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1  | INTRODUC TION

Exposure to prescription drugs needs to be characterized to in-
vestigate the association between drug exposure and specific 
health outcomes. When detailed longitudinal exposure data are 
available, characteristics of the data, for example, time since 

exposure and intensity of exposure, vary over time and are harder 
to interpret than short-term exposures, posing challenges in 
studying the exposure-outcome association.1,2 Conventional ap-
proaches to characterizing long-term drug exposure summarize 
use by collapsing longitudinal data to single measures, such as 
ever-use, average dose of use, and duration of use. Classification 
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Abstract
Characterizing long-term prescription data is challenging due to the time-varying 
nature of drug use. Conventional approaches summarize time-varying data into cat-
egorical variables based on simple measures, such as cumulative dose, while ignoring 
patterns of use. The loss of information can lead to misclassification and biased esti-
mates of the exposure-outcome association. We introduce a classification method to 
characterize longitudinal prescription data with an unsupervised machine learning al-
gorithm. We used administrative databases covering virtually all 1.3 million residents 
of Manitoba and explicitly designed features to describe the average dose, proportion 
of days covered (PDC), dose change, and dose variability, and clustered the resulting 
feature space using K-means clustering. We applied this method to metformin use in 
diabetes patients. We identified 27,786 metformin users and showed that the feature 
distributions of their metformin use are stable for varying the lengths of follow-up 
and that these distributions have clear interpretations. We found six distinct met-
formin user groups: patients with intermittent use, decreasing dose, increasing dose, 
high dose, and two medium dose groups (one with stable dose and one with highly 
variable use). Patients in the varying and decreasing dose groups had a higher chance 
of progression of diabetes than other patients. The method presented in this paper 
allows for characterization of drug use into distinct and clinically relevant groups in a 
way that cannot be obtained from merely classifying use by quantiles of overall use.
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using these simple measures may not always account for the true 
differences between patient groups. For example, patients using 
stable, increasing, decreasing, or frequently varying doses can 
have the same mean dose. The loss of information can cause mis-
classification of the drug exposure and lead to biased estimates of 
the association.3–6

The cumulative and mean dose are the uniformly weighted sum 
and average of the dose over time. Several studies have extended 
this approach and summarized the cumulative dose by nontrivial 
weights.7–13 The weights are estimated from non- or quasi-paramet-
ric methods. These methods still aim to summarize time-varying ex-
posure as a single-valued measure.

The prescription data can be used directly in regression anal-
ysis through interrupted time series methods. Because there may 
be patient groups with prescription patterns of clinical relevance, 
group-based trajectory modeling (GBTM) was introduced to un-
cover mean group patterns.14–16 Original GBTM assumes a poly-
nomial trend of the time series and is unable to describe complex 
patterns, such as periodic use (possibly because of seasonal ef-
fects) or nonadherent/occasional use (in which the dose variations 
do not approximate low-order polynomials), which may generate 
patterns that are not supported by the data.17 Fitting the group 
patterns with B-splines relaxes the constrains on the functional 
form of the hypothetical patterns.17,18 Sometimes patients have 
irregular/varying prescription patterns, and this pattern may be 
“averaged out” when patterns are averaged for a whole group in 
GBTM. Since the fitting process involves maximizing a likelihood 
function, GBTM may converge slowly as the number of time points 
for each time series or the total number of time series grows, or it 
may even fail to converge when using higher orders of polynomial 
functions. 19–21

Recent advances in machine learning provide more statistical 
tools to understand and characterize time series. Methods such 
as	recurrent	neural	networks	(RNN)22–25 and long- and short-term 
memory auto-encoders followed by K-means clustering26 have 
been	 used	 in	 various	 applications.	 RNN	 auto-encoder	 networks	
require no human input for feature extraction (the process of de-
riving variables) and require no assumptions about the input time 
series.	Due	to	the	nonlinearity	of	RNN	networks,	 it	 is	almost	 im-
possible to interpret the derived features (derived variables, which 
may not have a human interpretation). In medical research, it is 
important to translate research results into clear clinical terms to 
benefit patient care.

