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Abstract

Advancements in statistical ecology offer the opportunity to gain further inferences from

existing data with minimal financial cost. Spatial capture-recapture (SCR) models extend

traditional capture-recapture models to incorporate spatial position of capture and enable

direct estimation of animal densities across a region of interest. The additional inferences

provided are both ecologically interesting and valuable for decision making, which has

resulted in traditional capture-recapture data being repurposed using SCR. Yet, many cap-

ture-recapture studies were not designed for SCR and the limitations of repurposing data

from such studies are rarely assessed in practice. We used simulation to evaluate the

robustness of SCR for retrospectively estimating large mammal densities over a variety of

scenarios using repurposed capture-recapture data collected by an asymmetrical sampling

grid and covering a broad spatial extent in a heterogenous landscape. We found perfor-

mance of SCR models fit using repurposed data simulated from the existing grid was not

robust, but instead bias and precision of density estimates varied considerably among simu-

lations scenarios. For example, while the smallest relatives bias of density estimates was

3%, it ranged by 14 orders of magnitude among scenarios and was most strongly influenced

by detection parameters. Our results caution against the casual repurposing of non-spatial

capture-recapture data using SCR and demonstrate the importance of using simulation to

assessing model performance during retrospective applications.

Introduction

Applied ecological research must balance the pursuit of accurate inference against the logistical

and financial constraints that accompany study of organisms in natural field settings.
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Technological and analytical developments offer potential relief from these constraints by

extending the ecological inferences possible from data collected under existing study designs.

As a consequence, researchers often repurpose their data (i.e., use them for a purpose they

were not originally intended for) to take advantage of methodological advancements after data

collection has occurred [1–4], presumably allowing for improved inferences from data that

already exist. Data repurposing of this nature will undoubtedly become more common in the

future as methods continue their rapid proliferation in statistical ecology [5]. Such repurposing

is especially valuable given that methodological developments often allow us to advance our

understanding of the magnitude of ecological states and processes that are directly informative

for management and conservation (e.g., the size and distribution of animal populations; [6–

8]).

Accurate estimates of animal abundance are a fundamental component of effective decision

making in conservation and natural resource management [7]. A variety of population-estima-

tion methods have been employed in applied ecology, and these tools commonly rely on har-

vest, point-count, distance, or capture-mark-recapture (CMR) data [7,9–12]. CMR studies are

particularly useful for estimating animal abundance, and the statistical models arising from

CMR have been continually refined to improve their applicability to different data types [13–

17]. However, classical CMR models do not explicitly estimate the effective area sampled by

their capture methods and thus cannot directly estimate animal density without additional

assumptions or auxiliary information. Density is a valuable metric for management and con-

servation and, consequently, researchers employing CMR studies often estimate density by

imposing either an ad-hoc spatial extent or using additional data (such as telemetry) to delin-

eate an effective sampling area for their capture methods [18].

Spatial capture-recapture (SCR) models are a relatively new extension of CMR models that

use information on the location of capture to explicitly estimate the density of animal activity

centers, whereby animal abundance is a derived parameter [19,20]. The advent of SCR has cre-

ated an opportunity to extract valuable spatially explicit estimates of animal abundance and

density from existing CMR datasets that were not collected with SCR in mind. In addition to

recaptures of individual animals (a required component of CMR models), estimation of abun-

dance using SCR requires detection of unique individuals at multiple locations in space (i.e.,

spatial recaptures). In the absence of a sufficient number of spatial recaptures it becomes diffi-

cult to estimate parameters of the detection process, and consequently challenging to generate

reliable estimates of density using SCR [21]. The ability of any CMR study to generate spatial

recaptures is affected by the spatial configuration of capture devices relative to movement pat-

terns of the animals under study. All CMR studies should place traps in a manner that attempts

to reflect the spatial distribution of their study species [22,23]. Yet, spatial recaptures are not

an explicit component of conventional CMR abundance estimators (i.e., no information on

location of capture is used in abundance estimation), and therefore the prioritization of spatial

recaptures was not an emphasis of study design [22,23]. This potential limitation of historical

CMR data manifests itself conspicuously for large-scale monitoring studies that faced tradeoffs

between maintenance of sufficient spatial coverage of the trapping grid and the reasonable

spacing and arrangement of individual traps [24]. As a consequence of these tradeoffs and the

relative newness of SCR it seems unlikely that many large-scale monitoring programs initiated

prior to the dissemination of SCR theory prioritized the recapture of individual organisms at

multiple locations in space (i.e., prior to 2008; [19, 20]).

