variable
representing the orientation angle si = φ ∈ [0, 2π) of the growth cone. This gives
our model growth cone a growth direction, which it has to adjust in order to steer.
It gives the opportunity to build in some kind of ‘stiffness’, the inability to undergo
instant changes in growth direction.

In order to describe the dynamics of the growth direction we need to define a
differential equation. We will assume that the growth speed is constant, given as
v, and that the cone grows with this speed in the direction given by the orientation
angle φ, i.e., ṙi = (v cos(φ), v sin(φ)). For the dynamics of φ, we assume that it is
continuously compared with some ideal direction φg , which we will assume to be a
linear combination of the sensed gradients of the fields ρ j evaluated at location ri ,

φg = arg

⎛
⎝ N∑

j=1

λ j (ρ(ri ))∇ρ j (ri )

⎞
⎠ , (28)

with ‘arg’ the function that returns the angle between the argument and the pos-
itive x-axis. Here, the real functions λ j determine the sensitivity to each of the
fields. A positive λ j will cause the cone to be attracted by the field ρ j , while a
negative λ j causes repulsion.

To formulate an ODE for φ that depends on the value of φg , we use the map-
ping φ → (sin(φ), cos(φ)) to view the growth directions as two-dimensional unit
vectors, z and zg , respectively. The ideal direction zg can be split in a part parallel
to the growth direction z and a part that is perpendicular to it, zg = z‖ + z⊥. An
illustration of this is shown in Fig. 3. We assume that ż = (v/
)z⊥. Returning to
angles φ and φg this results in φ̇ = v/
 sin(φg − φ).

Here, the parameter 
 is a measure for the smallest circle the growth cone
can make while turning. This latter fact can be understood by realizing that the
maximal value of φ̇ is v/
. If we consider a solution where φ̇ is maximal we get,
with r = (x, y),

d
dt

(
x
y

)
=

(
φ̇
 cos(φ)

φ̇
 sin(φ)

)
=⇒

(
x
y

)
=

(

 sin(φ(t)) + x0

−
 cos(φ(t)) + y0

)
,
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Fig. 3 An example configuration of the vectors z and zg .

meaning that the solution path of (x(t), y(t)) is part of the circle with radius 
 and
center (x0, y0). Using the framework the dynamics of state (ri , si ) are described by

d
dt

(
ri

si

)
= Gi (t, ri , si , ρ(ri ), ∂xρ(ri ), ∂yρ(ri ))

=

⎛
⎜⎝

v cos(si )

v sin(si )

v/
 sin
(

arg
( ∑N

j=1 λ j (ρ(ri ))∇ρ j (ri )
) − si

)

⎞
⎟⎠ .

(29)

5.2. Field sources

In the examples we will assume that the fields are produced by sources that are not
moving and not changing their behavior in time. Therefore, it will serve to include
in their state vectors only their positions ri ∈ R

2 and keep them constant in time
ri = Gr

i (t) ≡ r0
i .

For every source we take a bell shape function S that is translated with ri to give
the function Tri S,

(Tri S)(x) =

⎧⎪⎨
⎪⎩

2π

(π2 − 4)w2
cos2

( π

2w
|x − ri |

)
, |x − ri | ≤ w,

0, otherwise,
(30)

where w denotes the radius of the source. The σ j i are constants describing the
production rate of the source i , with respect to field j . This is reflected in the fact
that

∫
�

σ j i (Tri S)(x) dx = σ j i .

5.3. Example 1. Axon guidance in a simple concentration field

We will now consider an example simulation, with a single concentration field and
a single growth cone. For the domain � we take the unit circle and put a source at
(0.5, 0). This source produces at a production rate σ11 = 1.0 × 10−4 a field ρ1 with
diffusion coefficient d1 = 1.0 × 10−4 and absorption parameter k1 = 1.0 × 10−4.
For the width of the source we take w = 0.02.
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The growth cone is modeled by using system (29) with the functions λ1 set
to λ1 ≡ 1, which means that φg = arg ∇ρ1. Further we use the parameter values
v = 1.0 × 10−5 and 
 = 0.02.

