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Abstract

Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong
functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness
can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and
inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective
neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak
compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus
selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input
and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused
by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the
effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is
investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to
inhibitory population. Balanced networks exhibit the ‘‘paradoxical’’ effect: an increase in excitatory drive to inhibition leads
to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the
balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.
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Introduction

Across different modalities, sensory cortical neurons share a

common response pattern: they respond sparsely, only a few

neurons are active at any time, and selectively, a neuron responds

to only few stimuli [1]. This has been observed in visual cortex [2–

5], in olfactory cortex [6–8], in auditory cortex [9,10] and in

somatosensory cortex [11,12].

On the theory side, many network models were proposed to

explain the mechanism for generation and maintenance of

selectivity and sparseness, especially for the orientation selectivity

observed in visual cortex. Motivated by the existence of

orientation columns observed in many species, these models

predict that neurons with similar orientation preference are

connected to each other with higher probability or with higher

connection strengths [13–20]. Similar structured, functionally

specific connectivity schemes have also been proposed in auditory

cortex [21] and somatosensory cortex [22].

On the other hand, there are cases where sparse and selective

responses are observed, while no significant preferential connec-

tivity between cells with similar stimulus tuning can be detected

experimentally. This is true in olfactory cortex [23–29] or in visual

cortices of mice at eye-opening [30]. These examples motivate an

important theoretical question: Can selectivity and sparseness be

generated and maintained in randomly connected networks? Is it

necessary for connection probabilities or strengths to be specifi-

cally chosen as a function of stimulus tuning?

To address this question, we consider a generic, randomly and

sparsely connected network of excitatory and inhibitory spiking

neurons, driven by random projections from an input layer. We

require both the probability of connections and the strength of

synapses between neurons to be unstructured. We found that

despite its random architecture the network can exhibit high

stimulus selectivity and sparse population response, if the network

is in the balanced state [31,32]. Interestingly, functional specificity

in connectivity emerges in the network, even if the network is

randomly connected. We elucidate the mechanism behind

generation of selectivity and sparseness, discuss their dependence

on model parameters, show that it is possible to achieve a balanced

state with unselective inhibition, investigate the network’s response

to mixtures of stimuli, discuss the paradoxical behavior of network

response to changes in external drive to inhibitory population, and

finally compare the network behavior to random but unbalanced

networks.

Some of this work was presented in abstract form [33].
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Methods

Model Network
Network architecture. We consider a randomly connected

recurrent network of NE excitatory and NI inhibitory leaky

integrate-and-fire neurons driven by feedforward input from a

population of N0 Poisson spiking neurons. Throughout the paper

we denote population indices with capital letter superscripts,

neuron indices with lower case subscripts and stimulus indices with

Greek subscripts. For example, r0
i,m refers to the firing rate of the

i th input-layer neuron to mth stimulus.

In our network, a neuron of population A [ E,If g receives a

synapse from a neuron of population B [ E,I ,0f g with probability

K=NB, such that a postsynaptic neuron receives on average K

inputs from each presynaptic population. In the simulations

presented, unless stated otherwise, K~1000, NI~5000, NE and

N0 are 20000.

Activity of input neurons. Input neurons fire with Poisson

statistics with a rate that depends on the stimulus. Each stimulus,

indexed by subscript m~1,:::,Ns, generates a random input firing

rate pattern, r0
i,m. Each is drawn i.i.d., from a distribution density

F rð Þ~ 1{pð Þd rð Þzpf rð Þ, ð1Þ

where f is an exponential distribution. For numerical stability we

bound the exponential distribution to a maximum value 150 Hz.

In the simulations, unless stated otherwise, we used Ns~50
stimuli, p~0:5 and a mean input population firing rate of

10.16 Hz.

Single-neuron dynamics. The subthreshold membrane

potential dynamics of a neuron i of population A [ fE,Ig, VA
i ,

satisfies

CA
M

dVA
i

dt
~{gA

L VA
i {VL

� �
zIA

syn,i{dAEIE
a,i, ð2Þ

where VL is the leak potential, IA
syn:i is the total synaptic current,

and IE
a,i is an adaptation current which we only include for

excitatory neurons. The dynamics of the adaptation current

between spikes is given by

ta
dIE

a,i

dt
~{IE

a,i: ð3Þ

When the voltage reaches Vth a spike is produced, voltage is reset

to VL, and the adaptation current is increased by DIE
a .

Total synaptic input current is given by

IA
syn,i tð Þ~

X
B~0,E,I

XNB

j~1

MAB
ij

�JJABEB
j tð Þ, ð4Þ

where MAB
ij [ 0,1f g is the random connectivity matrix and �JJAB

are the strengths of non-zero synapses. The postsynaptic currents

EB
j tð Þ are linear sums of the contributions from individual

presynaptic spikes given by a difference of exponentials,

e tð Þ~ 1

t1{t2
e{t=t1{e{t=t2

� �
, tw0: ð5Þ

Synaptic weights �JJAB depend on K , and are parameterized in two

different ways: Weak synapses scenario: �JJAB~JAB=K , where JAB are

independent of K , and strong synapses or balanced network scenario:
�JJAB~JAB=

ffiffiffiffi
K
p

.