Despite the subtle differences in data and study design requirements, some studies have

repurposed data collected for non-spatial CMR analyses using SCR models (e.g., [25]). While

this practice may provide useful information on animal abundance, such retrospective data

repurposing assumes that the original study provided the additional information required to
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make reliable inference about density using SCR models, and such assumptions are rarely

assessed in practice. Previous studies have often assessed the adequacy of SCR models by com-

paring the similarity of density estimates generated via SCR and ad-hoc methods using existing

CMR data—a situation in which the distance between either estimate and truth is unknown

[26–28]. Conversely, many studies have used simulation to proactively inform the design of

future SCR studies by assessing performance of potential study designs [21,24,25,29–31]. How-

ever, we are unaware of studies that used simulation to retrospectively evaluate robustness of

SCR estimates over a range of plausible conditions (e.g., true population densities, detection

parameters, etc.) when true density is unknown and field data from a large-scale, non-spatial

CMR monitoring program are being repurposed to generate estimates (and hence the sam-

pling grid is fixed prior to analyses). As such, the robustness of estimates from SCR models

that used repurposed CMR data collected from large-scale monitoring programs with fixed

sampling grids is incompletely understood.

Our objective was to assess the robustness of performance of SCR for estimating density

using data repurposed from a CMR study that used a fixed sampling grid, which was designed

prior to the development of SCR. We used a case-study of population monitoring for Ameri-

can black bears (Ursus americanus) in the northern Lower Peninsula (NLP) of Michigan,

where noninvasive hair-snare data was collected for CMR population estimation at the spatial

extent of the entire NLP [32]. Though this sampling effort resulted in a grid that was asymmet-

ric due to heterogeneous land cover and land ownership patterns, independent analyses of this

population indicated that abundance estimates produced by CMR were reasonable [33,34].

We used stochastic simulation to evaluate robustness of SCR density estimators under a variety

of plausible true parameter combinations. While our case study focused on black bear popula-

tion monitoring in Michigan, USA, our findings have relevance and implications for other

studies seeking to repurpose traditional CMR monitoring data collected over large scales.

Methods

Data and model description

We simulated CMR data from an existing array of barbed-wire hair snares in the NLP of Mich-

igan. The snare array was used to estimate abundance of black bears in the NLP as part of a

population monitoring program initiated by the Michigan Department of Natural Resources

in 2003. The trapping array consisted of 257 snares distributed across 36,848 km2 in a spatially

irregular but locally clustered design (Fig 1). Average nearest-neighbor distance between traps

was 5.8 km (SD = 3.5 km, range = 0.48–20.9 km); this average spacing is similar to the range of

other black bear hair-snare arrays [24,25,35], but the range of distances is likely wider. The

placement of traps across the spatial extent of the study area was necessarily irregular and

affected by both the structure of land cover and patterns of land ownership. Specifically, the

region consists of fragmented forests with roads, human development, and agriculture, and

exists as a mosaic of public and private land ownership. Consequently, the preferred, regular

trapping grids that are commonly evaluated in simulation studies (e.g., [25]) were not feasible

for this study region and spatial extent. The spatial extent of the trapping array was defined by

the boundaries of three bear management units in the NLP used by Michigan Department of

Natural Resources, which encompass the latitudinal area between Mackinaw City and Muske-

gon, MI (Fig 1). Geographic coordinates of the snare locations are available in S5 Appendix.