Thus, the total system we have to solve becomes

d1 �ρ1(x) − k1ρ1(x) + σ11Tr1 S(x) = 0, ∀x ∈ �,

n(x) · ∇ρ1(x) = 0, ∀x ∈ ∂�,

r1 = (0.5, 0)

d
dt

(
r2

s2

)
=

⎛
⎜⎝

v cos(s2)

v sin(s2)

v/
 sin (arg (∇ρ1(r2)) − s2)

⎞
⎟⎠

r2(0) = (x0, y0),
s2(0) = φ0,

v = 1.0 × 10−5,


 = 0.02

(31)

In the simulation we solved the diffusion profile using 1514 nodes with six attract-
ing rings and two non-attracting rings around the source location. This gives a
refinement such that the node density inside the source support is about 100 times
higher than far away from the source. In Fig. 4 the distribution of nodes is dis-
played together with the field solution that was obtained.

Using the field solution we solved the paths of 50 growth cones, where we chose
the start positions of the cones (x0, y0) randomly inside an initial area. For this
we took a circle with radius 0.1 centered at (−0.5, 0). The initial growth directions
φ0 were chosen randomly from [0, 2π). With the integration done from t = 0 to
t = 1.0 × 105, we obtained the set of axon paths shown in the left panel of Fig. 5.

If we compare this result with pictures of similar experiments with real axon
growth (Dodd and Jessell, 1988), we see that real axons often start to grow away
from the initial area before they seem to react to the attracting field. This could
mean that real axons have a higher stiffness than the stiffness we used in the left
panel of Fig. 5. We therefore increased the stiffness by setting 
 = 0.1. This results
in the paths shown in the middle panel of Fig. 5. While this gives a somewhat better
result, it seems not realistic to increase the stiffness this far, because growth cones

Fig. 4 Node distribution (left) and solution of the concentration field (right).
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Fig. 5 Paths of axons growing towards a target (left). Paths of axons that have a higher stiffness
(middle). Paths of axons that sense a repellent field secreted in the area from where they start
growing (right).

are capable of making sharper turns (turning angles up to 90◦; Song et al., 1998,
Ming et al., 2001) than those seen in the middle panel of Fig. 5.

Another option would be to assume that the neurons in the initial area excrete a
repellent. To implement this we define a new field ρ2, with a source located at the
location of the initial area rb = (−0.5, 0). The definition of φg has to be extended
with an extra repellent term; we choose φg = arg(∇ρ1 − ∇ρ2). The resulting system
now is

d1 �ρ1(x) − k1ρ1(x) + σ11Tr1 S(x) = 0, ∀x ∈ �,

n(x) · ∇ρ1(x) = 0, ∀x ∈ ∂�,

d2 �ρ2(x) − k2ρ2(x) + σ23Tr3 S(x) = 0, ∀x ∈ �,

n(x) · ∇ρ2(x) = 0, ∀x ∈ ∂�,

r1 = (0.5, 0)

d
dt

(
r2

s2

)
=

⎛
⎜⎝

v cos(s2)

v sin(s2)

v/
 sin (arg (∇ρ1(r2) − ∇ρ2(r2)) − s2)

⎞
⎟⎠

r3 = (−0.5, 0)

r2(0) = (x0, y0),
s2(0) = φ0,

v = 1.0 × 10−5


 = 0.02

(32)

The paths of the growth cones are shown in the right panel of Fig. 5. This gives
paths more similar to the ones observed in the experiments.

5.4. Example 2. Axon guidance in a complex concentration field

We will now consider a variation of the previous example where the domain has
been changed from a simple circular domain to a more complex domain with four
holes in it. These holes might represent blood vessels or cells where the axons have
to grow around and that are impenetrable to the diffusive guidance molecules.

In this simulation we again use system (31) to model 50 growth cones with
randomly chosen initial state vectors (x0, y0, φ0) ∈ [−0.4,−0.2] × [−0.5, 0.5] ×
[0, 2π]. For the field, 2502 nodes were used with refinement around the outer as
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Fig. 6 Left: Field on a domain with holes. Right: Axon paths produced by system (31).

well as the inner boundaries and around the source location. The results of the
simulation are shown in Fig. 6.

Although the axons grow nicely around the holes, there is actually no mechani-
cal force in the model that prevents the growth cones from entering the holes. Here
the growth cone dynamics alone was sufficient to keep the growth cones outside
the holes. However, if 
 is bigger, the growth cones will need more space to turn,
and might enter the holes if not stopped by a hard boundary.