The success and limitations of existing methods inspired us to 
characterize time-varying exposure based on interpretable features 
(derived variables) of drug use. In this article, we demonstrate a 
method to classify drug use patterns into clinically relevant groups. 
Without assuming any specific form of the exposure patterns, we 
explicitly define a list of features summarizing individual-level pre-
scription data. We first introduce our use case (which we use to ex-
emplify this method). Then, we describe our classification method, 
which includes a description and rationale for the features used to 
describe drug use patterns and the classification of the resulting 

feature space (a multidimensional space in which each feature/vari-
able is one dimension/axis). Finally, we investigate the results for our 
use case before discussing the implications of this method.

2  | MATERIAL S AND METHODS

2.1 | Data sources and variables

Manitoba Health (MH) is the publicly funded health insurance 
agency providing comprehensive health insurance, including cover-
age for hospital and outpatient physician services, to the province's 
1.3 million residents. Coverage is universal, with no eligibility dis-
tinction based on age or income, and participation rates are very 
high (>99%).27 MH maintains several centralized, administrative 
electronic databases that are linkable using a unique personal health 
identification	 number	 (PHIN).	 The	 completeness	 and	 accuracy	 of	
these databases are well established.28,29

The	Drug	Program	 Information	Network	 (DPIN),	 in	operation	
since 1995, records all prescription drugs dispensed to Manitoba 
residents electronically at the “point-of-sale”, including most per-
sonal care home residents.30	The	DPIN	database	captures	data	from	
pharmacy claims for formulary drugs dispensed to all Manitobans 
even those without prescription drug insurance. Since 1971, the 
Hospital	Abstracts	Database	(HAD)	recorded	virtually	all	services	
provided by hospitals in the province, including admissions and 
day surgeries.28 The data collected comprise demographic as well 
as diagnosis and treatment information including primary diagno-
sis and service or procedure codes, coded using the International 
Classification	 of	 Diseases,	 Ninth	 Revision,	 Clinical	 Modification	
(ICD-9-CM)	before	April,	2004,	and	the	ICD-10-CA	(Canadian	ad-
aptation of the ICD-10) and the Canadian Classification of Health 
Interventions (CCI) afterwards. The Medical Services Database 
(MSD), also in operation since 1971, collects similar information, 
based on physician fee-for-service or shadow billing, on services 
provided by physicians in offices, hospitals, and outpatient depart-
ments across the province.28

We picked metformin use to exemplify this method, because it 
is a common long-term first-line medication in type 2 diabetes. We 
identified all persons covered by MH and diagnosed with diabetes 
(Table S1) during 1995-2017 and assessed their metformin use from 
DPIN	from	their	first	filled	prescription	until	March	2017	in	succes-
sive 90-day periods (and limited follow-up to 1, 2, 5, and 10 years 
after the first prescription in analyses below).

We obtained income quintile and residence through the MHPR 
linked to the Canadian Census, we defined diabetes progression as 
insulin	use	(from	DPIN)	or	diabetic	complications	(from	the	HAD	and	
MSD), and obtained the number of physician visits (excluding repeat 
visits on the same day) from the MSD.

We	used	SAS	9.4	(SAS	Institute)	for	general	data	preparation	and	
cleaning and R 3.5.1 (R Foundation31) for clustering. This study was 
approved by the University of Manitoba Research Ethics Board and 
by MH's Health Information Privacy Committee.
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2.2 | Drug use classification

2.2.1 | Measurements

Both drug prescription histories and individual prescriptions vary in 
length. We standardized raw data into �-day episodes starting at first 
use. The start dates of refills were shifted to start after the previous 
refill would be used. We used τ= 90, which is a typical prescription 
length, other choices could include 60 or 120 days (the choice of � does 
not affect the principle of the method, but may alter the results and 
should be evaluated for each application). For each person i and each 
period j, we identified: 1) the number of episodes, Ni, for the person, 
2) the number of days, tij, the drug was prescribed during the episode, 
3) the length of follow-up in days, fij(it is possible that follow-up ends 
before the �-day	episode),	and	4)	the	total	dose,	dij, during the episode 
(calculated as the defined daily dose [DDD], “the assumed average 
maintenance dose per day for a drug used for its main indication in 
adults”32).