Despite the irregular and large-scale nature of the study design, abundance estimates from

the original CMR study have been externally validated as reasonable by studies that estimated

the effective population size using genetic analysis [33] and estimated the population vital rates

from a statistical catch-at-age analysis [34]. Furthermore, the population estimated by the
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CMR data was approximately closed (spatially and demographically) due to the geographical

features of the NLP and the timing of the study relative to bears’ hibernation and the hunting

season. Specifically, the extent of the array was bounded by Lake Michigan to the west, Lake

Huron to the east, the Straights of Mackinaw to the north, and non-habitat (intensive agricul-

ture and urban land covers) to the south [32]. Additionally, hair-snare sampling began after

bear emergence from hibernation and ended before the beginning of the fall hunting season;

historically, survival rates during these summer months were over 96%, suggesting demo-

graphic closure assumptions were reasonable [36]. To mimic past sampling and maintain this

assumption of demographic closure, our simulations were constrained to sample over a maxi-

mum number of 7 weeks.

We simulated performance of SCR models for estimating black bear density from capture

data randomly generated from the existing array of hair snares in the NLP. SCR methods

model the distribution of animals as a spatial point process, and the probability of detecting an

individual animal at a specific trap is a function of the distance between the trap and the ani-

mal’s activity center [19,37]. The probability of detection when distance equals zero is repre-

sented by the parameter g0, whereas the shape of the detection function is determined by σ,

Fig 1. Hair snare trap locations used in simulations. Locations reflect placement in 2009 in the northern Lower

Peninsula of Michigan. These locations were constrained by patchy habitat configuration and heterogeneous land

ownership. Land cover imagery source: Map services and data available from U.S. Geological Survey, National

Geospatial Program.

https://doi.org/10.1371/journal.pone.0236978.g001
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which dictates the rate at which detection probability decreases (from a maximum of g0) as dis-

tance from the trap to the activity center increases. We used a halfnormal detection function

p ¼ g0 exp ð� d
2

2s2 Þ, where p is the probability of detection and d is the distance between an

animal’s activity center and a trap. By incorporating geographic information about the loca-

tions of detections for individual animals, SCR models can explicitly estimate the effective

sampling area of the trapping grid and directly estimate population density (D) as the number

of animal activity centers within that area [37]. Thus, SCR models estimate three parameters to

enable spatially explicit inference about animal density. Importantly, the hair-snare arrange-

ment used to estimate bear abundance in the NLP of Michigan was designed for abundance

estimation and before the development of SCR methods (circa 2003; [32]), and therefore did

not specifically prioritize spatial recaptures of individual bears in its conception. Thus, our

simulations generated hair snare CMR data from a non-spatial study design, which mimicked

repurposing of CMR data for estimating bear density using SCR models, but under known sets

of conditions.

Simulation study design

We simulated data generation and black bear density estimation for combinations of bear den-

sity, detection parameter values, and sampling effort to assess the robustness of performance

for SCR density estimates over a plausible range of conditions using the existing trapping grid.

Specifically, we simulated performance over different combinations of D, σ, g0, and the num-

ber of sampling events (k). Data generation occurred over a four-dimensional parameter space

that included 2 levels of bear density and 3 levels each of σ, g0, and sampling effort, for 54 total

scenarios. We reviewed existing literature on black bears to determine reasonable values of

model parameters and inform the simulation study design. Bear density (D) was simulated at

10 and 50 bears per 100 km2 and values of σ were simulated at 2, 5, and 12 km [24,38–40],

while values of g0 were simulated at 0.005, 0.02, and 0.2 [25,32]. Given that researchers re-

purposing traditional CMR data using SCR models generally do not know the true parameter

values for their study population, literature review provides a useful starting point for deter-

mining bounds of the parameter space over which it is reasonable to assess estimator robust-

ness. Consequently, the range of parameter values considered here represents plausible

parameter combinations for NLP black bear populations; therefore, assessment of estimator

robustness over these conditions provides an understanding of the limitations and reliability

of such estimates when repurposing data under the existing grid design. Finally, we simulated

sampling efforts (k) that included the original data collection protocol (5 occasions, [32]), as

well as shortened (3 occasions) and extended (7 occasions) sampling options to determine the

influence of sampling effort on estimators.

Data from each scenario were simulated using the secrdesign package (version 2.5.2), and

models were subsequently fit, and parameters estimated, using maximum likelihood via the

secr package (version 3.1; Efford 2010) in R (version 3.4.1; R Core Development Team 2017).

