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SUMMARY

In a group of N individuals, carrying an infection with prevalence �, the exact probability P of failing in
detecting the infection is evaluated when a diagnostic test of sensitivity s and speci�city s′ is carried out
on a sample of n individuals extracted without replacement from the group. Furthermore, the minimal
number of individuals that must be tested if the probability P has to be lower than a �xed value is
determined as a function of �. If all n tests result negative, con�dence intervals for � are given both
in the frequentistic and Bayesian approach. These results are applied to recent data for severe acute
respiratory syndrome (SARS). The conclusion is that entry screening with a diagnostic test is rarely an
e�cacious tool for preventing importation of a disease into a country. Copyright ? 2005 John Wiley
& Sons, Ltd.
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INTRODUCTION

The increased mobility of people causes frequent importation of diseases. Some of them had
disappeared many years ago from Western countries and have new outbreaks, some has been
recently recognized, like acquired immune de�ciency syndrome (AIDS), bovine spongiform
encephalopathy (BSE) and severe acute respiratory syndrome (SARS).
A possible method to prevent such importation is to check at entry points into a country

passengers coming from zones where a dangerous disease is known to be present. This practice
is not always useful because of the ways in which the disease is transmitted (e.g. in the case
of AIDS) or it is realizable but very expensive. Sometimes, in the case of outbreaks of a
new disease, diagnostic tests are at �rst not available. Furthermore, even if a diagnostic test is
available, there is a positive probability of not detecting the infection because the diagnostic
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test is not perfect. Screening tests’ results and estimation of disease prevalence have arisen
considerable interest in literature. Among other studies one can remember [1–5].
In this paper one considers a �nite population of individuals coming from a risk zone

where a disease is present with prevalence �, as could be the N passengers of a train, ship or
airplane. At the border a number n6N of them undergo a diagnostic test with sensitivity s and
speci�city s′. The exact expression of the probability P of failing in detecting the infection
(as a function of s; s′; n; N and �) is calculated. The limit case of an in�nite population is
treated. The interesting inverse problem of computing the minimum number of individuals
which must be tested if the probability P has to be lower than a certain value, is also studied.
If the n results of the diagnostic tests are all negative, con�dence intervals for the prevalence

of the disease in the population are given, both in the frequentistic and Bayesian approach.
The Bayesian credible interval is especially interesting, because it takes into account prior
information of epidemiological and medical character.
The mathematical results of the present study are applied to recent data (October 2003) on

a diagnostic test for SARS [6]. The e�cacy of border screening for SARS has been evaluated
from a clinical point of view in References [7–9].

THE PROBABILITY OF FAILING TO DETECT THE INFECTION

Let N be the size of a population and R the number of subjects carrying a latent infection.
We introduce the following notation:

I = the individual is infected; �I = the individual is not infected

�=
R
N
= the prevalence of the infection

A diagnostic test would be carried out on each individual of a sample of size n extracted
without replacement from the population. The possible results of the test are

T+ = the test is positive; T−= the test is negative

A diagnostic test is perfect only in an ideal case, otherwise there are false negative and
false positive results. The following probabilities are of interest:

P(T+|I)= s; P(T−|I)=1− s

P(T+| �I)=1− s′; P(T−| �I)= s′

s is the sensitivity of the test, i.e. the probability of a positive test result when the individual
is indeed infected (true positive). 1− s is the probability of a false negative result. s′ is the
speci�city of the test, i.e. the probability of a true negative result. 1− s′ is the probability of
a false positive result. One considers also the predictive value of the positive test (PPV) and
of the negative test (NPV):

PPV=P(I |T+); NPV=P( �I |T−)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2669–2679
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According to Bayes’ theorem they can be expressed in terms of the prevalence �, the sensi-
tivity and the speci�city as follows:

PPV=
�s

�s+ (1− �)(1− s′)

NPV=
(1− �)s′

(1− �)s′ + � (1− s)
If in the sample of size n there are k infected individuals (k=0; 1; : : : ; m where m=

min(n; R)), the probability of extracting such a sample without replacement is the hyper-
geometric probability:

h(k; n;R;N )=

(R
k

)(N−R
n−k

)
(N
n

)
Under the assumption that the results of the tests are independent, the probability that the n
diagnostic tests are all negative, i.e. that the infection is not detected, is given by

Pn(s; s′; R; N )=
m∑
k=0
h(k; n;R;N )(1− s)ks′n−k (1)

This formula can be generalized in order to �nd the probability that from the n tests some
are positive (see Reference [10]).
In the special case of a perfect test (s= s′=1) Equation (1) reduces to the probability that

the sample does not contain any infected individual:

Pn(1; 1; R; N )=

(N−R
n

)
(N
n

)
Carrying out the sum in Equation (1) one obtains:

