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Abstract

Increasing reliance on electronic medical records at large medical centers provides unique

opportunities to perform population level analyses exploring disease progression and etiol-

ogy. The massive accumulation of diagnostic, procedure, and laboratory codes in one place

has enabled the exploration of co-occurring conditions, their risk factors, and potential prog-

nostic factors. While most of the readily identifiable associations in medical records are

(now) well known to the scientific community, there is no doubt many more relationships are

still to be uncovered in EMR data. In this paper, we introduce a novel finding index to help

with that task. This new index uses data mined from real-time PubMed abstracts to indicate

the extent to which empirically discovered associations are already known (i.e., present in

the scientific literature). Our methods leverage second-generation p-values, which better

identify associations that are truly clinically meaningful. We illustrate our new method with

three examples: Autism Spectrum Disorder, Alzheimer’s Disease, and Optic Neuritis. Our

results demonstrate wide utility for identifying new associations in EMR data that have the

highest priority among the complex web of correlations and causalities. Data scientists and

clinicians can work together more effectively to discover novel associations that are both

empirically reliable and clinically understudied.

Introduction

Electronic medical record (EMR) systems have been increasingly leveraged for clinical and

medical research[1–6]. EMR data provides large sample sizes and information on a wide range
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of conditions that impact broad populations. EMR systems contain a rich variety of data

including lab results, medications, clinical notes, administrative and billing codes, and images.

In this work, we introduce a tool, PheDAS (Phenome-Disease Association Study), to perform

association studies and identify disease comorbidities across time in EMR data.

Association studies are typically designed to learn the strength of association between one

fixed variable and a large set of potentially correlated variables. An early example was the

genome-wide association study (GWAS), which identifies genetic variants associated with a

specified phenotypic condition[7]. The phenome-wide association study (PheWAS)[8]

reverses the direction to compute the association between many phenotypic conditions and a

specific genetic variant. Other studies adopt the design to identify associations between non-

genetic variables based on information extracted from EMR. For example, comorbidities of

Non-Hodgkin’s Lymphoma were found by computing its associations with a set of potential

comorbidities extracted from a Medicare claims database[9]. A disease-wide comorbidity map

similar to the molecular concept map (MCM) was estimated using an association study design

with data extracted from an EMR[10]. Holmes et al used a combination of discharge summa-

ries, diagnostic codes, PubMed database, and Wikipedia articles to identify co-morbidities in

three rare diseases[11].

Two of the most important challenges in the design and analysis of association studies are

identifying which of the statistical significant results have clinical relevance[12]. An obstacle

for traditional statistical methods in these large observational studies is the problem of multiple

testing. Because a large number of associations are examined at the same time, the probability

of making at least one false claim of significance (the “family-wise error rate”) grows with the

number of examinations. Previous association studies have employed traditional multiple

hypothesis corrections to control either the family-wise error rate or the false discovery rate,

such as Bonferroni or Benjamini-Hochberg p-value adjustments[13,14]. Despite these efforts,

association studies have suffered from the problem of reproducibility[15]. GWAS studies are

usually followed by meta analyses and replication studies to identify truly significant results

[16].

Establishing the clinical relevance of results is an important step that is too often missed or

done inadequately in high throughput contexts. The most widely used statistical methods

ignore clinical relevance; traditional statistical procedures routinely flag significant results that

have no practical meaning. When performing inference on such a large scale, it is not feasible

to manually sift through all the estimated effects to determine which of the significant results

are most clinically important. Besides, this determination ought not to be made after looking

at the results. The most common practice is to focus all or most of the attention on the subset

of significant results with the smallest p-values. However, findings with the smallest p-values

have no guarantee of being the most impactful results, and potential important discoveries are

often overlooked. What is desired is a principled way to incorporate clinical relevance into the

ranking of important findings.

With the aim of directly addressing these challenges, we used second-generation p-values

(pδ) recently defined by Blume et al to identify associations that are both statistically and clini-

cally significant[17]. Under this approach, we specify a priori a null interval hypothesis for

effect sizes that are scientifically uninteresting, and only consider as positive findings those

associations for which the estimated effect size confidence interval lies completely beyond this

null region. Using the second-generation p-value as the metric for defining significant results

reduces the type I error and false discovery rates as compared to classical point null hypothesis

significance tests which use the p-value[17]. Specifically, incorporating the null interval forces

the type I error to zero as the sample size approaches infinity, thereby proactively adjusting the

Discovering novel disease comorbidities using EMR

PLOS ONE | https://doi.org/10.1371/journal.pone.0225495 November 27, 2019 2 / 14

amendments and data use agreements for BioVU

and the Synthetic Derivative are tracked through

REDCap databases. A detailed description and

contact information are at: https://www.vumc.org/

dbmi/synthetic-derivative. Additionally, The

Baltimore Longitudinal Study on Aging is an NIH

intra-mural project. Detailed information on how to

apply for data access are at: https://www.blsa.nih.

gov.

