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Abstract 
 
The rapid advancement of DNA foundation language models has revolutionized the field of genomics, 
enabling the decoding of complex patterns and regulatory mechanisms within DNA sequences. However, 
the current evaluation of these models often relies on fine-tuning and limited datasets, which introduces 
biases and limits the assessment of their true potential. Here, we present a benchmarking study of three 
recent DNA foundation language models, including DNABERT-2, Nucleotide Transformer version-2 (NT-
v2), and HyenaDNA, focusing on the quality of their zero-shot embeddings across a diverse range of 
genomic tasks and species through analyses of 57 real datasets. We found that DNABERT-2 exhibits the 
most consistent performance across human genome-related tasks, while NT-v2 excels in epigenetic 
modification detection. HyenaDNA stands out for its exceptional runtime scalability and ability to handle 
long input sequences. Importantly, we demonstrate that using mean token embedding consistently 
improves the performance of all three models compared to the default setting of sentence-level summary 
token embedding, with average AUC improvements ranging from 4.3% to 9.7% for different DNA 
foundation models. Furthermore, the performance differences between these models are significantly 
reduced when using mean token embedding. Our findings provide a framework for selecting and 
optimizing DNA language models, guiding researchers in applying these tools effectively in genomic 
studies. 
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Introduction 

Led by the advances in Natural Language Processing (NLP) in recent years, foundation language models 
through self-supervised pre-training have been the paradigm of decoding information in sequences. By 
representing sequences as numerical embeddings, foundation language models can outperform previous 
methods in many downstream tasks such as sequence classification and sequence generation. As natural 
language-based foundation models like GPT-4 [1], Llama2 [2], and Mistral [3] have been proven 
successful, similar ideas have been extended to other domains by interpreting domain-specific languages 
with unique semantic rules, and examples include foundation models on programming codes, protein 
sequences and single-cell sequencing [4-7]. With the long-lasting interests in decoding DNA sequences to 
understand the epigenetic patterns, transcriptional regulations, and disease associations [8,9], DNA 
foundation language models have also emerged recently including DNABERT-2 [10], Nucleotide 
Transformer [11] and HyenaDNA [12]. These models are pre-trained on large genomic datasets such as 
the human reference genome [13], human whole-genome sequencing datasets like 1000 Genomes project 
datasets [14], and multi-species genome datasets [11]. After fine-tuning, they have shown promising 
results in DNA sequence classification tasks. 
 
A critical aspect of DNA foundation models is the method used to generate sequence embeddings, with 
sentence-level summary token and mean token embeddings being two primary approaches. The 
comparative efficacy of these embedding methods in DNA sequence analysis remains understudied, 
despite their potential impact on model performance. 
 
With the rapid evolution of DNA foundation models of various architectures and the wide range of 
genomic analysis tasks to be solved, there is a pressing need for effectively evaluating these models. 
However, most of the current evaluations on DNA foundation models are biased, as they are conducted 
after fine-tuning [10-12], which may introduce biases in model performance comparison. For instance, 
different models may have various levels of overfitting depending on which layers are selected to update 
during fine-tuning. The use of advanced parameter-efficient fine-tuning methods [15-16], further 
complicates this issue by introducing additional hyperparameters that could impact model fitting. 
Conversely, a recent work directly compared DNA foundation models based on their output embeddings 
[30], where the weights in all layers were frozen and a trainable convolutional neural network (CNN) was 
appended to the last layer. While this approach mitigates fine-tuning biases, the study scope was limited 
to several human genome analysis tasks and did not account for potential effects of CNN hyperparameters. 
Moreover, it did not investigate the impact of different embedding methods on model performance. 
Therefore, it is also important to expand current evaluation to more diverse settings and investigate the 
inherent qualities of the pre-trained models without the confounding factors introduced by fine-tuning. 
 
In this study, we provide a comprehensive and unbiased evaluation of existing state-of-the-art DNA 
foundation language models. Our evaluation is focused on the zero-shot embeddings—specifically, the 
last hidden states of the pre-trained models. These embeddings are crucial as they reflect the models' 
understanding of DNA sequences and are strongly linked to performance in downstream fine-tuning 
tasks. To objectively assess the quality of these embeddings, we employ a supervised learning approach 
using efficient tree-based models, which enables a thorough hyperparameter search while minimizing 
inductive biases. We collect datasets from a wide variety of genomic tasks across multiple species, 
where DNA sequences are labelled with biological traits such as the association with specific 
methylation sites and chromatin regions. This diverse set of benchmarking datasets allows us to examine 
the performance and generalizability of DNA foundation models across different domains and species. 
Furthermore, we conduct a formal comparative analysis of sentence-level summary token and mean 
token embedding methods, evaluating their impact on model performance across various genomic tasks. 
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We also explore how different output pooling methods affect the quality of zero-shot embeddings and 
examine the influence of sequence length on DNA foundation model efficiency. Our evaluation 
framework allows for a comparative analysis of current models, illustrates the factors influencing 
performance, and discusses the strengths and limitations of DNA foundation models in genomic 
applications. All the codes and datasets untilized in this study are available at 
https://github.com/ChongWuLab/dna_foundation_benchmark. 
 