Pn(s; s′; R; N )=

(N−R
n

)
(N
n

) s′n 2F1

(
−n;−R;N − R− n+ 1; 1− s

s′

)
(2)

2F1(�; �; �; z) is the hypergeometric series, the properties of which are well known and tabu-
lated [11]:

2F1(�; �; �; z)=1 +
��
� · 1 z +

�(�+ 1)�(�+ 1)
�(�+ 1)1 · 2 z2 + · · ·

The series terminates if either � or � or both are equal to zero or to a negative integer, as in
Equation (2) where the number of terms is m+ 1.
In the limit N; R→ ∞ with �xed �nite prevalence �, Equation (2) reduces to the binomial

limit:

Pn(s; s′; �)= (�(1− s) + (1− �)s′)n (3)

This result can be obtained either from Equation (1) by some algebra or from the following
argument. The result of a test can be negative for two reasons: either the individual is infected
but the test shows wrong (with probability �(1− s)) or the individual is not infected and the
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Figure 1. The probability P of not detecting the infection for various sizes N of the population (with
�xed prevalence �=0:05 and sample size n=10; 25) as a function of: (left) the sensitivity s with

�xed speci�city s′=0:95; (right) the speci�city s′ with �xed sensitivity s=0:95.

test gives the right result (with probability (1−�)s′). The fact that the n tests are independent
leads directly to Equation (3).
In Equation (3) the probability of missing an infection in a population is computed ex-

tracting the sample with replacement (Bernoullian extraction). Carrying out a diagnostic test
extraction without replacement is more appropriate. In the limit of an in�nite population ex-
traction without replacement is in practice equivalent to the bernoullian one, but for a �nite
population important di�erences can arise.
In Figure 1, the exact results obtained from Equation (2) are compared with the binomial

limit (3). One can see that, using the binomial limit, the probability P is overestimated and the
error is large when the size N of the population is small. The probability P for various sizes
N of the population (with �xed prevalence �=0:05 and sample size n=10; 25) is plotted as
a function of the sensitivity s with �xed speci�city s′=0:95 (left side’s diagrams) or, vice
versa, as a function of s′ with �xed s=0:95 (right). From the plots on the left side of the
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Figure 2. For �xed N =200, the size n of the sample which must be tested in order to have a
probability P=0:01 of not detecting the infection, is given in dependence on the prevalence �. The
�ve curves correspond to di�erent values of: (left) the speci�city s′ with �xed s=0:95; (right) the

sensitivity s with �xed s′=0:95.

�gure, one can see that P is higher for small values of s, because the probability of false
negative results decreases with s. On the right side of the �gure one can see that P decreases
with s′ since the probability of false positive results increases as s′ decreases. In the case of
infectious diseases a high sensitivity is advisable even at the expense of a lower speci�city.
However, if the prevalence � is low, the positive predictive value of the test decreases quickly
when the speci�city gets lower, so that testing is not e�ective for a clinical diagnosis.
Equation (2) can also be used to solve the inverse problem of computing the size n of

the sample needed to have a �xed probability P of not detecting the infection as a function
of the unknown prevalence �, given the size N of the population, the sensitivity s and the
speci�city s′ of the diagnostic test. Equation (2) cannot be solved analytically for n so that
one has to employ computer facilities.
In Figure 2, for �xed population size N =200 and required probability P=0:01, the size n

of the sample is determined as a function of the prevalence �. On the left side of the �gure
the curves are given for di�erent values of the sensitivity with �xed speci�city and vice versa
on the right side. As expected from the analysis of Figure 1, the number n of subjects which
must be tested in order to reach the required probability P increases with s′ when s is �xed.
The right side of Figure 2 shows that n does not change appreciably for su�ciently low
prevalences in dependence on s, at least for values of s of practical use.
In Figure 3, the di�erence between the values of n obtained with the approximate binomial

expression and the exact values given on left side of Figure 2 is shown as a function of �.
In the binomial limit the value of n is always overestimated. The error is larger when the
prevalence is low.

AN APPLICATION TO THE RAPID DIAGNOSIS OF SARS

SARS was recognized in China in November 2002, and the culprit agent, a novel strain
of coronavirus (SARS-associated CoV), was identi�ed in April 2003 [12, 13]. The 7th of
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Figure 3. The di�erence between the exact results for n given in the left side of Figure 2 and the
corresponding approximate results obtained in the binomial limit. The insert is a magni�cation of the

low prevalence region of the whole picture.