5.5. Example 3. Axon guidance with internal growth cone dynamics

In this example we will extend our cone dynamics by adding another variable. In
the previous examples the ideal direction, based on the sensed gradients, is directly
translated into a change of direction. In real growth cones, however, signaling
pathways inside the growth cone are responsible for this translation. We now in-
corporate such signaling pathways and represent it by a single variable α ∈ [−1, 1],
where α < 0 means steering to the left and α > 0 steering to the right. The growth
cone translates the ideal direction into the signaling pathway dynamics in a way
that is similar to the way that the ideal direction is translated into the direction
dynamics in the previous examples.

The state consists now of (x, y, φ, α) ∈ R
2 and its dynamics are given by

d
dt

⎛
⎜⎜⎜⎝

x

y

φ

α

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v cos(φ)

v sin(φ)

−vα/


c(sin(φg − φ) − α)

⎞
⎟⎟⎟⎠ , (33)

with φg again defined as in (28). Here, parameters are as in the previous exam-
ple and c is a parameter that determines how fast the steering dynamics is. If the
dynamics is fast, i.e., c is big, we have α ≈ sin(φg − φ), resulting in the previous
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Fig. 7 Wiggly axon paths produced by system (34).

model. But if c is small, a kind of zig-zag behavior emerges (Fig. 7) that is also
observed in some experiments (Ming et al., 2002). In Ming et al. (2002), this be-
havior was thought to occur as a result of alternating phases of receptor sensitiza-
tion and desensitization. Our simulation, without such receptor adaptation, shows
that oscillatory growth cones paths can already arise as a result of an inertia of the
steering dynamics.

For completeness, the total system in this case is

d1 �ρ1(x) − k1ρ1(x) + σ11Tr1 S(x) = 0, ∀x ∈ �,

n(x) · ∇ρ1(x) = 0, ∀x ∈ ∂�,

r1 = (0.5, 0)

d
dt

(
r2

s2

)
=

⎛
⎜⎜⎜⎝

v cos((s2)1)

v sin((s2)1)

−v(s2)2/


c
{
sin

(
arg

(∇ρ1(r2)
) − (s2)1

) − (s2)2
}

⎞
⎟⎟⎟⎠

r2(0) = (x0, y0),

s2(0) = (φ0, α0),

v = 1.0 × 10−5


 = 0.02.

(34)

5.6. Example 4. Axon guidance with membrane-bound guidance molecules
in topographic map formation

In our last example we consider a more complicated model of a phenomenon that
is called topographic mapping (van Ooyen, 2003). Many neuronal connections are
made so as to form a topographic map of one structure onto another. That is,
neighboring cells in one structure make connections to neighboring cells in the
other structure. An example of such a map is the direct projection of the retina
onto the optic tectum in the brain of non-mammalian vertebrates (Gaze, 1958).
One explanation for the formation of topographic maps that has received strong
experimental support is that it is based on the matching of gradients of recep-
tors and their ligands (O’Leary and Wilkinson, 1999; Wilkinson, 2001). For the
retinotectal projection, there is a gradient across the retina in the number of Eph
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receptors on the growth cones of the retinal neurons. A similar but opposite
gradient is found across the tectum in the number of membrane-bound ephrin
molecules (the ligands for Eph receptors) on the tectal neurons. Axons grow out
so that growth cones with a low number of receptors come to connect to tectal cells
with a high number of ligand molecules, and vice versa.

A simple model for this phenomenon is the following (see also Honda et al.,
1998). We use essentially model (29), but we extend it with two extra variables, βx

and βy, that represent the levels of two kinds of receptors. These βx and βy remain
constant during growth and vary with respect to the initial location r0 = (x0, y0).
We take for these

βx = exp(1.39x0 + 1.18) and βy = exp (1.39y0 + 0.35). (35)

We will assume that there are five fields of which three are diffusive fields and
two are fields of membrane-bound ligands. Fields ρ1, ρ2 and ρ3 are produced
by guidance cells located at r1 = (−0.1, 0), r2 = (0.85, 0) and r3 = (0.3, 0.85), re-
spectively. We use the same diffusion rate d = 1.0 × 10−4 and the absorption rate
k = 1.0 × 10−4 as in the previous examples. The two fields of membrane bound
ligands ρ4 and ρ5 are described by explicit functions that are given by

ρ4(x, y) = exp(−1.39x + 0.21) and ρ5(x, y) = exp(−1.39y + 0.14). (36)

We will assume that the dynamics of the growth cones occurs in two phases. In
the first phase the growth cones are attracted by field ρ1 and they grow toward the
guidance cell located at r0. Once they have reached the guidance cell, which we
will formalize by (Tr1 S)(r) > 0, they switch their behavior and phase two will start.
The dynamics of the growth cones during the first phase are given by

d
dt

⎛
⎜⎜⎜⎜⎝

x
y
φ

βx

βy

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

v cos(φ)

v sin(φ)

v/
 sin(φg − φ)