 
Methods 
 
DNA foundation language models 
 
To evaluate DNA foundation language models comprehensively, we identified the three most recent state-
of-the-art DNA foundation language models, including DNABERT-2 [10], Nucleotide Transformer 
version-2 [11], and HyenaDNA [12]. These foundation models take DNA sequence as input, tokenize into 
sequence of tokens, and generate embeddings of fixed dimension for each token after passing multiple 
layers. In the following, we will briefly describe these three models. 
 
DNABERT-2 [10] has the network architecture similar to Bidirectional Encoder Representations from 
Transformers (BERT) [17], which usually contains a positional embedding layer added to input 
embeddings, and a series of encoders each consisting of a multi-head self-attention layer and a feedforward 
network. It is pre-trained using the masked language modelling approach [17] on genomes from 135 
species, including the human reference genome. DNABERT-2 tokenizes DNA sequences by the Byte Pair 
Encoding (BPE) method, which is an iterative algorithm that searches for nucleotides combinations and 
builds the vocabulary at the same time; it makes no assumption on fixed words and grammars, so each 
input sequence is independently tokenized merely based on its pattern. It is worth noting that the number 
of tokens in the tokenized sequence is not fixed in DNABERT-2. DNABERT-2 modifies the architecture 
of BERT by using Attention with Linear Biases (ALiBi) instead of positional embedding layer. 
DNABERT-2 has about 117 million trainable parameters, the output embedding dimension is 768. There 
is no hard limit on the input sequence length, although the runtime is still quadratically increasing with 
sequence length. 
 
Nucleotide Transformer Version 2 (NT-v2) [10] is also based on the BERT architecture, and it is pre-
trained using the masked language modelling approach on genomes from 850 species, including the 
human reference genome. To tokenize DNA sequence, NT-v2 employs the 6-mers tokenization method 
that uses a sliding window of size 6 and reads every 6 nucleotides; if there are leftover elements at the end 
of sequence, nucleotides will be tokenized individually into {A, T, C, G, N}. Therefore, the number of 
tokens produced by the tokenizer will be approximately 1/6 of DNA sequence length. NT-v2 modifies 
BERT by replacing the learned positional embeddings with the rotary embeddings, which rotates the 
embeddings output by each attention layer based on the token’s position, and the Swish activation without 
bias. These modifications reduce the number of model parameters in Nucleotide Transformer Version 1, 
and thus reduce the computation cost. The largest NT-v2 model has around 500 million trainable 
parameters, the output embedding dimension is 1,024, and the input sequence length limit is 12,000 
nucleotides. 
 
HyenaDNA [12] differs from the architectures of DNABERT-2 and NT-v2 by eschewing the attention 
mechanism in favor of a decoder-based architecture. HyenaDNA is pre-trained exclusively on the human 
reference genome using a next nucleotide prediction approach. The key component of this model is the 
Hyena operators, which integrate long convolutions with implicit parameterization and data-controlled 
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gating. Benefiting from this architecture, HyenaDNA can process extremely long DNA sequences with 
fewer model parameters than attention-based transformer. This enables a straightforward tokenization 
approach in HyenaDNA, where each nucleotide is treated as an individual token. HyenaDNA can also 
perform in-context learning such as soft-prompting [12, 31], and details can be found in its original article. 
The largest HyenaDNA model has around 30 million trainable parameters, the output embedding 
dimension is 256, and the input sequence length limit is one million nucleotides. 
 
Model Configuration Selection 
 
It is worth noting that both NT-v2 and HyenaDNA offer multiple pre-trained model configurations, 
varying in the number of parameters, output dimensions, and input length limitations, detailed in 
Supplementary Table 1. In this study, we selected the NT-v2-500M model in the group of NT-v2 pre-
trained models, as it is the largest in size and is deemed optimal in the original study of Nucleotide 
Transformer. For HyenaDNA, the number of layers, number of parameters in each layer, and the output 
dimensions are the same for Hyena-160K, Hyena-360K and Hyena-1.6M, and the only difference comes 
from the input layer that adapts for different maximum input lengths. Therefore, we chose the smallest 
one (Hyena-160K) among them for computation efficiency, because the longest sequence length in our 
benchmarking datasets does not exceed 160K nucleotides.  
 