August 2003, statistics of World Health Organization (WHO) reported that SARS had infected
8422 people and caused 916 deaths worldwide. In Hong Kong it infected 1755 people and
killed 300.
Recently, reverse transcription-PCR protocols of two WHO SARS network laboratories

were evaluated for the rapid diagnosis of the SARS-associated CoV in Hong Kong [6]. The
resulting speci�city of these PCR assays was 100 per cent, while for sensitivity the best results
for the two laboratories were 71 and 79 per cent, respectively. The low sensitivity is related
to the high mutation rate of the coronavirus, which makes di�cult to identify its presence. It
is a general problem which cannot be easily solved.
Let us suppose that an airplane, carrying N =200 passengers, arrives from a region where

SARS prevalence is estimated to be around 3 per cent. A diagnostic test with speci�city s′=1
and sensitivity s=0:75 is available (the values are chosen in agreement with Reference [6]).
From Figure 4 one can see that, if n=80 passengers are tested, the probability P of missing
SARS is estimated from 10 to 20 per cent. Vice versa, requiring P to be around 1 per cent
the number n of passengers that must be tested is about 140. If P is required to be less
than 0.001, the number of passengers tested must be greater than 180. If the airplane comes
from a region where SARS prevalence is 1 per cent, even if all 200 passengers are tested
the probability P of not detecting SARS amounts from 5 to 10 per cent. The high values
come from the fact that the sensitivity of the diagnostic test is low and many dangerous false
negative people cannot be prevented from di�using the infection.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2669–2679
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Figure 4. Contour plot of the probability P of not detecting the infection in a population of N =200
individuals, as a function of the number of infected individuals (lower axis) or of the prevalence of

the infection (upper axis) and of the size of the sample tested (vertical axis).

One could consider the possibility of testing pools of blood, instead of performing single
diagnostic tests. In such a way costs could be saved. However the pooling procedure is not
so appealing when the speci�city of the diagnostic test is s′=1 [5], as in our case, because
in this situation the results of pool testing is always worse than the ones of individual testing.
Furthermore, pool testing is very useful in assessing the prevalence of a disease in a population
(when this prevalence is supposed to be low), but not for individual diagnosis, which is the
target in the case of SARS.

CONFIDENCE INTERVAL FOR THE PREVALENCE: FREQUENTISTIC AND
BAYESIAN APPROACH

Once the n diagnostic tests have been carried out and found all negative, the estimated preva-
lence is �̂=0. The con�dence interval gives an idea of how reliable is this result. For a
generic value of the prevalence � the expression of the con�dence interval is given for ex-
ample in Reference [14, p. 117]. This calculation is not appropriate when the proportion �̂ is
obtained as a result of a non-perfect diagnostic test. In this case the frequentistic con�dence
interval must be constructed with the correction given in Reference [5]. An alternative ap-
proach is the Bayesian credible interval, which allows to take into account prior information
of epidemiological and medical type.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2669–2679
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Table I. Comparison between the upper limits of the con�dence intervals for the
prevalence � and the credible intervals, obtained from the Gibbs sampler.

CI for proportion CI from Gibbs sampler

n 95 per cent 99 per cent median 95 per cent 99 per cent

20 0.225 0.310 0.014 0.070 0.099
40 0.117 0.165 0.011 0.055 0.077
60 0.079 0.113 0.087 0.045 0.064
80 0.060 0.085 0.007 0.038 0.055
100 0.048 0.069 0.006 0.033 0.049
120 0.040 0.058 0.006 0.029 0.042
140 0.035 0.050 0.005 0.026 0.037
160 0.030 0.043 0.004 0.023 0.034
180 0.027 0.039 0.004 0.022 0.032
200 0.024 0.035 0.004 0.020 0.028

Lower limits are 0 in all cases.

One should point out that the meaning of frequentistic and Bayesian intervals is di�erent.
A proportion lies actually in its 95 per cent Bayesian interval with probability 95 per cent,
while from a frequentistic perspective one assumes that, constructing for many samples the 95
per cent con�dence intervals, approximately 95 per cent of them will contain the proportion
value.
In the Bayesian approach information available at the start of the study leads to speci�-

cation of the prior distribution of the parameters. When data are collected and provide new
information, Bayes’ rule is used in order to compute the posterior distribution. Appropriate
quantiles of the posterior probability distribution are used for inference. Direct calculation
of posterior distributions can be di�cult. The Gibbs sampler (see Appendix A), an iterative
Markov chain Monte Carlo technique for approximating posterior densities, is widely used in
medical literature.
In this section the 95 and 99 per cent credible intervals obtained from the posterior distri-

bution of the prevalence � (given the informative prior distribution described below) and the
frequentistic results for the con�dence interval of � are compared.
Let us suppose that the prevalence of SARS in the zone from which air passengers come