Funding: LAM: Supported in part by an

unrestricted grant to the Vanderbilt Eye Institute

and Physician Scientist Award from Research to

Prevent Blindness, New York, NY. A dataset used

for the analyses described were obtained from

Vanderbilt University Medical Center’s Synthetic

Derivative which is supported by institutional

funding and by the Vanderbilt CTSA grant

ULTR000445 from NCATS/NIH. BAL: This project

was supported National Center for Research

Resources, Grant UL1 RR024975-01 (now at the

National Center for Advancing Translational

Sciences, Grant 2 UL1 TR000445-06). This work

was conducted in part using the resources of the

Advanced Computing Center for Research and

Education at Vanderbilt University, Nashville, TN.

This research was supported by NSF CAREER

1452485 and NIH grants 5R21EY024036. This

project was supported in part by ViSE/VICTR. BAL,

SR, LBH: This research was conducted with the

support from Intramural Research Program,

National Institute on Aging, NIH WT: National

Institute of Health grant K24 MH110598 and

Alzheimer’s Association award SAGA-18-418231.

SC: National Institute of Biomedical Imaging and

Bioengineering training grant T32-EB021937 MF:

NIMH training grant T32-MH18921.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0225495
https://www.vumc.org/dbmi/synthetic-derivative
https://www.vumc.org/dbmi/synthetic-derivative
https://www.blsa.nih.gov
https://www.blsa.nih.gov


Type I error to control false discoveries. The subsequent finding are more likely to replicate,

almost by definition, and are guaranteed to be clinically relevant.

Exploratory association studies provide an additional third challenge because they can find

many associations that are well known, in addition to the potentially surprising results. While

the well-known associations can be useful in that they validate the results of the current study

and of prior studies, the more important/interesting results are those previously unknown

associations which could potentially be used to develop new hypotheses. For external valida-

tion of results, previous association studies have used meta analyses,[16] and manual review by

experts[11]. Currently there are no methods to identify which associations are empirically reli-

able but clinically unknown or understudied. In addition, there are no quantitative measures

to identify the extent of clinical novelty of these associations. Instead they have to be reviewed

on a case-by-case basis which would require a large group of clinical specialists across many

areas of expertise and may be more subjective. In this work, we introduce the Novelty Finding

Index (NFI), which addresses this challenge and allows for the creation of a tool for mining

disease comorbidities that are clinically relevant and can be ranked by novelty (i.e., newness).

Methods

Data

Study 1: Autism Spectrum Disorder. The data for this study, including demographic and

ICD-9 codes, was collected at the Vanderbilt University Synthetic Derivative under IRB

approval, in a de-identified form. The index disease group for this study was defined by

patients with a diagnosis of ASD (ICD-9 codes– 299.�). The control group is defined by sub-

jects with typical development.

Study 2: Alzheimer’s disease. The data for this study was collected through the Baltimore

Longitudinal Study of Aging (BLSA), a study that collects longitudinal data of an aging popula-

tion in order to examine changes in the brain as a person ages[18]. The data contains self-

reported ICD-9 codes, along with medical records and demographic data. In this study, the

index disease group is defined by individuals who were diagnosed with Alzheimer’s disease

through a clinical consensus. The control group for this study is individuals in BLSA who had

no cognitive impairment.

Study 3: Optic neuritis. The data for this study was collected from Vanderbilt Univer-

sity’s Synthetic Derivative under IRB approval. It contains EMR data including ICD-9 codes

and demographic information. The index disease group is defined by patients with codes

377.30–377.39. The control group for this study are subjects with other disorders of the optic

nerve or subjects with hearing loss.