 
Benchmarking Datasets 
 
To unbiasedly evaluate the foundation models, we first collected 17 public datasets from four DNA 
sequence classification tasks. These tasks and datasets were selected to reflect a wide range of potential 
downstream use cases, ensuring they are both challenging and achievable. The four DNA sequence 
classification tasks are the following: 
 
4mc sites detection in multiple species [18]: We used six datasets containing DNA sequences from the 
following six species correspondingly: Escherichia coli (E. coli), Caenorhabditis elegans (C. elegans), 
Geobacter pickeringii (G. pickeringii), Geoalkalibacter subterraneus (G. subterraneus), Drosophila 
melanogaster (D. melanogaster), and Arabidopsis thaliana (A. thaliana). Each sub-dataset is dedicated to 
predicting whether a DNA sequence contains a DNA N4-methylcytosine region (4mC) or not. For each 
species, the dataset consists of DNA sequences with annotated 4mC sites, and all sequences are 41 base 
pairs long, including 20 base pairs upstream and downstream of the 4mC site.  
 
DNase-I hypersensitive sites detection [19]: The datasets used in the study consist of positive DNA 
sequences for the 280 Dnase I hypersensitive sites (DHS), and negative sequences for the 737 non-Dnase 
I hypersensitive sites. Identification of the DNA sequences containing DHS is crucial for detecting DNA 
regulatory regions, as DHS is indicative of genomic regulatory regions like promoters, enhancers, 
silencers, and suppressors. The sequence length ranges from 225 to 275 base pairs.  
 
5mC and 6mA modifications detection [20]: We used two datasets of human DNA samples from this 
study, where the tasks are the detection of 5-methylcytosine (5mC) and N6-methyladenosine (6mA) 
modifications in DNA sequences, respectively. The positive samples in these datasets are defined by the 
presence of either 5mC or 6mA and all sequences are 41 base pairs long. To account for potential bias and 
redundancy, sequences with high similarity were excluded, resulting in 4688 samples for the 5mC dataset 
and 36670 samples for the 6mA dataset.  
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Promoter identification in multiple species [21]: We use 8 datasets from 4 distinct species including 
human (4 different cell lines of GM12878, NHEK, HeLa-S3, HUVEC), B. amyloliquefaciens, R. 
capsulatus, and Arabidopsis (TATA and non-TATA). The positive samples in these datasets are promoter 
sequences. Negative samples were generated by identifying genomic sequences with maximal similarity 
to each positive promoter sequence, while ensuring no overlap with known positive regions. These 
datasets, especially the human cell lines datasets, include DNA sequences with significant variation in 
their lengths, and the maximum length can exceed 2000 base pairs. 
 
Besides, we also adopt the genomic analysis datasets used in comparison studies from the original articles 
of DNABERT-2, NT-v2 and HyenaDNA. These datasets involve genomic analysis tasks on either binary 
classification or multiple classification. Along with the datasets we collected, there are in total 57 datasets 
included in this study. Detailed descriptions of the names and sources of all 57 datasets can be found in 
Supplementary Text. The specific training size, testing size, and details of sequence lengths for all datasets 
used in our study can be found in Supplementary Table 2.  
 
To facilitate a systematic analysis, we categorized the 57 datasets into four distinct classes based on the 
nature of their respective classification tasks: 1) Human Genome Sequence Region Classification: This 
category encompasses tasks such as identification of transcription factor binding sites, promoter regions, 
and other functional elements within the human genome. 2) Multi-Species Genome Sequence Region 
Classification: These tasks involve distinguishing genomic regions across different species, for example, 
differentiating between human and Caenorhabditis elegans (worm) genome sequences. 3) Human Genome 
Epigenetic Trait Classification: This group includes tasks related to identifying epigenetic modifications 
specific to the human genome, such as detection of N4-methylcytosine (4mC) sites. 4) Multi-Species 
Genome Epigenetic Trait Classification: These tasks focus on identifying and classifying epigenetic traits 
across multiple species' genomes. We present and analyze our findings separately for each of these four 
dataset categories, allowing for a comprehensive assessment of the models' capabilities and limitations in 
various genomic classification scenarios. 
 
 
Evaluation methods 
 
Supervised learning evaluation 
 
We evaluated the inherent quality of zero-shot embeddings by the separation of different classes. This was 
examined by the performance of supervised learning classifiers on the zero-shot embeddings. For each 
dataset, we first generated zero-shot embeddings for all sequences, then split the samples into training and 
testing sets, and finally trained a classifier and reported its performance predicting the labels of each 
sequence in the test set from their zero-shot embeddings. We maintained the training and testing split of 
datasets from their original works if available; otherwise, we randomly split the samples into a ratio of 7:3 
for training and testing. For supervised learning task, we intitially tested XGBoost [32] and random forest 
[33] as these tree-based models require minimal tuning, allowing us to focus on evaluating the quality of 
the DNA foundation model embeddings rather than optimizing classifier performance. In our experiments, 
we noticed that random forest consistently outperformed XGBoost across all evaluation metrics, and thus 
we report only the random forest results to maintain clarity and conciseness in our analysis. 
 