We specified the basic version of the SCR model [18] and assumed activity centers were dis-

tributed according to a homogenous Poisson point process with circular home ranges. In addi-

tion, our simulations assumed the detection model was correctly specified as a halfnormal

function. For each simulation scenario we replicated data generation and parameter estima-

tion 100 times, generating 100 detection histories and sets of parameter estimates per scenario.

We monitored each scenario for error messages indicating whether any of the 100 replications

experienced model convergence problems. Any replicates that failed to converge were not

included in our evaluation of model performance. We evaluated bias of density estimates

using the mean of the relative difference, which was calculated as the average of the relative
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difference between true density and each estimate (
1
n

P100

i¼1
ðD̂ � DtruthÞ

Dtruth
; n = 100). We assessed preci-

sion of estimators using the estimated coefficient of variation of the density estimates (sD̂=
�̂D),

calculated from the simulated sampling distribution of D̂ for each scenario.

Results

Performance of SCR density estimators under the existing study design was not robust across

plausible values of model parameters represented by our simulation scenarios. The absolute

value of bias of bear density estimates ranged over 14 orders of magnitude among scenarios,

from 0.03–6.6 x 1012, and the coefficient of variation of density estimates ranged from 1–975%;

only 6% of our simulated density estimates were < 5% biased and only half of all scenarios had

a CV< 10% (Table 1). In addition, 74% of scenarios experienced convergence problems,

where� 1 simulation iteration either did not converge due to a likelihood maximization error

or could not calculate variances of the parameter estimates (Table 1). Bias and precision of

density estimates were affected by all three model parameters, as well as sampling effort. As the

magnitude of the parameters and sampling effort increased, accuracy often improved (Figs 2–

5). For instance, in scenarios with medium g0 and σ values, as bear density and sampling effort

increased, bias reduced by up to 60% (Fig 2) and CV reduced by up to 70% (Fig 4; Table 1).

Similarly, bias declined, and precision improved as σ increased. These findings were generally

consistent among small g0 scenarios (S1 Table), and among medium g0 scenarios when σ was

held to small or medium values (Figs 2 and 4). However, these patterns were not consistent at

large values of the detection parameters, as the influence of σ and g0 became dominant over

the effects of increased D and k (Figs 2–5).

The parameters of the detection process (σ and g0) governed the behavior of bear density

estimates more strongly than D or k. When σ or g0 were simulated at large values (individually

or in concert), the influence of D and k on bias was typically negligible or nonexistent (Figs 2

and 3), and the influence of D and k on precision was also notably less (Figs 4 and 5). More-

over, bias and precision did not always improve when σ and g0 were at medium-high values

and dominated the behavior of density estimates. Instead, density estimates were often very

precise but biased, and g0 and σ interacted to determine the magnitude and direction of bias

(Figs 2 and 4; Figs 3 and 5). Scenarios with large g0 and medium σ produced precise estimates

(average CV< 2%, Table 1) with low bias (3%, Table 1), regardless of the value of D or k. How-

ever, when σ increased to large values and g0 was also large, density estimates remained precise,

but mean bias was positive at 11–13% (Fig 3).

Discussion

Since their development, use of SCR models for density estimation has become increasingly

widespread. The utility of these methods is exciting, yet their application has arguably out-

paced methodical testing of their performance under pragmatic field applications [31]. Repur-

posing previously collected CMR data into SCR models is among these pragmatic and

increasingly common applications. We demonstrate that black-bear density estimates were

not robust over a range of plausible true population and detection parameter values when sim-

ulated under a large-scale, non-spatial CMR design used to estimate black bear abundance in

northern Michigan. Instead, the expected performance of estimators changed strongly with

the values of model parameters that are generally unknown to researchers when they are

repurposing CMR field data. Moreover, our findings reveal that the model parameters inter-

acted to determine the expected performance of density estimators. Although not all CMR

data will be poorly suited for SCR analyses, we demonstrate that a snare array which previously
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Table 1. Percent bias (mean relative difference) and coefficient of variation of 100 density estimates from a SCR model, and number of failed replications (out of

100) for 54 simulated scenarios.