2.2.2 | Features

The original time series form a high-dimensional space. To reduce this 
dimensionality, we created derived features (derived variables), which 
prevents overfitting and helps interpretation of the subsequent clas-
sification. We require that features are clinically interpretable and that 
they capture the characteristics of patterns exhibited in the study data. 
Because the total length of follow-up is not equal for all patients and 
because we want to scale our algorithm to different durations, features 
should be independent of Ni	 (the	total	follow-up	for	each	person).	A	
dose-response can have multiple forms for drug exposures; it could be 
the dose itself, the relative duration of use, the dose change (increas-
ing/decreasing), and dose variability of use.

Length of follow-up
The length of follow-up, Fi, is:

for each person. We limited/fixed follow-up in our use case to 
simplify the interpretation of our results.

Average dose
The average dose during use Di, is described as:

This is independent of the choice of � (the length of each epi-
sode). Di is the average dose during use, not the average during fol-
low-up, because time without use is represented by the proportion 
of days covered (PDC) (see below).

Proportion of days covered (PDC)
The PDC is the proportion of follow-up a patient received the spe-
cific drug, after shifting prescriptions that were refilled early to ac-
count for potential drug stockpiling. The PDC for each person is:

Although	it	is	not	known	whether	a	patient	actually	took	the	med-
ication, the PDC will typically be lower for nonadherent patients, be-
cause they do not need to refill their medication in time (because they 
do not run out in time). The PDC is also independent of τ.

Dose change
For some exposure-outcome relations, it matters whether the dose 
was stable/constant or changed over time. We define the overall 
trend, Ti, by normalizing the linear least squares slope with the total 
number of episodes Ni:

where cov ( ��⃑di, p i ) is the covariance between the average daily dose 
vector ��⃑di =

(
di1∕ti1, di2∕ti2, di3∕ti3,…, diNi

∕tiNi

)
 and episode vector and 

p i =
(
pi1, pi2, pi3,…, piNi

)
 See appendix for derivation.

Dose variability
Another	important	aspect	of	drug	use	patterns	is	the	extent	to	which	
the dose fluctuates around the overall trend. Drug titration is not 
necessarily a linear process and some drugs are only prescribed oc-
casionally, making the linear fit close to a constant dose. The vari-
ability, Vi, describes these fluctuations in dose as:

See appendix for rationale.

Feature distribution
We calculated these features for the prescription history of all met-
formin users in the study population for fixed follow-ups to examine 
the effect of Ni on the other features. The cumulative distribution func-
tion (CDF) of each feature is shown in Figure 1 for 1, 2, 5, and 10 years 
of follow-up time (Ni	is	4,	8,	20,	and	40,	respectively).	Although	all	fea-
tures seem to converge to a long-term average, the PDC and dose vari-
ability have the smallest difference between 1- and 10-year follow-up. 
The average dose shows discontinuities in the CDF at typical prescrip-
tion strengths of multiples of 500 mg (0.25 DDD), which means these 
patients	use	that	specific	average	dose.	A	larger	proportion	of	the	dose	
change has Ti= 0 (a constant dose) for shorter follow-up. Metformin is a 
long-term medication (often used for years), so we selected the 5-year 
follow-up (20 episodes of 90 days) for clustering, because the prescrip-
tion pattern is close to longer term averages at that point.