Phenome-disease association study

We developed a python tool to perform phenome-disease association studies (PheDAS). Phe-

DAS is used to identify clinical phenotypes that are associated with a given index disease. A

clinical phenotype or a phecode is a code based on hierarchical categorization of ICD-9 (Inter-

national Classification of Disease—9) codes, which describes a diagnostic “phenotype” by

grouping a set of related ICD-9 codes. The ICD-9 codes are coded labels used in billing that

describe the relevance of a visit to a particular cluster of symptoms. The visits and procedures

themselves are often coded through a separate index known as the Current Procedural Termi-

nology (CPT) system. ICD-9 (or updated -10) codes are associated with each visit or patient

history and are necessary for billing to ensure that CPT are codes applicable for each patient.

The ~15,000 ICD-9 codes are mapped to 1,865 phecodes as described by Denny et al[19]. For

example, “depression” phecode 296.2 groups the ICD-9 codes of “major depressive disorder,
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single episode, mild degree” (ICD-9 = 296.21), “major depressive disorder, recurrent episode,

mild degree” (ICD-9 = 292.31), and “depressive disorder NEC” (ICD-9 = 311). For each phe-

code, a set of exclusion codes are also defined which can be used to select a control cohort.

Given a disease group and a control group, the PheDAS tool performs a set of logistic

regressions to identify significant phenotypes associated with the disease. A flowchart of the

process is shown in Fig 1. The ICD-9 codes for each clinical visit and other demographic infor-

mation are extracted from each subject’s electronic medical record (EMR). Optionally, the

time interval for extraction of ICD-9 codes can also be adjusted according to the study design.

This can be done by,

• Censoring by age-interval: Selecting an age range within which to perform the analysis. (Ex.

In study 1, we analyze the differences between ASD and control population after age 7); or

• Left-censoring with respect to diagnosis: Selecting a time interval prior to year of diagnosis.

(Ex. In study 2, we analyze the differences between Alzheimer’s and control population 0–5

years before the diagnosis of the disease); or

• Right-censoring with respect to diagnosis: Selecting a time interval post the year of diagnosis.

(Ex. In study 3, we analyze the differences between Optic Neuritis and control population

0–5 years after the diagnosis of the disease).

After defining the interval of the study, ICD-9 codes are extracted for all clinic visits during

the period and converted to phecodes using the mapping provided by Denny et al. These

codes are denoted by C = {ck|k = 1. . .1,865}. For each code ck, an aggregate measure mk is com-

puted in order to perform the logistic regression. The regression tool can be set to one of the

following options:

• Binary measure: aggregate codes to indicate the presence or absence of the phenotype

ck(mk = 0 or 1) in the subject’s record in the given time interval,

Fig 1. Flow chart for phenome-disease association study. The input patient data required for this analysis is demographic data and clinic visits data.

The data is prepared by performing data censoring and control matching based on the experimental design. Next, the ICD-9 codes are converted to

phecodes. Finally, logistic regression is performed for each phecode based on aggregate measures and demographic features as described in sections

below. To provide a concrete example, consider the Phecode for Alzheimer’s Disease (Phecode: 290.11), which references the ICD-9 code 331.0. ICD-9

331.0 maps to CUI C0002395 and then to 41 UMLS strings. Three example strings are “alzheimer’s disease”, “alzheimers disease”, and “senile

dementia”.

https://doi.org/10.1371/journal.pone.0225495.g001
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• Count measure: aggregate codes to indicate the number of times ck was present in a subject’s

EMR (mk = n), or

• Duration measure: aggregate codes to indicate the time interval between the first and the last

time the phenotype ck was recorded in a subject’s EMR (mk = t).

Additional covariates such as age and sex can also be provided, if available. For each ck,
logistic regression is performed based on the following mean model,

logitðpðclass ¼ diseasejckÞÞ ¼ b0 þ bmmk þ baak þ bssk;

where ak is age and sk is sex. The coefficient of the aggregate measure βm is used to determine

the significance of the association between the disease and phenotype ck. In describing the sta-

tistical methods, we will denote βm by θ to allow for some generality, as the methods apply to

any parameter of interest in the above regression model. Let the point estimate of βm = θ be

denoted by ŷ.

Second-generation p-value. We used the second-generation p-value (SGPV) measure

described by Blume et al[17] to prioritize or rank potential associations. The SGPV framework

requires (1) a pre-defined “indifference zone” or null interval hypothesis around the null effect

to denote the set of effect magnitudes that would not be clinically meaningful and (2) an uncer-

tainty interval for the observed association, e.g. a confidence interval, likelihood support inter-

val, or credible interval. The SGPV, denoted by pδ, measures the overlap between the data-

supported effect sizes (#2) and the interval null (#1). See Blume (2018) for details[17].