g0 σ (km) D (100km-2) k (wks.) Bias (%) CV (%) No. failed replications

0.005 2 10 3 6.62E+14 360 81

0.005 2 10 5 7.02E+12 284 78

0.005 2 10 7 4.73E+14 547 70

0.005 2 50 3 4.25E+14 465 71

0.005 2 50 5 2.34E+12 663 56

0.005 2 50 7 412696 854 27

0.005 5 10 3 2.64E+11 736 36

0.005 5 10 5 74 89 9

0.005 5 10 7 2.23E+13 975 5

0.005 5 50 3 56 86 9

0.005 5 50 5 25 56 2

0.005 5 50 7 13 29 2

0.005 12 10 3 15 25 1

0.005 12 10 5 9 15 0

0.005 12 10 7 7 10 0

0.005 12 50 3 7 10 0

0.005 12 50 5 7 7 3

0.005 12 50 7 7 4 1

0.02 2 10 3 1236652 708 47

0.02 2 10 5 1.03E+09 943 11

0.02 2 10 7 16 60 2

0.02 2 50 3 29 62 9

0.02 2 50 5 25 68 1

0.02 2 50 7 8 35 2

0.02 5 10 3 17 41 3

0.02 5 10 5 7 22 3

0.02 5 10 7 5 15 1

0.02 5 50 3 7 13 1

0.02 5 50 5 5 8 3

0.02 5 50 7 4 5 0

0.02 12 10 3 7 5 1

0.02 12 10 5 7 4 5

0.02 12 10 7 8 3 2

0.02 12 50 3 7 3 4

0.02 12 50 5 7 2 6

0.02 12 50 7 7 1 7

0.2 2 10 3 -2 16 0

0.2 2 10 5 -4 11 0

0.2 2 10 7 -5 8 0

0.2 2 50 3 -4 6 0

0.2 2 50 5 -5 4 0

0.2 2 50 7 -6 3 1

0.2 5 10 3 3 4 1

0.2 5 10 5 3 2 0

0.2 5 10 7 3 2 1

0.2 5 50 3 3 1 5

0.2 5 50 5 3 1 4

(Continued)
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Table 1. (Continued)

g0 σ (km) D (100km-2) k (wks.) Bias (%) CV (%) No. failed replications

0.2 5 50 7 3 1 3

0.2 12 10 3 11 2 16

0.2 12 10 5 12 2 0

0.2 12 10 7 13 1 0

0.2 12 50 3 11 1 14

0.2 12 50 5 12 1 0

0.2 12 50 7 13 1 0

Each scenario was defined by the combined values of 3 model parameters (σ, g0, and D) and k, the number of weeks sampled.

https://doi.org/10.1371/journal.pone.0236978.t001

Fig 2. Dot and whiskers showing the mean (bias) and interquartile range of the percent relative differences of

SCR density estimates from each of 18 simulated scenarios with g0 = 0.02. The x-axis values indicate the simulated σ
(km) value for each scenario, while dot shapes identify the simulated sampling effort, k (weeks). Black dot and whisker

elements are scenarios simulated with D = 10 bears/100 km2; grey elements are scenarios simulated with D = 50 bears/

100 km2. The number of replications included in these calculations varied among scenarios because only replications

that successfully converged were retained and convergence rates differed among scenarios. Some dot and whisker

elements are not displayed due to extreme values of density estimates within that scenario; summary statistics of these

scenarios are available in S1 Table. The dashed line indicates the estimate and true density were equal (relative

difference = 0).

https://doi.org/10.1371/journal.pone.0236978.g002
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yielded reasonable CMR abundance estimates [33,34] can produce biased and imprecise esti-

mates of density using SCR under a wide range of plausible conditions. Consequently, we urge

caution when repurposing existing CMR data that were not collected for density estimation

via SCR, even if those CMR data produced reliable abundance estimates, and emphasize the

importance of critically evaluating the suitability of existing study designs before repurposing

data for additional inferences.