(1)Fi =

Ni∑

j=1

fij

(2)Di =

∑ Ni

j= 1
dij

∑ Ni

j= 1
tij

(3)PDCi =

∑ Ni

j= 1
tij

∑ Ni

j= 1
fij

(4)Ti =
12Ni

N2
i
− 1

cov (
��⃑
di, p i )

(5)Vi =
1

Ni − 2

Ni −1∑

j=2

|||||
2
dij

tij
−

di(j− 1)

ti(j− 1)

−
di(j+ 1)

ti(j+ 1)

|||||
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Clustering
The K-means clustering algorithm partitions data iteratively 
into a prespecified number (K) of clusters.33 We used K-means 
clustering for its simplicity and convergence properties.34	 A	
commonly used technique to pick K is to plot the within-cluster 
sum of squares (WCSS) by different values of K and find the 

“elbow point”.35	The	elbow	point	corresponds	to	K	around	4-7	
(Figure 2). Because there is no clear elbow point and because 
we want the classified groups/clusters to be clinically relevant, 
we	evaluate	K	from	4-7	and	pick	the	K	for	which	K	+ 1 does not 
identify an additional use pattern (as interpreted by a human 
observer).

F I G U R E  1   Cumulative distribution functions of drug use features according to the length of prescription data since the first dispensed 
metformin prescription. The defined daily dose (DDD) is 2 g for metformin
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(D) Dose variability (DDD/day)
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F I G U R E  2   Within-cluster sum of squares according to the number of clusters
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We averaged the drug use patterns within each cluster and 
plotted them for K=4,	5,	6	and	7	(Figure	3).	Changing	from	K=4	to	
K=5, adds a cluster with decreasing dose. Changing to K=6 splits the 
group that ends with a high dose into an increasing dose group and 
a constant dose group. Changing to K=7 splits the increasing group 
into clusters with different rates of increase over time. Because 
there is little clinical difference between these groups, we opted 
for K=6. This classifies patients with intermittent use (solid red), in-
creasing dose (dotted yellow), decreasing dose (long-dashed gray), 
high dose (short-/long-dashed green), and two medium dose groups 
(dash-dotted blue and short-dashed green). One of the medium dose 
groups (short-dashed green) has a stable dose, the other is highly 
variable (dash-dotted blue; these patients are either nonadherent or 
their prescription strengths fluctuate over time).

The same interpretation holds after projecting the feature space 
(a high-dimensional space in which each feature/variable is one di-
mension/axis)	on	a	plane	of	each	pair	of	features	(Figure	4).	Patients	
in the varying group differ predominantly in dose variability, but 
overlap with patients in terms of the other features. Patients with 
increasing and decreasing doses mostly stand out because of their 
dose change, although patients with decreasing use seem to have 
a lower PDC. Patients in the intermittent user and medium dose 

groups both have a relatively low average dose; the PDC is much 
lower for the intermittent user group (indicating more sporadic use), 
whereas the medium user group seems to use metformin for the 
majority of the time. Patients in the high-dose group use around 1 
DDD/day (2 g/day) during most of the follow-up period.

3  | RESULTS

We identified 27,786 metformin users among diabetes patients and 
linked the classification results described above to hospital and med-
ical service databases to characterize the resulting patient groups. 
The socio-economic and clinical characteristics of patients in differ-
ent use groups vary (Table 1). The patient group with a varying dose 
consists	of	more	persons	younger	than	45	(47.6%)	and	less	persons	
65 or older (8.3%) compared to other groups, especially the medium 
dose group with a similar average dose profile (16.1% for under 
45	and	28.7%	 for	65+). Patients in the intermittent user, decreas-
ing dose, and varying dose groups are relatively overrepresented in 
the lower income quintile (28.7%, 30.2%, and 33.5%) compared to 
the	medium,	 increasing,	 and	high-dose	 groups	 (21.1%,	24.0%,	 and	
22.5%). Patients in the varying and decreasing dose groups more 

F I G U R E  3  Average	dose	of	the	patients	within	each	cluster	over	time	according	to	the	number	of	groups	(K	=	4	-	7)	for	K-means	
clustering. The defined daily dose (DDD) is 2 g for metformin
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frequently (17.8%) progress in their diabetes (defined as using insu-
lin or having complications related to diabetes) than other patients, 
especially those in intermittent user and medium dose groups (9.6% 
and	10.4%).