The SGPV equals 0 when #2 and #1 do not overlap. In this case the data only support effect

sizes in the alternative hypothesis space. We take all cases where the SGPV is zero, pδ = 0, to be

clinically interesting and statistically ‘significant’. In contrast, when pδ = 1, the data support

only effects that are null or nearly null and not of clinical interest. These results would confirm

the lack of association. SGPVs between 0 and 1 are treated as inconclusive as the data support

both null and alternative hypotheses.

The interpretation of the coefficient θ is different depending on whether mk is a binary mea-

sure, a count measure, or a duration measure. The clinically meaningful effects that make up

the null interval will therefore be different in each of these cases. Additionally, the null interval

may depend on factors like severity of the outcome. For example, a phecode that increases the

odds of having non-specific symptoms such as fever or migraine in Optic Neuritis by a factor

of 1.1 may be considered not meaningful, whereas a phecode that increases the odds of having

musculoskeletal symptoms in Alzheimer’s by a factor of 1.1 could be an important result to

consider.

It is of interest to know how reliable SGPV findings are when pδ = 0 and whether or not the

findings are already known in the literature. To address these two important questions, we

estimated the positive predictive value (PPV) when the SGPV is zero and developed a “novelty

score” by scraping and searching relevant abstracts in PubMed.

Positive predictive value. The positive predictive value (which is the complement of

the false discovery rate, FDR) was estimated using an empirical Bayes approach. Define the

interval null hypothesis as H0 : y 2 Y0 ¼ ½y
�

0
; y
þ

0
� with an alternative hypothesis of

H1 : y 2 Y1 ¼ ð� 1; y
�

0
Þ [ ðy

þ

0
;1Þ. Assume that we have a point estimate ŷ of θ that is

asymptotically Normally distributed with variance V̂ n ¼ V=n, that is, ŷ�ANðy; V̂ nÞ. The

power function for the SGPV is P(pδ = 0|θ) and the form is given in Blume et al.

Under certain assumptions, a reasonable approximation for the PPV is the probability

that the null hypothesis is true, given that SGPV equals zero. Applying Bayes’ formula, this is

1 − (1 + P(pδ = 0|H1)/P(pδ = 0|H0) � (1 − π0)/π0)−1 where π0 = P(H0) is the analysts’ a-priori
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probability of the null hypothesis before data were collected. We assign probability distribu-

tions f0 and f1 to the parameter θ under the null and alternative hypotheses, respectively.

This allows us to estimate P(pδ = 0|H1) as 1 � ~b ¼
R

Y1
Pðpd ¼ 0jyÞf1ðyÞdy, which is a weighted

average of the power function over the alternative space, and estimate P(pδ = 0|H0) as

~a ¼
R

Y0
Pðpd ¼ 0jyÞf0ðyÞdy, which is a weighted average of the power function over the null

space. Therefore, the PPV is equal to

1 � 1þ
1 � ~b

~a

1 � p0

p0

" #� 1

;

where we set π0 = 0.5 which is the default non-informative approach. The probability distribu-

tion for the null hypothesis was chosen to be a uniform distribution over the null space, that is,

f0 � Unif ½y�
0
; y
þ

0
�. The probability distribution for the alternative hypothesis was chosen to be

a uniform distribution over the observed uncertainty interval ðŷ l; ŷuÞ, that is, f0 � Unif ½ŷ l; ŷu�.

Note that f1 is a function of the observed data and therefore while the form of f1 is specified a

priori, the actual distribution is not.

Novelty score and novelty finding index. The ‘novelty score’ is intended to measure the

extent to which a finding is well-studied in the literature. We used published abstracts from

the PubMed database to construct the ‘novelty score’ as follows: For each index disease, and

for each phecode-disease pairing, we obtained the number of published papers in which these

are mentioned in the title, abstract, or keywords section.

In order to search PubMed database, we convert phecodes to search strings using the

metathesaurus database provided as a part of the unified medical language system (UMLS)

[20], as shown in Fig 2. The UMLS metathesaurus defines unique medical concepts that are

unchanged over time, identified by the Concept Unique Identifier (CUI). It links strings with

the same meaning from over 200 different source vocabularies to the same CUI. ICD-9 codes

are included as a part of source vocabularies provided by UMLS. For each phecode, the ICD-9

codes attached to it are linked to a CUI. Next, all possible strings associated with the CUI are

extracted from the metathesaurus to be used as search strings. Henceforth, we will take ‘men-

tioned’ to mean the CUI terms linked to a phecode to be mentioned in either the title, abstract,

or keywords section.