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, with φg = arg
(
∇ρ1(r)

)
. (37)

For the dynamics of the growth cones in phase two we need assumptions on
the influence of the receptors and ligands on the growth. The basic assumption
is the following. For each direction, i.e., x- or y-direction, we have a couple of
receptor and ligand pairs. For growth in either of these directions it is needed that
the concentration of the ligand in the neighborhood of the cone is above a certain
level, which is determined by the receptor density on the growth cone. We will
assume that growth in the x-direction is determined by the product cx = βxρ4(r)
(and similar cy = βyρ5(r) for the y-direction) A cx � 1 means strong inhibition
of growth in the x-direction and cx � 1 means no inhibition. The dynamics is the
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same as in the first phase, but now with

φg = arg(Sgm20(cx)∇ρ2(r) + Sgm20(cy)∇ρ3(r)). (38)

Here the function Sgmn is defined by Sgmn(x) = xn/(1 + xn). Finally, we will as-
sume that the growth is completely inhibited if both cx < 0.8 and cy < 0.8.

To summarize, the total system is given by

dj �ρ j (x) − kjρ j (x) + σ j j Tr j S(x) = 0, ∀x ∈ �, j = 1, . . . , 3

n(x) · ∇ρ j (x) = 0, ∀x ∈ ∂�,

ρ4(x) = exp(−1.39x + 0.21), ∀x ∈ �,

ρ5(x) = exp(−1.39y + 0.14), ∀x ∈ �,

r1 = (−0.1, 0)

r2 = (0.85, 0)

r3 = (0.3, 0.85)

d
dt

(
r4

s4

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

v cos((s4)1)

v sin((s4)1)

v/
 sin (arg (φg) − (s4)1)

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

r4(0) = (x0, y0),

s4(0) = (φ0, βx, βy),

βx = exp(1.39x0 + 1.18),

βy = exp(1.39y0 + 0.35),

v = 1.0 × 10−5,


 = 0.02

(39)

phase 1: φg = arg
(
∇ρ1(r4)

)
, if (Tr1 S(r) > 0) go to phase 2.

phase 2: φg = arg
(

Sgm20

(
βxρ4(r4)

)∇ρ2(r4) + Sgm20

(
βyρ5(r4)

)∇ρ3(r4)
)

,

if (βxρ4(r4) < 0.8 or βyρ5(r4) < 0.8) ready.

In Fig. 8 we see the fields in a simulation of the model of topographic mapping.
The three upper panels show the three diffusive fields ρ1, ρ2 and ρ3.

In Fig. 9 the axons paths are shown. The left panel shows the paths of 200 growth
cones that started at the left with randomly chosen initial positions (x0, y0) and
orientations φ0. Clearly all growth cones are attracted by the guidance cell in the
middle. Having reached this cell they change their behavior and gain attractivity
to the fields ρ2 and ρ3. This attractivity is steered by the fields ρ4 and ρ5, which also
determine when growth is completely inhibited.

To visualize the conservation of spatial order we have color coded the initial
locations and end locations of the paths, i.e., begin and end points of a path have
the same color. The result of this is displayed in the left panel and it clearly shows
that the ‘A’ is transferred from the initial area (at the left) to the final area (at the
right).
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Fig. 8 Fields in the example of topographic mapping. The three fields in the top row are diffusive
fields, and the ones in the bottom row are fields of membrane-bound ligands.

The combination of the membrane-bound ligand fields ρ4 and ρ5 with the recep-
tor densities βx and βy determines what the topographic mapping will look like.
Using a model like this for exploring different possibilities for the concentration
fields can give us more insight into the forms of the fields and mechanisms involved
in topographic map formation.