4  | DISCUSSION

The role of metformin as a first-line treatment in type 2 dia-
betes is well known.36,37 We found that a higher proportion of 
patients using a varying dose (possibly related to poor glycemic 
control) and patients using a higher dose progressed in their 
diabetes. Decreasing metformin use could mean that the medi-
cation is stopped, because poor glycemic control necessitates 
other treatment (patients in this group also have a higher chance 
of progression).37 Patients with the same mean dose could have 
very different patterns of use (constant, increasing, decreasing, 
and varying), and we showed that this pattern of use is relevant 
as the clinical characteristics differ between these groups. These 
important differences would disappear if patients are classified 
by quantile based on overall dose. It is possible, however, that 
some of these differences are attributable to bias and confound-
ing, including the healthy user effect and social determinants of 
health.

Our study did not include all diabetes patients in Manitoba, and 
our algorithm to detect diabetes only has a positive predictive value 
around 70% and a negative predictive value over 99%.38 Because we 
are only interested in diabetes patients who use metformin, and be-
cause metformin refills require physician visits, we likely include the 
vast majority of metformin users in Manitoba. We used cross-valida-
tion (see below) to assess the impact of leaving out a portion of users 
on the results of the classification method.

In addition to the 5-year follow-up classification, presented in 
Figure	4,	we	used	the	same	classification	algorithm	for	10	years	of	
follow up and found similar results (data not shown). This means that 
one set of clusters derived from the K-means clustering algorithm 
might be used for patients with varying lengths of follow-up if this 
length is not included as a feature. To accommodate varying fol-
low-up, the length of follow-up should be included as an additional 
input variable to the K-means algorithm. Instead of classifying a life-
long pattern, the follow-up period could also be broken in successive 
M-year periods for which each period is classified into a use group.

We did not assess how data quality affects this method, for 
example, how missing data or data entry errors affect the result-
ing groups. Because the results remain stable for different lengths 
of follow-up, we believe that the method is stable for deviation in 
the input data, but follow-up studies are required to understand the 
exact impact. There is uncertainty in this method; patients whose 

F I G U R E  4   Scatter plots of drug use for each individual patient for each pair of features after classification into six clusters. The defined 
daily dose (DDD) is 2 g for metformin
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drug use is right on the border between multiple user groups could 
be classified in different groups based on small fluctuations in the 
input data. We did not define uncertainty in the classification, for 
example, patients on the border between classes could fall in a dif-
ferent	 group	 depending	 on	 the	 input	 data.	 As	 an	 alternative,	 we	
performed cross-validation to assess the stability of the cluster-
ing process. Since there is no ground-truth for clustering, we use 
the cluster indices obtained from using all the input records as the 
“truth”. We randomly divided the records into 10, 5, and 2 mutu-
ally excluded equal partitions. Each partition was used as the test 
set, while the complimentary data were used as the training set. The 
centroids obtained from clustering the training sets were applied to 
the test set. The assigned cluster indices were then compared to the 

“truth”.	99.66%,	99.67%,	and	99.34%,	respectively,	on	average	were	
clustered to the same group for 10-, 5-, and 2-fold cross-validations.