Fig 2. Searching PubMed for associations. For each Phecode, all the ICD-9 codes associated with it are mapped to their CUIs (concept unique

identifiers). Next, all the strings associated with the CUIs in UMLS metathesaurus are identified. These strings are used to search all the titles, abstracts

and keywords in the PubMed database to identify the counts of academic research papers associated with each phecode.

https://doi.org/10.1371/journal.pone.0225495.g002
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We then compute the proportions of published papers that mention the phecode-disease

pairing out of all published papers that mention the disease (termed the ‘PubMed proportion’).

This proportion measures whether the associations between the outcome and the predictor

phecodes are well-studied in the literature. Note that well-studied does not necessarily mean

well-known to be associated (i.e., the PubMed proportion should not be interpreted as the esti-

mated probability that an association exists). We denoted the novelty score by Ns ¼ 1 � F̂ðxÞ,
where F̂ðxÞ is the empirical cumulative distribution function estimated with the PubMed pro-

portions under consideration.

Then, to provide a ranking that accounts for both the reliability of the finding (PPV) and its

relative novelty (Ns), we define a Novel Finding Index (NFI) as NFI = (PPV � Ns) � 10. The pur-

pose of the scale factor of 10 is to move the NFI away from the (0, 1) scale, to prevent misinter-

pretations of the NFI as a probability.

Results

PheDAS is an EMR-based open-source association study tool that can be used to evaluate rela-

tionships between a fixed condition or disease of interest and other clinical phenotypes. We

demonstrate the use of this tool in three studies: 1) Autism Spectrum Disorder (ASD) 2) Alz-

heimer’s Disease, and 3) Optic Neuritis.

The input to the PheDAS tool is in the form of a list of clinical visits with the recorded ICD-

9 codes and age at each visit for each subject, along with the status of the condition of interest

(0 = absent, 1 = present). For each experiment, a clinically meaningful null-interval is set prior

to the analysis. In Figs 3–5, the null interval is indicated by a gray band. The output provides

an odds ratio plot for the point and interval estimates, highlighting significant phecodes that

are associated with the condition of interest, color-coded by their Novelty Finding Index

Fig 3. Significant associations for ASD presented as an odds ratio plot. Each dot represents the point estimate of the odds

ratio computed from a logistic regression and the line indicates its 95% confidence interval. Each condition is color coded by

its novelty finding index, the value of which is displayed above the confidence interval.

https://doi.org/10.1371/journal.pone.0225495.g003
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Fig 4. Significant associations 0–5 years before a diagnosis of Alzheimer’s disease presented as an odds ratio plot. Each dot

represents the point estimate of the odds ratio computed from a logistic regression and the line indicates its 95% confidence interval.

Each condition is color coded by its novelty finding index, the value of which is displayed above the confidence interval.

https://doi.org/10.1371/journal.pone.0225495.g004

Fig 5. Significant associations 0–5 years after a diagnosis of optic neuritis presented as an odds ratio plot. Each dot represents the point estimate of

the odds ratio computed from a logistic regression and the line indicates its 95% confidence interval. Each condition is color coded by its novelty

finding index, the value of which is displayed above the confidence interval.

https://doi.org/10.1371/journal.pone.0225495.g005
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(NFI). NFI values near 0 suggest that the finding is well known or likely to be a false positive,

while values near 10 suggest a novel and reliable finding (Figs 3–5).

Study 1: Autism Spectrum Disorder

We first studied co-morbidities that occur in patients with ASD after early childhood. The

dataset included records of 1,234 subjects diagnosed with ASD (926 male and 308 female) and

1,234 age-matched controls without ASD (932 male and 302 female). We included Phecodes

for all visits at which the patient was at least seven years old. We chose a null interval of [0.3,

1.5] based on clinician input. In practice, it would be ideal to have the intervals be chosen

based on consensus of a team of clinical experts to reduce subjectivity. Note that findings in

the “negative” direction (decreased odds of ASD when the phecode is present) were decided to

be of less clinical interest than findings in the “positive” direction (increased odds of ASD

when the phecode). The same will be true in all 3 examples presented. All data were accessed

in de-identified form through Vanderbilt’s Synthetic Derivative.