During training, we performed 5-fold cross-validation that divides the training set into five non-
overlapping train-validation pairs for hyperparameters tuning, and then reported the testing performance 
on the test set. The hyperparameter grid is detailed in the Supplementary Table 3. We evaluated model 
performance on the test set using four metrics: Area Under the Curve (AUC), Matthews Correlation 
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Coefficient (MCC) [29], F1 Score, and prediction accuracy. AUC serves as our primary measure of 
performance throughout this work, with the other metrics providing complementary information. To 
ensure rigorous comparison, we applied the DeLong’s test of AUC [34] to examine the statistical 
significance of differences in AUC values between models for each dataset. For the five datasets involving 
multi-class classification tasks, where DeLong’s test become less adaptable, we used classification 
accuracy as the primary metric instead. The detailed workflow of our method can be found in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Overview of DNA foundation models evaluation workflow. DNA sequences are input into foundation models, 
generating token embeddings from the final layer. These embeddings undergo output pooling to produce high-dimensional 
representations of input sequences. A supervised classifier (random forest) is trained on these embeddings using labeled datasets. 
Model performance is evaluated on a held-out test set using multiple metrics, with AUC as the primary measure. 

 
 
Benchmarking two pooling methods 
 
We investigated the impact of output pooling methods on the quality of zero-shot embeddings in DNA 
sequence classification tasks. In foundation language models, output pooling methods refer to techniques 
for generating a single, fixed-dimensional embedding to represent an entire sequence [17]. We focused on 
two common output pooling methods in our evaluation: Sentence-level summary token method and mean 
pooling method.  
 
Essentially, all the DNA foundation models in this study created additional special tokens during 
tokenization, alidning with common practice in natural language processing [23-25]. In the original BERT, 
the classify token “CLS” is appended to the start of every tokenized sequence. This CLS token serves as 
a sentence-level summary, capturing the context of the entire input sequence after processing through 
multiple self-attention layers. The embedding of the “CLS” token has been utilized for downstream fine-
tuning and has proven effective [17]. In DNABERT-2 and NT-v2, the “CLS” token is created in the same 
way as in BERT. In HyenaDNA, the end of sequence token “EOS” is appended to the end of each 
tokenized sequence and has also been used as the output embedding to represent the whole sequence [12]. 
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The mean pooling method, on the other hand, calculates the average of all the non-padding tokens in the 
tokenized sequence and uses it to represent the whole sequence. This approach provides an alternative 
representation that potentially captures information from all parts of the sequence equally. 
 
In our study, we study the two pooling methods in two aspects: (1) we compare the performance across 
different DNA foundation models using the same pooling method; (2) we compare the performance across 
different pooling methods for the same DNA foundation model.  
 
Runtime analysis 
 
To evaluate computational efficiency, for each dataset, we measured the average time required for a single 
forward pass (i.e., an inference step) of an input batch for each model. Given the limited availability of 
GPUs and limited GPU memories, we conducted our experiments on CPUs. To ensure consistency across 
datasets, all experiments were performed on CPUs with an identical configuration of 20 cores, and the 
batch size was fixed at 256.  
 
We also adjusted the tokenizer configurations in the models to roughly match sequence lengths; for 
example, the dataset of human genome promoter region classification [21] contained sequence length up 
to 2999 base pairs, so the 6-mers based tokenizer of NT-v2 took a maximum of 600 tokens and the single-
nucleotide tokenizer of HyenaDNA took 2999 tokens. The tokenizer of DNABERT-2 generated an 
uncertain number of tokens, so we estimate it conservatively to ensure there is no truncated sequence 
causing information loss. This conservative approach may result in a slight inflation in DNABERT-2 
runtime. 
 
 
 
Results 
 
Based on the four categories of DNA sequence classification tasks, we performed a thorough benchmark 
across multiple aspects. 
 
Human genome sequence region classification 
 
We evaluated the performance of the three DNA foundation models, DNABERT-2, NT-v2, and 
HyenaDNA, on a diverse set of human genome sequence region classification tasks. For the human 
genome sequence region classification tasks, as shown in Table 1, when using sentence-level summary 
token pooling method, all three models achieved AUC scores above 0.8 on the majority of tasks, indicating 
their ability to capture meaningful semantic information from human DNA sequences. These results show 
that zero-shot embeddings generated by these models are sufficiently informative for supervised learning 
models, even without fine-tuning. Among the three models, DNABERT-2 exhibited superior overall 
performance  across multiple metrics, including AUC, MCC, F1 score, and accuracy (Supplementary 
Figure 1). Specifically, DNABERT-2 outperformed the NT-v2 and HyenaDNA by an average of 3.6% and 
5.9% in AUC scores across all datasets. To assess the statistical significance of these performance 
differences, we conducted DeLong's test for AUC comparisons. DNABERT-2's superior performance was 
statistically significant (p < 0.01) in 11 out of the 24 tasks while NV-v2’s superior performance was 
statistically significant in 4 out of the 24 tasks (Table 1). When using the mean pooling method, the 
performance gap narrowed, but DNABERT-2 still maintained a lead in average AUC (Supplementary 
Table 3). Now DNABERT-2 has statistically significant (p < 0.01)  highest AUC in 7 out of the 24 tasks, 
while NT-v2 has 4 and HyenaDNA has 1. Notably, DNABERT-2 excelled in promoter identification tasks 
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for cell lines GM12878, HUVEC, Hela-S3, and NHEK. In these tasks, it achieved AUC scores of 0.964, 
0.974, 0.971, and 0.912 respectively, which are comparable to those reported in the original studies where 
models were fully trained on the respective datasets [21]. This performance is particularly impressive 
given that our models were not fine-tuned for these specific tasks. 
 