Fig. 9 Axon paths in the example of topographic mapping. Left: The axons start at the left, and
then grow to the central point, from where they diverge to innervate the target area. Right: To
visualize that spatial order is conserved when axons innervate their target area, the axons are
divided into two groups (grey and black dots) in such a way that the initial positions of the axons
labeled with the black dots form the pattern ‘A’.
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6. Discussion

In this paper, we have presented a framework for modeling axon guidance. Un-
like for the study of electrical activity in neurons and neuronal networks, such
a general framework did not exist. Our framework allows for the relatively
straightforward and fast modeling and simulation of axon guidance and its un-
derlying mechanisms. For example, mechanisms that ‘translate’ concentration lev-
els of guidance molecules (or gradients thereof), measured at the location of the
growth cone, into growth speed, growth direction and sensitivity for particular con-
centration fields can easily be incorporated. A major challenge in the study of axon
guidance is to understand quantitatively how the many molecules and mechanisms
involved in axon guidance act in concert to generate complex patterns of neuronal
connections. The framework we have developed contributes to this challenge by
providing a general simulation tool in which a wide range of models can be imple-
mented and explored.

Our framework has three basic ingredients: the domain, the concentration fields
and the states. The domain models the physical environment where the neu-
rons, axons, and fields live in; the domain can have a complicated geometry
with piecewise smooth boundaries and holes. The fields are defined on the do-
main and represent the time varying concentration fields of guidance molecules
that are subject to diffusion and absorption. The states model the growth cones
and targets cells and consist of finite-dimensional vectors for which the dynam-
ics are given in the form of ODEs that model the mechanisms involved in axon
guidance.

Specific numerical methods have been developed for solving the systems of
equations that typically arise in models of axon guidance. With respect to time
integration of the full system, a method is needed that can handle the combina-
tion of stiff diffusion equations (describing the concentration fields) and non-stiff,
nonlinear differential equations (describing the states). For this a second-order
Runge–Kutta IMEX scheme is used. In case of static fields or a quasi-steady-state
approximation an explicit time integrator will suffice, for which we use the classical
fourth-order Runge–Kutta method.

The spatial discretizations required for solving the elliptic field equations that
arise after discretization in time are based on arbitrary node sets. Voronoi dia-
grams are used for the selection of suitable node sets as well as for the discretiza-
tion of the equations. To speed up the node selection process, refinement and
adaptivity of the discretization are based only upon the location of the highly lo-
calized sources.

We have implemented the framework and the numerical algorithms in a set
of Matlab programs. In these programs one can simulate a wide range of mod-
els by defining appropriate Matlab data-structures and solve them by applying
the spatial and temporal numerical solvers. At the moment, the code is typ-
ical research code without extensive documentation, but we aim to create a
more user-friendly version that can be made available to the wider research
community.

Possible extensions of our framework include the incorporation of randomness
in the guidance of the axons and the possibility that boundaries (of impenetrable
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holes, for example) can produce guidance molecules. The latter extension would
make it possible to model also tissues, rather than individual cells, that attract or
repel axons.

Appendix

Field set-up time

To examine how the time for setting up the field depends on d and k, we consider
the solution of (3) with a point source at the origin, S(x, t) = δ(x), and an initial
field ρ = 0 at time t = 0. The field will be radially symmetric, and the concentra-
tion, which depends only on the radius r and the time t , is

ρ(r, t) =
∫ t

0

e−
(

ks+ r2
4ds

)

4πds
ds

t→∞−→ 1
2πd

K0

(
r

√
k
d

)
, (40)

where the limit of the solution is the steady-state solution, which satisfies (7), and
K0 is a modified Bessel function of the Second Kind (Abramowitz and Stegun,
1964). To see how fast the field approaches the steady-state field, we will investi-
gate

c(r, t) = ρ∞(r) − ρ(r, t)
ρ∞(r)

= 1

2K0

(
r
√

k
d

)
∫ ∞

2
r

√
dkt

e− r
2

√
k
d (s+ 1

s )

s
ds,

which represents how close the field is to its limit value. For example, a value
c(r, t) = 0.01, means that at time t the field is for 99% set up, at location r . Using
an asymptotic expansion for large t for the integral, we find that

c(r, t) ∼ 1

2K0

(
r
√

k
d

) e−kt

kt
. (41)

This can be used to get an indication of the time scale of the field dynamics.
Such an indicator is important if we want to work with fields of which the sources
do not move through the domain. In case of moving sources, one might wonder
how the speed of a source influences the produced field. To this end we examine
the solution of (3) with a point source that moves with constant speed.