Several strong associations, such as epilepsy, mood disorders, developmental delays, and

chromosomal anomalies produced a small NFI, suggesting that these were previously well

known (Fig 3).

The novel association of elevated white blood cell count (NFI = 7.01, OR = 4.00, 95% CI

1.62–9.90, SGPV = 0) represents a possible new target to examine a mechanistic theory of

ASD. Immune dysregulation has been repeatedly reported in ASD[21] and higher cytokines in

response to immune challenge are associated with greater behavioral impairment[22].

Immune dysfunction has clear CNS sequelae, including effects on neurogenesis, synaptic

pruning, plasticity, and neuronal function[23]. However, little is known on the mechanistic

level about the timing and trajectory of neuro-immune interactions in autism. One theory pos-

its that the role of inflammatory signaling in brain masculinization combined with elevated

immune response could explain the high male:female ratio in autism[24]. The potential for

addressing these fundamental neurodevelopmental questions using data from electronic health

records is stunning, given its longitudinal nature and sample size that allows for the identifica-

tion of subgroups or the presence of enough females to meaningfully examine sex differences.

The novel association detected by PheDAS of elevated leukocytes facilitates more specific

hypothesis generation on a topic that has struggled to gain traction in human subjects

research. This, for example, could guide future prospective longitudinal studies of neuroim-

mune interactions in infants at high risk for ASD, moving the field closer to a mechanistic

understanding of the impact of immune dysfunction throughout development.

The novel association with glaucoma (NFI = 5.51, OR = 4.54, 95% CI 1.51–13.67,

SGPV = 0) may represent another example of how PheDAS may be used. While no current

studies have addressed glaucoma in ASD, there is evidence of genetic overlap between glau-

coma and ASD[25]. As ASD is a highly heritable disorder, understanding novel genetic associ-

ations, especially ones that may be present in unaffected family members can aid early

identification and risk assessment for ASD. Additionally, it can highlight the possible common

pathways that may represent risk for two different disorders.

Study 2: Alzheimer’s disease

We examined predictive factors of Alzheimer’s disease by including phecodes of visits between

0 and 5 years prior to the estimated date of diagnosis. The dataset included records of 242 sub-

jects with Alzheimer’s Disease (145 male, 97 female) and 789 age- and sex-matched controls

with no dementia diagnosis (499 male, 290 female). Matching was performed based on
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available data to maximize power. We chose a null interval of [0.3, 1.1] based on clinician

input. All data were studied in de-identified form under institutional review board approval.

The well-known associations identified included psychosis, cerebral degenerations, and gait

abnormalities (Fig 4). Psychosis and delirium can often be seen in clinical practice and are

thought to represent increased risk for neurodegenerative processes including AD.

Novel associations in the five years prior to diagnosis included infections and inflammatory

processes across several organ systems. The temporal relationship, wherein the systemic

comorbidity precedes clinical diagnosis, supports theories that inflammatory processes and

neuroinflammation specifically may contribute to the pathogenesis of AD[26,27]. Peripheral

inflammatory markers are elevated early in the AD process [28]and are further associated with

cerebrovascular disease[29]. Peripheral elevations in pro-inflammatory cytokines may contrib-

ute to neuroinflammation either directly, particularly in situations with compromised blood-

brain barrier integrity, or indirectly, through cytokine stimulation of afferent peripheral

nerves. Other novel findings include neuromuscular disturbances such as altered vestibular

function and increased sensitivity to drugs affecting autonomic function.

Study 3: Optic neuritis

We examined disease progression in optic neuritis by including phecodes of visits between 0

and 5 years after the estimated date of diagnosis, in a population with no previous multiple

sclerosis (MS) phecodes. This dataset included 1,085 subjects with optic neuritis (685 male,

405 female) and 1,085 age- and sex-matched controls without a diagnosis of optic neuritis (685

male, 405 female). We chose a null interval of [0.3, 1.5] based on clinician input. All data were

studied in de-identified form under institutional review board approval.

The well-known associations identified included visual field defects, subjective visual dis-

turbances, blindness and low vision (Fig 5). These are expected deteriorations of vision from a

diseased optic nerve.

A second category of known associations are neurological conditions such as multiple scle-

rosis, other demyelinating conditions of the brain and degenerative diseases of the spinal cord.

These are in line with previous studies that show that there is a significant risk for future MS in

patients who have had optic neuritis[30,31].