One of the major limitations of the K-means clustering algo-
rithm is the requirement of a preset value for K, the number of 
clusters. The definition of a cluster is ill-defined, in extreme cases 
there may be as many clusters as the number of input time series. 
A	variety	of	methods	have	been	proposed	to	select	K,33 including 
information criterion-derived methods.39 These data-driven meth-
ods lead to K>> 6 in most cases. We selected K=6, because little 
clinical information is gained by picking more clusters. Partitioning 
feature space into more clusters could result in overfitting the 
feature space on random fluctuations in drug use patterns. Other 
limitations of the K-means method include sensitivity to initial 

TA B L E  1  Number	(percentage)	of	diabetes	cases	according	to	metformin	use	pattern	groups	with	5	years	of	follow-up	according	to	
certain socio-economic and clinical characteristics

K-means groups

Intermittent user
(N = 4475)

Decreasing dose
(N = 1953)

Medium dose
(N = 9166)

Varying dose
(N = 2422)

Increasing dose
(N = 4581)

High dose
(N = 5189)

Gender

Male 2,223	(49.7%) 1,016 (52.0%) 4,626	(50.5%) 1,303 (53.8%) 2,530 (55.2%) 2,971 (57.3%)

Female 2,252 (50.3%) 937	(48.0%) 4,540	(49.5%) 1,119	(46.2%) 2,051	(44.8%) 2,218	(42.7%)

Age	at	the	diagnosis	date	of	diabetes

<45 1,488	(33.3%) 760 (38.9%) 1,480	(16.1%) 1,152	(47.6%) 1,140	(24.9%) 1,212	(23.4%)

45	-	54 1,154	(25.8%) 546	(28.0%) 2,457	(26.8%) 670 (27.7%) 1,599	(34.9%) 1,717 (33.1%)

55	-	64 940	(21.0%) 383 (19.6%) 2,600	(28.4%) 398	(16.4%) 1,206 (26.3%) 1,461	(28.2%)

65+ 893 (20.0%) 264	(13.5%) 2,629 (28.7%) 202 (8.3%) 636 (13.9%) 799	(15.4%)

Income quintile

Q1 (lowest) 1,286 (28.7%) 589 (30.2%) 1,930 (21.1%) 811 (33.5%) 1,101	(24.0%) 1,169 (22.5%)

Q2 975 (21.8%) 453	(23.2%) 1,982 (21.6%) 515 (21.3%) 1,021 (22.3%) 1,143	(22.0%)

Q3 825	(18.4%) 334	(17.1%) 1,886 (20.6%) 380 (15.7%) 884	(19.3%) 955	(18.4%)

Q4 765 (17.1%) 326 (16.7%) 1,852 (20.2%) 412	(17.0%) 851 (18.6%) 1,082 (20.9%)

Q5 (highest) 605 (13.5%) 235 (12.0%) 1,435	(15.7%) 290 (12.0%) 694	(15.1%) 797	(15.4%)

Unknown 19	(0.4%) 16 (0.8%) 81 (0.9%) 14	(0.6%) 30 (0.7%) 43	(0.8%)

Residence

Rural <1,956 (<43.7%) <883 (<45.2%) 3,682	(40.2%) <1,121 
(<46.3%)

<1,902 (<41.5%) 2,250	(43.4%)

Urban 2,517 (56.2%) 1,067	(54.6%) 5,461	(59.6%) 1,301 (53.7%) 2,675	(58.4%) 2,919 (56.3%)

Unknown <6 (<0.1%) <6 (<0.3%) 23 (0.3%) <6 (<0.2%) <6 (<0.1%) 20	(0.4%)

Diabetes 
progressiona 

430	(9.6%) 347	(17.8%) 953	(10.4%) 431	(17.8%) 553 (12.1%) 762	(14.7%)

Insulin use 217	(4.8%) 210 (10.8%) 393	(4.3%) 289 (11.9%) 391 (8.5%) 472	(9.1%)

Diabetes 
complication

213	(4.8%) 138 (7.1%) 560 (6.1%) 142	(5.9%) 162 (3.5%) 290 (5.6%)

No.	of	physician	visits	during	the	5-year	period	before	diabetes	diagnosis

1 - 11 773 (17.3%) 421	(21.6%) 1,219 (13.3%) 477	(19.7%) 759 (16.6%) 991 (19.1%)