Field produced by moving source

Consider Eq. (3) with a point source that moves with constant speed v along the x-
axis in positive direction, i.e., S(x, t) = δ(x − vt), with v = (v, 0)T. If we make the
‘ansatz’ that the solution ρ(x, t) is the sum of a solution profile ρ̂ that moves with
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constant speed with the source and a ‘residual’ solution η,

ρ(x, t) = ρ̂(x − vt) + η(x, t),

we can rewrite (11) to

∂

∂t
η(x, t) = d �ρ̂(x − vt) + v · ∇ρ̂(x − vt) − kρ̂(x − vt)

+ δ(x − vt) + d �η(x, t) − kη(x, t). (42)

If ρ̂ satisfies the equation

d �ρ̂(x) + v · ∇ρ̂(x) − kρ̂(x) + δ(x) = 0, (43)

we see that Eq. (11) will turn into a equation for η with only diffusion and absorp-
tion. Therefore, η will damp out for long times, resulting in ρ(x, t) ≈ ρ̂(x − vt).
The solution of (43) in polar coordinates (r, φ); x = r cos(φ), y = r sin(φ), is given
by

ρ̂(r, φ) = 1
2πd

exp

(
−

√
k
d

(
v

2
√

kd

)
r cos(φ)

)

× K0

⎛
⎝

√
k
d

⎛
⎝

√(
v

2
√

kd

)2

+ 1

⎞
⎠ r

⎞
⎠ . (44)

This solution we will compare to the steady-state solution of (12)

ρs(r) = 1
2πd

K0

(
r

√
k
d

)
, (45)

where the subscript s refers to the steady state. So we will consider the quotient
function q(r, φ) = ρ̂(r, φ)/ρs(r) and we want to investigate the geometry of the
region where this quotient is close to 1. For example, given a value γ > 1, and
slightly bigger than one, we could consider the region {(r, φ) | γ −1 ≤ ρ̂/ρs ≤ γ }.
Using a rescaling of s = r

√
k/d and α = v/(2

√
dk), we get

q = ρ̂

ρs
= e−αs cos(φ) K0((

√
1 + α2)s)

K0(s)
.
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To analyze q we use the asymptotic expansions of K0 and K1, both modified
Bessel functions of the Second Kind,

K0(x) = ln(2) − ln(x) − γE + O
(
x2) , K1(x) = 1

x
+ O (x) (x ↓ 0), (46)

K0(x) ∼
√

π

2x
e−x, K1(x) ∼

√
π

2x
e−x (x → ∞), (47)

where γE is Euler’s constant (Abramowitz and Stegun, 1964).
Close to the source, q is close to 1 as follows from lims↓0 q(s, φ) = 1, which can

be seen by using the expansion K0 around 0. To find the behavior around 0, we
will examine the derivative of q with respect to s,

∂sq = q

{
K1(s)
K0(s)

−
√

1 + α2
K1(

√
1 + α2s)

K0(s)
− α cos(φ)

}
.

This is equal to q times some factor that is increasing with s and has limit values
−∞ at s = 0 and 1 − √

1 + α2 − α cos(φ) at s = ∞. For φ = 0 this limit is negative,
while for φ = π this limit is positive. Therefore, there is an interval [−φt , φt ] with
φt ∈ [0, π] of possible choices of φ for which q decreases with s while keeping φ

constant.
For φ outside this interval, i.e., φ ∈ (−π,−φt ) ∪ (φt , π], there is an sφ > 0, with

∂sq(sφ, φ) = 0, such that q as a function of s decreases for s ∈ (0, sφ) and increases
for s ∈ (sφ,∞). The function φ → sφ itself is decreasing on (φt , π] with limφ↓φt sφ =
∞. To find φt ∈ [0, π ], we solve

1 −
√

1 + α2 − α cos(φt ) = 0, =⇒ cos(φt ) = 1 − √
1 + α2

α
< 0,

where the last inequality follows from the fact that α > 0. Therefore, φt ∈ ( 1
2π, π),

which is increasing with α and has limits φt = 1
2π with α ↓ 0 and φt = π for α → ∞.

We can now conclude that close to the origin there is some region where we
have q ≤ 1. To find an estimate for the size of this region we will use the asymptotic
expansion of q for small s,

q = 1 +
1
2 ln(1 + α2)

ln(s) − ln(2) + γE
+ O (s) .

Neglecting the higher-order terms and setting this equal to γ gives

s = 2e−γE (1 + α2)
1

2(γ−1) =⇒ r = 2e−γE

√
d
k

(
1 + v2

4dk

) 1
2(γ−1)

. (48)

If we choose γ = 0.99, we get an indication for the region around the source
where the difference between the moving profile and the quasi-steady-state
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solution is smaller than 1%, given the values of the diffusion rate d, absorption
rate k and moving speed v.
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