Novel associations include several conditions related to traumatic injury, such as skull and

face fracture (NFI = 6.82, OR = 6.75, 95% CI 3.95–11.55, SGPV = 0), fracture of ribs

(NFI = 6.12, OR = 5.22, 95% CI 1.98–13.75, SGPV = 0), crushing or internal injury to organs

(NFI = 4.99, OR = 5.67, 95% CI 2.35–13.71, SGPV = 0) and other open wounds of face and

neck (NFI = 6.8, OR = 5.75, 95% CI 1.96–16.83, SGPV = 0), suggesting that the partial loss of

vision may contribute to such injuries. Acute loss of visual function is well documented in

optic neuritis[32]. While visual field defects are recovered within 4 to 7 weeks, there is a

delayed mVEP (multifocal visual evoke potential) in regions where there was a visual field loss

[33]. An investigation into the relationship between mVEP and increased risk of falls and inju-

ries in optic neuritis population could help explain the novel associations uncovered by Phe-

DAS. Such an investigation can potentially impact therapeutic recommendations for optic

neuritis patients to prevent falls and improve visual cognition, such as regular examinations,

the use of walk aids, exercise, and video game play[34,35].

An increased risk of fractures has also been noted in patients with MS owing to disability

and low bone density[36], so these may also be secondary associations identified by PheDAS.

The increased fractures in the immediate aftermath (0–5 yrs) of an optic neuritis diagnosis

suggest that some of the symptoms of MS might appear much earlier than previously thought.

A longitudinal examination of patients with a diagnosis of optic neuritis and fractures could
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reveal new criteria for early prediction of MS. Such a finding can have a substantial impact in

management of MS, as early intervention with interferon beta-1b has been shown to delay

conversion to clinically definite MS[37,38], reduce the risk for progression of disability[37]

and significantly lower lesions on T2-weighted MRI scans[38].

Discussion

In this paper, we describe a new tool for discovering novel disease co-morbidities from rou-

tinely-collected EMR data. The co-morbidities may be selectively specified as preceding, co-

occurring with, or following the diagnosis of the condition of interest. Our approach can be

used for any condition of interest that is captured by the original data collection.

We address the problem of clinical novelty by ranking findings by prior appearance in the

scientific literature. We do this by comparing each phecode-disease finding to the number of

papers that can be found on PubMed that mention both conditions as a proportion of the

number of papers published on the disease of interest. We define a novelty score, which moves

the PubMed proportion, which in some sense is on an absolute scale, onto a relative scale. For

example, psychosis is scored low on the novelty score (i.e., not considered to be a novel find-

ing) because it is the 4th most frequent predictor phecode that is studied with Alzheimer’s,

despite the fact that it has only been studied in about 1% of the papers that mention Alzhei-

mer’s. A novelty finding index (NFI) is derived from novelty score and the positive predictive

value of the association, to indicate the novelty and reliability of the finding.

A limitation of this approach is that we are assuming that if an outcome and predictor phe-

code are mentioned in the title, abstract, or keywords of the same paper, that an association

between them was studied in the paper; this is not necessarily the case. For example, in a paper

about Alzheimer’s, psychosis may be noted in the ‘background’ section, but the association

between them may not be the topic of the paper. Additionally, papers that study associations

among a large number of conditions may not fully list all key terms in the title, abstract, or key-

words. These papers would be missed by the proposed approach. However, the fact that the two

concepts were discussed in the same paper serves as a reasonable proxy to measure association.

As natural language processing (NLP) research advances, it would be interesting to evaluate the

of NLP extracts as possible avenues of improving the specificity of patient context[39][40].

NFI has a two-fold benefit. First, the PheDAS methodology can be validated by the novelty

finding index by automatically identifying phecode predictors that are well-known by the sci-

entific community. The researcher is assured that the results of the experiment are likely cor-

rect, thereby increasing confidence in the analysis. For instance, in our ASD example we see a

majority of significant associations that have a low NFI and are well-reported in ASD literature

including psychiatric conditions, developmental disorders and seizure disorders. The second

advantage, which is the novel aspect of this method is that NFI could be used for hypothesis

exploration. It provides a unique and powerful tool to explore empirical relationships in large

databases to uncover co-morbidities, risk factors and prognostic factors that were previously

under-reported or under-studied. The methodology presented in this paper has the potential

to improve understanding of disease etiology and progression and directly impact patient care.
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