Data DNABERT-2 NT-v2 HyenaDNA 
Promoter GM12878 0.964** 0.878 0.884 

Promoter HUVEC 0.974** 0.912 0.906 
Promoter Hela-S3 0.971** 0.909 0.9 

Promoter NHEK 0.912** 0.855 0.854 
Promoter NonTATA 251 bps 0.861 0.834 0.853 

Promoter NonTATA 70 bps 0.816 0.838** 0.79 
Promoter TATA 70 bps 0.809 0.872** 0.732 

Promoter All 70 bps 0.803 0.822** 0.769 
Promoter NonTATA 300 bps 0.938** 0.91 0.818 

Promoter TATA 300 bps 0.698 0.694 0.717 
Promoter All 300 bps 0.897** 0.875 0.797 

Coding 0.915** 0.863 0.885 
Donor 0.823** 0.636 0.626 

Acceptor 0.793** 0.632 0.67 
Enhancer 0.863 0.879 0.833 

Enhancer Cohn 0.792** 0.728 0.733 
Enhancer Ensembl 0.947 0.95** 0.944 

TFBS Data 1 0.817 0.824 0.83 
TFBS Data 2 0.834 0.836 0.842 
TFBS Data 3 0.744 0.751 0.741 
TFBS Data 4 0.66 0.663 0.624 
TFBS Data 5 0.785 0.801 0.787 

Open chromatin region 0.685** 0.657 0.665 
DNase_I Hypersensitive 0.815 0.806 0.787 

 
Table 1: The AUC results for binary sequence classification tasks on human genome. The tasks include promoter region 
identification (multiple datasets), coding region detection, splice site donor and acceptor identification, enhancer 
identification (multiple datasets), transcription factor binding site identification (multiple datasets), and open chromatin 
region identification (multiple datasets). Using sentence-level summary token pooling method. Largest values row-wise are 
bolded. **DeLong Test significance < 0.01. Bolded value: DeLong Test significance < 0.05. 
 
 
Multispecies genome sequence region classification 

 
To evaluate the cross-species generalizability of DNA foundation models, we assessed their performance 
on multispecies genome sequence region classification tasks. Using the summary token pooling method, 
DNABERT-2 demonstrates superior performance in terms of AUC (Table 2). DNABERT-2 achieved an 
average AUC of 0.860 across these tasks, outperforming NT-v2 (mean AUC: 0.802) and HyenaDNA 
(mean AUC: 0.731) by 7.2% and 17.6%, respectively. The performance advantage of DNABERT-2 was 
statistically significant (p < 0.01, DeLong's test) in 4 out of 6 tasks. Interestingly, when employing the 
mean pooling method, we observed a shift in relative performance. HyenaDNA's performance improved 
markedly, achieving a mean AUC of 0.857, compared to DNABERT-2's 0.866 and NT-v2's 0.856 
(Supplementary Table 3). This improvement was particularly notable in the Arabidopsis promoter 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2024. ; https://doi.org/10.1101/2024.08.16.608288doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.16.608288
http://creativecommons.org/licenses/by-nc-nd/4.0/


identification tasks, where HyenaDNA outperformed the other models by 1.0-1.5% in AUC. This 
observation suggests that HyenaDNA's capabilities are not substantially constrained by its pre-training 
exclusively on the human genome, and that mean pooling may be particularly effective in leveraging its 
learned representations across species. Furthermore, when using mean pooling, all models show only 
modest decreases in performance compared to similar human genome classification tasks. The average 
performance drop was only 0.9% for DNABERT-2, 0.7% for NT-v2, and 0.1% for HyenaDNA. These 
results suggest that DNA foundation models demonstrate great potential for effective application in 
analyzing genomic sequences across multiple species. 
 

Data DNABERT-2 NT-v2 HyenaDNA 
Promoter B_amyloliquefaciens 0.856** 0.797 0.688 

Promoter R_capsulatus 0.661 0.668 0.602 
Promoter Arabidopsis NonTATA 0.891** 0.85 0.814 

 Promoter Arabidopsis TATA 0.903** 0.855 0.82 
Human vs worm 0.946** 0.919 0.837 

Mouse TFBS 0.700 0.722 0.624 

 
Table 2: The AUC results for binary sequence classification tasks which have multi-species involved, including promoter 
region prediction (first four rows), human vs worm classification and mouse transcription factor binding site (TFBS) 
identification. The results for mouse TFBS are averaged over 5 independent datasets focusing on different TFBSs. Using 
sentence-level summary token pooling method. **DeLong Test significance < 0.01. Bolded value: DeLong Test significance 
< 0.05. 
 