We demonstrated that density estimates were not robust under the existing broad-scale

sampling grid employed for black bears in northern Michigan. While a few simulation scenar-

ios produced estimates with minimal bias and high precision, researchers will generally not

know if data from a repurposed field study were generated under conditions where estimates

were reliable. The underlying detection parameters are typically unknown, as is the density of

the study organism, and inference about these quantities is often the primary motivation for

applying SCR in the first place. Other recent studies have also questioned the robustness of

Fig 3. Dot and whiskers showing the mean (bias) and interquartile range of the percent relative differences of

SCR density estimates from each of 18 simulated scenarios with g0 = 0.2. The x-axis values indicate the simulated σ
(km) value for each scenario, while dot shapes identify the simulated sampling effort, k (weeks). Black dot and whisker

elements are scenarios simulated with D = 10 bears/100 km2; grey elements are scenarios simulated with D = 50 bears/

100 km2. The number of replications included in these calculations varied among scenarios because only replications

that successfully converged were retained and convergence rates differed among scenarios. The dashed line indicates

the estimate and true density were equal (relative difference = 0).

https://doi.org/10.1371/journal.pone.0236978.g003
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SCR model performance in field scenarios and demonstrated the complexity of estimator per-

formance. For example, Gerber and Parmenter ([41]) evaluated performance of SCR estima-

tors applied to a known small mammal population and identified consistent bias in density

estimates. Notably, this bias occurred despite a large sampling effort that was implemented

over a small study area (~ 0.04 km2). While we used a different trapping design and target spe-

cies, both our results and Gerber and Parmenter ([41]) demonstrate that estimates from SCR

models based on repurposed field data may lack robustness (i.e., reliable estimates may only be

generated under a narrow range of conditions), and reveal that estimator performance for a

given grid design is sensitive to attributes of the population under study. This sensitivity is

likely driven in part by our finding that true parameter values can interact to govern perfor-

mance of density estimators. Such interactions complicate repurposing of data using SCR

Fig 4. The percent coefficient of variation of SCR density estimates from each of 18 simulated scenarios with g0 =

0.02. The x-axis values indicate the simulated σ (km) value for each scenario, while dot shapes identify the simulated

sampling effort, k (weeks). Black symbols are scenarios simulated with D = 10 bears/100 km2; grey symbols are

scenarios simulated with D = 50 bears/100 km2. Coefficient of variation values for 2 scenarios are not displayed

because they were extreme outlier values. Summary statistics of these scenarios, including coefficient of variation

values, are available in S1 Table. The number of replications included in these calculations varied among scenarios

because only replications that successfully converged were retained and convergence rates differed among scenarios.

The dashed line indicates CV = 20%, which is the recommended coefficient of variation value for reasonable precision

of estimates [23].

https://doi.org/10.1371/journal.pone.0236978.g004
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models because the behavior of the estimator is hard to generalize. Therefore, simulation of

SCR performance under plausible scenarios is recommended prior to repurposing CR data,

especially if it is possible that data collection occurred in the context of lower detection proba-

bilities or sigma values.

We used simulation to retrospectively evaluate the suitability of data generated under a

fixed CMR study design for building SCR models because it allowed for quantification of bias

and precision of resulting density estimates over a wide range of plausible true parameter val-

ues. Previous studies that repurposed CMR data using SCR typically compared SCR density

estimates to ad-hoc density estimates generated from the non-spatial CMR analyses [26,28,35].

Because truth is unknown, however, these comparisons only evaluate similarity of the esti-

mates, rather than bias or precision. Thus, while such studies often conclude that SCR estima-

tors are adequate, if not superior to non-spatial CMR estimators under these conditions, these

conclusions lack important context because the distance between true density and either the

Fig 5. The percent coefficient of variation of SCR density estimates from each of 18 simulated scenarios with g0 =

0.2. The x-axis values indicate the simulated σ (km) value for each scenario, while dot shapes identify the simulated

sampling effort, k (weeks). Black symbols are scenarios simulated with D = 10 bears/100 km2; grey symbols are

scenarios simulated with D = 50 bears/100 km2. The number of replications included in these calculations varied

among scenarios because only replications that successfully converged were retained and convergence rates differed

among scenarios. The dashed line indicates CV = 20%, which is the recommended coefficient of variation value for

reasonable precision of estimates [23].

https://doi.org/10.1371/journal.pone.0236978.g005
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SCR or ad-hoc density estimates is unknown. Consequently, understanding of the limitations

of SCR density estimators generated using repurposed CMR data collected over large scales is

ambiguous.