12	-	24 980 (21.9%) 423	(21.7%) 1,874	(20.4%) 611 (25.2%) 1,053 (23.0%) 1,178 (22.7%)

25	-	44 1,159 (25.9%) 500 (25.6%) 2,725 (29.7%) 646	(26.7%) 1,263 (27.6%) 1,382 (26.6%)

45+ 1,563	(34.9%) 609 (31.2%) 3,348	(36.5%) 688	(28.4%) 1,506 (32.9%) 1,638 (31.6%)

aInsulin use or diabetic complications after initiating metformin. 
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values and outliers33; local optima can be generated for certain 
initial values. In our study, we initialized the centers with multi-
ple random seeds40,41 and obtained stable clustering results. For 
dealing with outliers, we excluded records with mean dose greater 
than 5.0 DDD during any �-day episode. Outliers can also be ex-
cluded by the trimmed K-means method42 under the assumption 
that the data can be represented by well-separated spheres in 
variable space.

The classification method described here can be used in several 
ways in epidemiological studies; it could simply be seen as an ex-
posure (eg, what happens with patients on increasing vs decreasing 
doses) or an outcome (eg, what interventions lead to increasing vs 
decreasing drug use). If the pattern classification is seen as a co-
variate, the investigator should weigh off the cost of adding more 
degrees of freedom (compared to ever-use of the drug) against the 
benefits of a more descriptive variable. Patients can have differen-
tial drug use based on other factors (eg, confounding by indication); 
causal diagram analysis during study design could identify these 
types of issues. This method summarizes time-varying information; 
if the outcome of interest occurs during the periods for which the 
pattern is summarized, then any detected association could be at-
tributable to reverse causality.

There	 are	 other	 machine	 learning	 methods	 available.	 Auto-
encoder networks are often used as automatic feature extraction 
methods in machine learning. Since neural networks are built on 
multiple layers of nonlinear calculations, the extracted features 
are hard to explain and often do not have a direct interpretation. 
As	 clinical	 interpretation	 of	 results	 is	 essential	 in	medicine,	 black-
box auto-encoder networks have limited use in many health-related 
problems. Supervised algorithms (algorithms in which patterns are 
optimized to distinguish between certain outcomes) could also lead 
to clinically relevant groups, but such classifications can then no 
longer be used to study the outcomes the patterns are trained on. 
Supervised algorithms also require a consensus about the grouping 
of outcomes, which may not always exist.

We illustrated this method with metformin use in diabetic pa-
tients (nondiabetics will rarely use metformin). This method can also 
be used for other drugs; single drug classes for chronic conditions 
would likely follow similar patterns and require the least amount of 
changes to this algorithm. In some chronic conditions, multiple drugs 
are indicated, for example, there are half dozen statins.43 In some 
patients, a certain drug may be discontinued and another drug may 
be started, leading to a combined pattern of use of multiple drugs. 
In such cases, there are at least three options: first, one can collapse 
all drug classes, for example, have one statin group, and classify 
drug use for this combined class. Second, one can classify each drug 
in the class separately. Third, one can classify an expanded N×M-
dimensional feature space including all N features for the M differ-
ent drugs in the class. Which of these approaches is most suitable 
will depend on the drug class under investigation, how frequently 
people switch between drugs in the class, and the hypothesis under 
investigation. This approach may need to be tweaked for drugs with 
more short-term use, for example, antibacterials against recurrent 

infections or drugs prescribed for episodic mood disorders. Such 
tweaks could mean including features beyond the PDC and dose 
variability to describe the changes in drug use. It may also not be 
appropriate to abstract time-varying drug use, and time-varying 
measures (eg, adherence measures44) could be included directly into 
a K-means clustering algorithm. If the period of use is relevant (eg, 
drug use guidelines changed between 1990s and 2010s), calendar 
time could be added as a feature as well. The principle behind the 
method would remain the same, regardless of the specific features 
used in it.