 
Human epigenetic modification & Multispecies epigenetic modification prediction 
 
We further investigated the performance of the models on human epigenetic modification prediction tasks, 
specifically the detection of 5-methylcytosine (5mC) and N6-methyladenosine (6mA) modifications. NT-
v2 outperformed DNABERT-2 and HyenaDNA by an average of 4% and 14% in AUC using summary 
token pooling, and an average of 3.8% and 4.2% using mean pooling (Table 3, Supplementary Table 3). 
For epigenetic trait detection tasks on multi-species, NT-v2 is still leading clearly under mean pooling 
(Supplementary Table 3). It is also notable that, compared to the genome sequence region classification 
tasks, all models experienced a decline in AUCs in epigenetic modification prediction tasks under both 
pooling methods. This trend aligns with our expectation, as the information encoding epigenetic 
modifications in DNA sequences is likely to be more subtle and complex than the information 
distinguishing different genome regions.  
 

Data DNABERT-2 NT-v2 HyenaDNA 
5-methylcytosin (5mC) 0.678 0.713 0.604 

N6-methyladenosine (6mA) 0.731 0.752** 0.681 

 
Table 3: The AUC results for each model on datasets which aim to detect the epigenetic modifications. Using sentence-level 
summary token pooling method.  **DeLong Test significance < 0.01. Bolded value: DeLong Test significance < 0.05. 
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Data DNABERT-2 NT-v2 HyenaDNA 
A.Thaliana 4mC 0.59 0.6** 0.557 
C.Elegans 4mC  0.587 0.594 0.583 

D.Melanogaster 4mC  0.604 0.611 0.57 
E.Coli 4mC  0.567 0.579 0.579 

G.Pickeringii 4mC  0.587 0.607 0.603 
G.Subterraneus 4mC  0.588 0.581 0.577 

Yeast Epigenetic Marks 0.734** 0.643 0.665 

 
Table 4: The AUC results for each model on epigenetic modification detection in multispecies genome. The results for yeast 
are averaged over 7 different datasets focusing on different epigenetic marks. Using sentence-level summary token pooling 
method.  **DeLong Test significance < 0.01. Bolded value: DeLong Test significance < 0.05. 
 
It is also noteworthy that HyenaDNA achieved comparable accuracy to DNABERT-2 and NT-v2 in 
classification tasks with more than two classes (Table 5). HyenaDNA demonstrated comparable, and in 
some cases superior, performance to DNABERT-2 and NT-v2 in these multi-class classification tasks. For 
example, in the Regulatory Region Type classification task, HyenaDNA significantly outperformed the 
other models, achieving an accuracy of 70.2%, compared to 63.0% for DNABERT-2 and 55.5% for NT-
v2. This observation suggests that HyenaDNA’s architecture may be particularly well-suited for capturing 
complex patterns and distinguishing between multiple classes. 
 
 

Data DNABERT-2 NT-v2 HyenaDNA 
Enhancer Strength 0.515 0.471 0.485 

Splice Site Type, NT 0.712 0.725 0.71 
Splice Site Type, DNABERT-2 0.608 0.607 0.607 

Covid Variants 0.446 0.43 0.449 
Regulatory Region Type 0.63 0.555 0.702 

 
Table 5: The accuracy for all multi-class classification datasets in this study. Bolded value: row maximum. 

 
 
 
Pooling methods comparison 
 
Our evaluation of the two pooling methods, sentence-level summary token ([CLS] or [EOS]) embedding 
and mean token embedding, revealed significant differences in the performance of DNA foundation 
models. Despite sentence-level summary token embedding being the default choice in most DNA 
foundation models, we observed that mean token embedding consistently improved the performance of 
DNABERT-2, NT-v2, and HyenaDNA across all task categories (Supplementary Tables 4-6). Figure 2 
illustrates the improvement in AUC scores for all models when using mean token embedding. The average 
increase in AUC was 4.3% (interquartile range: 1.6%-6.1%) for DNABERT-2, 6.9% (interquartile range: 
3.8%-8.4%) for NT-v2, and 9.7% (interquartile range: 6.3%-13.0%) for HyenaDNA across all tasks. This 
consistent enhancement indicates the superiority of mean token embedding over the currently favored 
summary-level token embedding. 
 