from is around 3 per cent, with a 95 per cent con�dence interval from 0 to 10 per cent.
The corresponding informative prior distribution is given by a beta density with �=1 and
�=35 (see Appendix A). At the airport n passengers are tested and all tests give a negative
result. Among them there is a unknown number k of false negatives. Given these data, it
is possible to obtain the posterior distribution of the prevalence using the Gibbs sampler
algorithm (Appendix A).
In Table I the 95 and 99 per cent credible intervals for � are listed for some values

of n, along with the corresponding frequentistic con�dence intervals, which coincide with the
Bayesian credible intervals computed assuming a non-informative (uniform) prior distribution.
As expected, informative credible intervals are narrower. The di�erence decreases as the num-
ber of tests carried out increases, because prior information gets superseded by the likelihood
of data.
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From this table, one can see that testing n=80 passengers who turn out to be all negative,
the prevalence � of SARS is in the credible interval [0; 0:038] with 95 per cent probability. The
corresponding con�dence interval is [0; 0:060]. The frequentistic estimate of the prevalence is
0, while the Bayesian estimate is 0.007, the median of the posterior distribution. In the case
when all 200 passengers are tested and found negative, the 95 per cent credible interval is
[0; 0:020]. The Bayesian estimate of the prevalence is 0.004.

DISCUSSION

Border screening against emerging infectious diseases would be a desirable disease control
measure, with a privileged role in preserving public con�dence and limiting bad economic
consequences. However, before organizing a screening protocol, one should evaluate the pos-
sible impact of such a screening on international tra�c and trade, the cost of the procedure
in terms of personnel and logistics needed, and its real e�ectiveness.
In the case of the SARS outbreak in 2003, a screening programme was organized at

the border entry of several countries, such as Canada, New Zealand, Hong Kong, Australia
and Italy [7–9]. Symptomatic passengers, coming from SARS-a�ected areas (i.e. Vietnam,
Taiwan, Singapore, Hong Kong, China, Canada and the Philippines), were sent to a quaran-
tine team and, after further investigations, eventually assessed at hospitals. The e�cacy of this
programme turned out to be low and the sensitivity and speci�city of the testing procedure
was not easily assessable.
In this paper the probability of missing an infection was evaluated in the hypothesis that

a diagnostic test with known sensitivity and speci�city could be used directly on the airport
on a random sample of passengers (including pre-symptomatic ones). This probability was
found to be high if the prevalence of the disease was low and the diagnostic test used had a
sensitivity di�erent from one.
Therefore, before planning an expensive screening program at entry points of a country, one

should �rst of all have a highly sensitive screening test at one’s disposal. This is not always
the case when a disease outbreaks. Furthermore, the procedure of testing should be the less
invasive as possible, in order to prevent a dramatic decrease of tourism with heavy economic
consequences, not justi�ed by the real impact of a low prevalence disease. It appears that, in
most cases, border entry screening is more e�ective in keeping public concern low than in
stopping the infection to enter a country. A similar conclusion can be found in References
[8, 9].

APPENDIX A: THE GIBBS SAMPLER

The Gibbs sampler is an important tool in the Bayesian approach to compute posterior dis-
tributions [15]. When the posterior distribution of a proportion � is sought, a beta density is
usually taken as prior distribution:

f(�; �; �)=
1

B(�; �)
��−1 (1− �)�−1; 06�61; �; � ¿ 0

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2669–2679
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where B(�; �) is the beta function evaluated at (�; �). The result for the posterior distribution is
again a beta density with di�erent parameters. The non-informative uniform prior distribution
is a particular case with �=�=1. If the prior distribution is supposed to be informative, and
an expected value for � is given with its 95 per cent con�dence interval, the parameters � and
� are chosen in such a way that the mean value of the beta distribution equals the expected
value of � and the con�dence intervals match. For example the case considered in the text,
where the expected value of � was 0.03 (95 per cent con�dence interval from 0 to 0.10), can
be well reproduced with parameters �=1, �=35.
Let k be the number of false negatives among the n individuals in the sample. The condi-

tional distributions of k and �, given the values of all other parameters, can be speci�ed as
follows [16]:

k|n; �; s; s′ ∼Binomial
(
n;

�(1− s)
�(1− s) + (1− �)s′

)

�|n; k; �; �∼Beta(k + �; n− k + �)

An arbitrary starting value is chosen for �. Then a point is drawn from the conditional
distribution of k. This value is used in the conditional distribution of �, from which another
value is drawn. The cycle is repeated a large number of times (in our case 20 500), so that
the random samples generated for each parameter can be regarded as random samples from
their correct unknown marginal distribution [15, 16]. The �rst 500 points are discarded from
the samples, since their aim is to assess convergence.
The Monte Carlo code was run using R version 1.9.1 [17].
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