Single neuron parameters. We used CE
M~CI

M~1mF=cm2,

gE
L~gI

L~0:05mS=cm2 which led to tE~CE
M=gE

L~20ms,

tI~CI
M=gI

L~20ms. Other time constants were ta~100ms,

t1~3ms, t2~1ms. Leak potential was chosen to be

VL~{65mV , spiking threshold was Vth~{50mV , excitatory and

inhibitory reversal potentials were VE~0mV and VI~{80mV
respectively. Synaptic coupling parameters for the strong synapses

scenario were chosen to be JE0~4:846 VE{VLð ÞgE
L t1, JI0~

3:808 VE{VLð ÞgI
Lt1, JEE~0:462 VE{VLð ÞgE

L t1, JIE~1:270 VEð
{VLÞgI

Lt1, JEI~10:500 VI{VLð ÞgE
L t1, JII~9:500 VI{VLð Þ

gI
Lt1. We note that JEI and JII are negative. Adaptation current

was increased at each spike by DIE
a ~0:1 Vth{VLð ÞgE

L .

Simulations. Model equations were integrated using a first

order Euler method with 0.05 ms time steps. We verified the

accuracy of results by repeating some of the simulations with a

smaller time step of 0.025 ms. Simulations were generally run for

10 seconds, however depending on network firing rate, some

simulations were run up to 100 seconds to gather better statistics.

Analysis
Quantification of selectivity and sparseness. Both sparse-

ness and selectivity can be related to the shape of the probability

distribution of firing rates. The rate distribution of a population in

response to a certain stimulus (population rate distribution)

determines that population’s sparseness. Population rate distribu-

tions at different stimuli need not be identical to each other. The

rate distribution of a single neuron across the whole set of stimuli

(lifetime rate distribution) determines that neuron’s selectivity.

Lifetime rate distributions of a population are in general different

from each other and from population rate distributions [5,34].

To quantify the sparseness of a population’s response to a

stimulus m, we define a sparseness index (SPI) [34–36]

SPI~
1

1{
1

NA

1{

1

NA

XNA

i~1

rA
i,m

0
@

1
A

2

1

NA

XNA

i~1

rA
i,m

� �2

0
BBBBBBB@

1
CCCCCCCA
: ð6Þ

SPI varies between 0 (when all neurons respond identically) to 1

(when all but one neurons are silent). We defined a selectivity

index (SLI) to quantify the selectivity of a single neuron as,

SLI~
1

1{
1

Ns

1{

1

Ns

XNs

m~1

rA
i,m

 !2

1

Ns

XNs

m~1

rA
i,m

� �2

0
BBBBB@

1
CCCCCA: ð7Þ

SLI ranges between 0 (when the neuron responds identically to

all stimuli) to 1 (when the neuron responds only to a single

stimulus).

In our model, in the input layer, population rate distributions at

different stimuli (in the limit of infinite N0) and neuron lifetime
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rate distributions (in the limit of infinite Ns) are all identical. SLI

and SPI are both 1{p=2, for finite p (p~0 corresponds to all

silent neurons). Importantly, for finite p, SLI and SPI do not

depend on the parameter of the exponential distribution from

which input population activity patterns are drawn from.

Therefore, by adjusting this parameter one can alter mean input

population firing rate without changing its selectivity or sparseness.

Note that in this case the minimum selectivity that can be achieved

in the input neurons is 0:5, corresponding to thep~1 case.

Connection modulation index. Although connectivity is

random, individual neurons do not respond equally to all stimuli.

Hence, one can associate with each neuron a preferred stimulus,

namely the stimulus that elicits maximum response from this

neuron. To quantify the relation between stimulus selectivity and

fluctuations in connections between neurons, we define the

following Connection Modulation Index (CMI). Each synapse is

classified into two groups: 1) synapses between neurons with

similar preferred stimuli and 2) synapses between neurons with

dissimilar preferred stimuli. A synapse falls into the first category if

the preferred stimulus of the pre-synaptic neuron is one of the top

Ns=2 ranking stimuli of the post-synaptic neuron. Remaining

synapses are classified into the second category. A probability is

calculated for each category by dividing the number of synapses in

that category by the total number of possible synapses in the

network. Let k1 be the probability of a first category synapse and

let k2 be the probability of a second category synapse. Then CMI

is

CMI~
2 k1{k2ð Þ

k1zk2
: ð8Þ

Selectivity of membrane potential. We defined a selectiv-

ity index for a neuron’s membrane potential, Voltage Modulation

Index (VMI), as follows. Let Vps be the time-averaged membrane

potential of a neuron at its preferred stimulus and let Vav be the

time-averaged membrane potential of a neuron averaged over all

stimuli. Then,

VMI~
Vps{Vav

Vth{VL

: ð9Þ

Results

In this paper we focus on a generic network model with minimal

assumptions about the nature of the underlying sensory compu-

tation. This is a randomly connected network of excitatory and

inhibitory neurons, driven by random excitatory projections from

an external excitatory population. Stimuli generate randomly

drawn patterns of firing rates of the external population.