The improved performance with mean token embedding suggests that this pooling method more 
effectively captures the overall information contained in the DNA sequences. By averaging the 
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embeddings of all non-padding tokens, mean token embedding provides a more comprehensive 
representation of the entire sequence, as opposed to relying on a single summary token. This finding is 
particularly relevant for simple DNA sequence classification tasks, such as promoter identification and 
enhancer identification, where the discriminative features may be distributed throughout the sequence 
rather than concentrated in a specific region. For instance, in the promoter identification task for the 
GM12878 cell line, mean token embedding improved the AUC from 0.964 to 0.985 for DNABERT-2, a 
2.2% increase (Supplementary Table 4). More strikingly, for the B.amyloliquefaciens genome, the 
improvement was from 0.688 to 0.862 for HyenaDNA, representing a 25.3% increase (Supplementary 
Table 6). These examples highlight how mean token embedding can capture distributed features more 
effectively across the entire sequence. 
 
Moreover, the reduced performance differences among the models when using mean token embedding 
(Figure 2) imply that this pooling method helps to mitigate the architectural variations across the models. 
Specifically, the mean token embedding results in a generally lower difference of AUC scores across 
models. For example, in the coding region classification task, the range of AUC scores differences across 
models narrowed from 0.052 (0.915-0.863) with summary token pooling to 0.015 (0.944-0.929) with 
mean token pooling. Taking average over all datasets, the AUC scores differences decreased from 0.063 
with summary token pooling to 0.032 with mean pooling. This observation underscores the importance of 
carefully selecting the pooling method when evaluating and comparing DNA foundation models, as it can 
significantly impact the assessment of their relative strengths and weaknesses. 
 
Given the consistent improvement in performance across all models and task categories, we recommend 
using mean token embedding as the default pooling method for generating zero-shot embeddings in DNA 
sequence classification tasks, rather than the currently popular sentence-level summary token embedding. 
This recommendation may extend to the selection of pooling methods for fine-tuning, as the choice of 
pooling method during pre-training can influence the quality of the learned representations and, 
consequently, the performance of the fine-tuned models. However, further research is needed to validate 
this hypothesis in fine-tuning scenarios, and we leave such exciting topic to future research. 
 

 
Figure 2: Boxplots comparing the AUC scores distribution over all datasets included in this study, on the choice of using 
mean output pooling or using summary-level token pooling.  
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Runtime and user-friendliness analysis 

We conducted a runtime analysis by measuring the average time cost for a forward pass on each dataset 
using a fixed batch size of 256. Given the relatively small model sizes, inference was performed on CPUs 
to save our limited GPU resources. Figure 3 illustrates the average runtime with respect to the increase in 
median sequence length for each model. For the purpose of visualization, we selected a subset of datasets. 

Our analysis revealed that HyenaDNA exhibits the most scalable runtime trend, corroborating its 
remarkable ability to process longer sequences efficiently. This scalability can be attributed to 
HyenaDNA's architecture, which leverages Hyena operators to integrate long convolutions with implicit 
parameterization and data-controlled gating. HyenaDNA demonstrated a scalable increase in runtime with 
sequence length, while NT-v2 and DNABERT-2 both exhibited a sharp runtime increase when the median 
sequence length exceeded 1000 base pairs. Specifically, we observed a 3.99 times increase in runtime for 
NT-v2 and a 4.92 times increase for DNABERT-2 when the median sequence length increased from 999 
to 1,113 base pairs.  In addition, NT-v2 consistently required the highest runtime among the three models, 
primarily due to its larger model size (500M parameters compared to 117M for DNABERT-2 and 30M 
for HyenaDNA). On average, NT-v2's runtime was 3.32 times that of DNABERT-2 and 4.37 times that 
of HyenaDNA across all sequence lengths. Despite these differences, we did not observe a obvious 
superiority in terms of runtime polynomial complexity between the models. 

In addition to computational efficiency, we evaluated the user-friendliness of the DNA foundation models. 
All three models are implemented in PyTorch and have been integrated into the Hugging Face platform, 
enabling users to leverage various computationally efficient techniques, such as flash attention and mixed 
precision training. However, we encountered disparities in the ease of integration with parameter-efficient 
fine-tuning (PEFT) libraries. While DNABERT-2 and NT-v2 can be seamlessly integrated with PEFT and 
benefit from state-of-the-art algorithms for both classification and regression tasks, HyenaDNA currently 
lacks an efficient fine-tuning algorithm beyond updating the entire model, owing to its unique architecture. 

 

 
Figure 3: The average runtime of passing a batch of 256 DNA sequences for selected datasets. X-axis: the median sequence 
length of the dataset. Y-axis: the average runtime in seconds. Runtime is recorded on the same set of CPUs with the same 
cores.  
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Furthermore, we noticed that none of the models provides a straightforward way to switch from the default 
sentence-level summary token embedding to mean token embedding pooling. To perform the analysis 
using mean embedding pooling, we had to manually extract the padding tokens of sequences and calculate 
the mean embeddings. This limitation highlights the need for more flexible and user-friendly 
implementations of DNA foundation models, which would allow researchers to easily explore different 
pooling methods and adapt the models to their specific requirements. 
 