CMR studies for populations of wide-ranging organisms, like large mammals, require trap-

ping arrays to cover a large spatial extent. Maintaining an array with spacing small enough to

ensure both detections of individuals at multiple traps and coverage of the trapping grid over a

large geographic area requires many traps and is hindered by restricted land access (either in

terms of patchy habitat or ownership patterns). Thus, broad-scale studies of large mammal

populations using SCR are difficult to implement because of financial and logistical constraints

[25], and our study demonstrates the limitations of such challenges for black bears in Michi-

gan. Also, because our simulations assumed a homogenous Poisson point process, the com-

plexity of needing to accurately represent spatial changes in density with the sampling array

was not a factor in our results. The model performance we observed could be exacerbated

under field conditions where such heterogeneity is present, if the grid arrangement is unable

to capture spatial changes in density. SCR models are generally believed to be flexible and

robust to variation in array design as long as trap spacing is smaller than the average home

range of the study species [21,25]. However, these conclusions were drawn from arrays with

relatively regular (or clustered) trap spacing compared to the array used in our study. Such reg-

ularity is not possible over large study areas in many regions, like northern Michigan, where

both the habitat and land ownership patterns are heterogeneous. In such cases, gaps and irreg-

ularities emerge in the grid because regular trapping arrays encompass non-habitat or private

lands where trapping is not possible. In our study, this reality likely drove insufficient numbers

of spatial recaptures, thereby limiting accurate estimation of the detection process parameters

[21, 24]. Importantly, the original CMR study of black bears in northern Michigan was able to

produce reasonable abundance estimates despite these challenging conditions; however, our

findings demonstrate the limitations of producing reliable spatially explicit density estimates

under the existing study design. To our knowledge the performance of SCR models under

such irregular, but pragmatic, large-scale designs has had limited assessment via simulation.

While our simulations demonstrated a lack of robustness for density estimates, confidence

can be increased by pairing auxiliary information with simulation results. We recommend

simulating SCR density estimation under biologically plausible combinations of parameters

for the system and sampling design of interest. Then, if performance varies strongly among

scenarios, investigators can use auxiliary data to approximate where the study population lies

relative to the simulated parameter space. For instance, σ can be converted from a home range

estimate; the 95% home range radius = σ � sqrt (5.99) [27,35]. Approximating population den-

sity from auxiliary data is more challenging; presumably repurposing data is desirable because

existing knowledge of population density is limited. However, it may be possible to approxi-

mate plausible bounds of density from harvest [34]or trail-camera data, which can be effective

for estimating population sizes of species that can’t be individually identified over large spatial

scales [42–46], or from ad-hoc density estimates generated from non-spatial CMR model

abundance estimates. If simulation reveals performance is not robust to changes in population

parameter combinations and auxiliary data are not available, we suggest that collection of

these data should be a priority when repurposing traditional CMR data. Alternatively, modi-

fied study designs can be explored via simulation that may facilitate reliable future density esti-

mation using SCR methods [21,24,25]. In our case study auxiliary data were available, which

suggested CMR data collection likely occurred in a scenario with low bear density, medium σ,

and medium sampling effort (S7 Appendix). In our simulations, that combination of parame-

ters resulted in density estimates with a positive bias between 3 and 74% and a coefficient of

variation of 2–89% (Table 1).
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Conclusions

Successful repurposing of CMR data from large-scale studies using SCR models may require a

sampling design that is challenging to implement for many combinations of land access and

habitat heterogeneity that are common to field studies of large mammals. Yet the perception

that SCR estimators are generally robust and the advantages that spatially explicit density

estimates offer for decision making may encourage application of these methods without rec-

ognition of the need to critically evaluate the suitability of existing data. This is particularly

concerning for estimation of threatened, rare, or elusive populations where even small

amounts of bias (such as the minimum bias observed here) could have negative consequences

for management of these species. Thus while repurposing data may provide a respite from

logistical and financial limitations common to ecological studies, and some CMR study

designs are likely to result in accurate SCR density estimation, we warn against the casual

repurposing of CMR data using SCR methods and emphasize the need to formally assess esti-

mator performance under realistic field conditions and sampling designs.
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fies 5 sampling occasions.

(TXT)

S3 Appendix. Trap file for SECR simulations. Contains the location of each snare and speci-
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