The features presented here, including Fi (the length of use), de-
scribe complex drug use which could also be used as an alternative 
input for complex algorithms and other machine learning applica-
tions45,46 that use a wide variety of input data.

5  | CONCLUSION

The method to classify drug use presented in this paper allows for 
characterization of patient drug use into distinct and clinically rele-
vant groups in a way that cannot be obtained from merely classifying 
use by quantiles of overall use.
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APPENDIX A

DERIVATION OF FEATURES
A .1 | DOSE CHANG E
The overall trend of use can be described by a linear fit of use over 
time (using only the start and end dose would not describe the pat-
tern in between). Without loss of generality, we can write the rela-
tion between the dose and exposure episode as:

where�i and� i are the person-specific intercept and slope and�ij cap-
tures both nonlinear elements and random fluctuations. When we 
use �⃑pi =

(
1, 2, 3,…,Ni

)
 for the episodes and �⃑di =

(
d1, d2, d3,…, dNi

)
 for 

the doses in those episodes, the least squares estimate for βi is:

where var and cov denote variance and covariance, respectively. The 
slope itself is not normalized to the numbers of episodes (which causes 
differences based on�), and we define the trend, Ti, as the normalized 
measure

We can derive a closed form formula forvar
(
�⃑pi
)
, when we note 

that

And

see	for	example	pages	A35-A36	in.47 When we define the mean of 
all pij for a person as , we can derive

(6)dij = �i + � ipij + �ij,
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cov ( �⃑pi, �⃑di )
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When we substitute these results in Equations 7 and 8, we get

Note	that	when	all	persons	have	the	same	follow-up	period	(Ni=N 

for all i ), the term 12Ni

N2
i
− 1

 is constant and cov ( ��⃑di, �⃑pi ) can directly be 

used as a feature for the dose change as well.
One could argue that the slope � i could be a measure of change 

or trend itself as well. But this slope is dependent on � and does 
not allow for direct comparison between analyses in which � varies. 
For example, � i would become one-third of the value when 30-day 
periods are examined instead of 90-day periods, but Ti remains the 
same (one-third of the period length leads to three times as many 
periods, which leads to one-third of the slope, before normalization 
by the number of periods). Running the clustering algorithm is com-
putational-intensive and requires a large generalizable patient popu-
lation. Doing this kind of analysis may not always be feasible, for 
example, for prospectively collected data of small to medium sized 
cohorts. If clustering results are available for drug use in a general 
population, patients in a secondary analysis could still be assigned to 
their respective patient group, even if the length of reporting peri-
ods of drug use do not equal those periods of the available clusters.

A . 2 | DOSE VARIABILIT Y

The variability in the prescribed strength is a measure of stability of 
use. The dose change describes the overall change, and the variabil-
ity Vi here describes the fluctuations in dose (ie, a discrete version of 
the second derivative),

We use the average absolute value of the discrete second deriva-

tive 2 dij

tij
−

di(j − 1)

ti(j − 1)

−
di(j + 1)

ti(j + 1)

 (the discrete version, without error term, of 

the	expression	on	page	764	in	48). We use a factor Ni−2, because the 
second derivative is not defined for the first and last episodes.

One could argue that the variance of a dose sequence charac-
terizes the variability. The difference between equation 13 and the 
variance (of dij for person i) is that equation 13 sums the absolute 
value of the second-order difference, while variance reflects the 
spread around the mean value. For an increasing dose (a straight line 
with nonzero slope), Vi=0 (because there is no point where the slope 
changes sign), but the variance is large (characterizing the trend 
rather than the variability). The variability measure Vi is intended to 
capture this second-order variation on top of the dose change Ti.

(12)Ti =
12Ni

N2
i
− 1

cov (
��⃑
di, �⃑pi )

(13)Vi =
1

Ni − 2

Ni −1∑

j=2

|
|
|
|
|
2
dij

tij
−

di(j− 1)

ti(j− 1)

−
di(j+ 1)

ti(j+ 1)

|
|
|
|
|