Discussion 

Our comprehensive study evaluates state-of-the-art DNA foundation models by focusing on the quality of 
their zero-shot embeddings in DNA sequence classification tasks. The analysis reveals that DNABERT-2 
exhibits the most consistent performance across various datasets, demonstrating its robustness and 
reliability. HyenaDNA stands out for its exceptional runtime scalability and ability to handle extensive 
input lengths while maintaining competitive performance on human genome-related tasks and multi-class 
classification problems. In contrast, NT-v2 generates zero-shot embeddings that are most suitable for 
epigenetic modification detection tasks. Notably, all models show reduced embedding quality on non-
human genome datasets compared to human datasets, and perform worse on epigenetic modification 
prediction tasks compared to DNA sequence classification tasks. Despite these challenges, for some 
simpler tasks such as promoter identification in human cell lines (e.g., GM12878 and HUVEC), the 
performance of zero-shot embeddings combined with random forest classifiers approaches that of task-
specific models, highlighting the potential of DNA foundation models. This observation suggests possible 
synergies across different models, where their complementary strengths could be leveraged to improve 
overall performance across a wider range of genomic tasks. 
 
Our comprehensive evaluation of DNA foundation models not only provides insights into their technical 
performance but also has important implications for biological and clinical research. For instance, in the 
task of predicting presence of N4-methylcytosine site in C.elegans DNA sequences, we observed that NT-
v2 outperformed other models. This superior performance suggests that NT-v2 could be particularly 
valuable for studying epigenetic regulation in nematodes and potentially other organisms. Similarly, 
DNABERT-2's consistent performance across human genome-related tasks, such as promoter and 
enhancer identification, positions it as a powerful tool for understanding gene regulation in human diseases. 
The ability of these models to capture complex genomic patterns without task-specific training opens new 
avenues for discovering novel biomarkers and regulatory elements. For example, applying these models 
to cancer genomics could potentially identify previously unknown regulatory regions associated with 
tumor progression. Furthermore, HyenaDNA's capability to handle long input sequences efficiently makes 
it particularly suitable for analyzing large-scale genomic rearrangements or long-range interactions, which 
are often implicated in genetic disorders. By benchmarking these models across diverse genomic tasks, 
our study provides guidance for researchers to select the most appropriate model for their specific 
biological questions, potentially accelerating discoveries in fields ranging from developmental biology to 
personalized medicine. 
 
A key strength of our approach lies in its broader and more diverse set of comparisons, which evaluates 
zero-shot embeddings from pre-trained models across a wide range of genomic tasks and species. This 
extensive dataset collection enables a more thorough and unbiased assessment of DNA foundation models' 
capabilities compared to existing studies. Moreover, our methodology introduces a novel evaluation 
criterion by utilizing efficient tree-based models for hyperparameter optimization, minimizing inductive 
biases, and offering unbiased tools and datasets to evaluate DNA foundation models. A significant 
contribution of our study is the comprehensive analysis of different pooling methods. We demonstrate that 
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mean token embedding consistently outperforms the commonly used sentence-level summary token 
embedding across all models and tasks, with average AUC improvements ranging from 4.2% to 7.1%. 
This finding challenges the current default practice in DNA foundation models and provides a clear 
direction for improving model performance in genomic sequence analysis tasks. 
 
Despite the comprehensive nature of our analysis, we acknowledge several limitations that warrant further 
exploration. Our current benchmarks are confined to zero-shot embeddings for sequence classification 
tasks and do not include regression-based tasks. Additionally, while fine-tuning may introduce biases in 
evaluating foundation models, there is still a need to investigate the fine-tuning potential of different 
models appropriately. For instance, NT-v2, with its larger size (500M parameters) compared to 
DNABERT-2 (117M) and HyenaDNA (30M), may exhibit more significant improvement when fine-tuned 
for specific applications. Another limitation is the scope of biological applications explored in our 
benchmarking. While we cover a range of genomic tasks, there are important areas that require further 
investigation. For instance, we have not extensively explored the potential of these models in identifying 
and classifying variants involved in human disease, particularly in non-coding regions. This application 
could have significant implications for understanding complex genetic disorders and advancing 
personalized medicine. Future studies should aim to incorporate a broader range of tasks, including 
regression, and develop more sophisticated benchmarking methods that unbiasedly account for the effects 
of fine-tuning. Additionally, direct comparisons with traditional genomic analysis methods would provide 
a more comprehensive understanding of the strengths and weaknesses of DNA foundation models. 
Exploring model ensembles that leverage the complementary strengths of different architectures may also 
prove fruitful in addressing the diverse challenges in genomic sequence analysis. 
 
In conclusion, our study provides a comprehensive evaluation framework for DNA foundation models, 
offering insights into their strengths, limitations, and potential areas for improvement. The findings 
presented here can guide researchers in selecting appropriate models for specific genomic tasks and 
highlight promising directions for future development in this rapidly evolving field. 
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