Selectivity and Sparseness are Naturally Generated in the
Balanced State

First we asked whether selectivity and sparseness could be

generated in a network with random connectivity, where

connection probability and the synaptic strength depend only on

whether the presynaptic neuron is excitatory or inhibitory and not

on any other feature. To see why this is challenging, consider

neurons that are innervated by random projections from the same

population of tuned neurons. When the expected number of

projections, K , is large, the difference between the inputs to the

neurons, or the difference between the inputs to each neuron

induced by different stimuli, will be much smaller, by a factor of

the order of 1=
ffiffiffiffi
K
p

, than the mean input (Fig. 1A). Thus, a special

mechanism is needed to amplify this small variation to achieve

heterogeneity and sparseness in firing rates.

We observed that this problem is solved naturally in a balanced

network [31,32]. A characteristic of balanced networks, and a key

feature of our network, is the strong synapses: only O
ffiffiffiffi
K
p� �

excitatory presynaptic neurons, out of on average O Kð Þ, are

needed to drive a neuron to firing. This is achieved by scaling

synaptic weights by 1=
ffiffiffiffi
K
p

, while the threshold is kept fixed (O 1ð Þ).
Sparse connectivity assures relatively small number of shared

inputs between neurons and hence weakly correlated firing. Then,

total synaptic current to a neuron generated by O Kð Þ presynaptic

neurons has an O
ffiffiffiffi
K
p� �

mean component and an O 1ð Þ variable

component. The mean would lead to large hyperpolarization or

depolarization in the neuron, unless the excitatory input is nearly

canceled by the inhibition. This cancelation does not require a

fine-tuning of the network as one might expect. It was shown in

[31,32] that for a range of synaptic parameters the network settles

into a balanced state, in which the mean excitation is almost

precisely cancelled by the mean inhibition leaving an O 1ð Þ mean

net input (Fig. 1B). Hence, the mean and the variable component

of a neuron’s the total input current are of the same order of

magnitude. Temporal fluctuations in the input current lead to

strong temporal fluctuations in neuron spike times, with an

interspike-interval (ISI) coefficient of variation (CV) around 1

(Fig. 1C). This mechanism was proposed to explain irregular

spiking of cortical neurons [31,32]. Here, we observe that the

input current also has neuron-to-neuron and stimulus-to-stimulus

variations, and as mentioned, these variations are comparable in

magnitude to the mean. Hence, selectivity and sparseness can be

maintained even when the mean number of connections per

neuron is large (Fig. 1D–E). A similar observation was made in

[37] for maintaining orientation selectivity in a model for a visual

cortex without a functional map. We emphasize that the same

mechanism also leads to sparse population response.

In Figure 1D, we show the histogram of single neuron’s firing

rate responses to a single stimulus. The histograms are highly

skewed. Quantifying sparseness by the Sparseness Index (SPI, see

Methods), we found that inhibition has SPI = 0.62 and excitation

has SPI = 0.72. Hence our random network is able to generate a

significantly sparse response. Note that in our model, all stimuli are

statistically identical; hence the sparseness is the same for all

stimuli. On the other hand, the quenched heterogeneity in the

Figure 1. Randomly connected balanced network generates selective and sparse response. A) Selectivity is hard to sustain in a randomly
connected network. Total input to a neuron has a small stimulus-to-stimulus variation compared to its mean, even if presynaptic neurons are highly
selective. B) Example current and voltage traces. C) Distribution of ISI CVs for excitatory (red) and inhibitory (blue) populations. Vertical dashed lines
show population means. D) Population rate distribution for excitatory (red) and inhibitory (blue) populations. Mean population firing rates are
rE~9:8Hz, rI~23:3Hz. E) Magnitude ordered response profiles of example neurons. Red is for excitatory neurons, blue is for inhibitory. F) Scatter
plot of neuron selectivity vs. response at preferred stimulus. Shown on left is the excitatory population and inhibitory population is on the right.
doi:10.1371/journal.pone.0089992.g001
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connectivity across neurons implies that in the balanced state, the

degree of stimulus selectivity varies between neurons. Fig. 1E

shows representative tuning curves of single neuron firing rates.

The distribution of Selectivity Index (SLI, see Methods) (also see

below) is broad with mean 0.68 (st.d. 0.16) for excitatory and mean

0.56 (st.d. 0.17) for inhibitory populations.

Weakly Responding Neurons are More Selective
As mentioned above, the stimulus selectivity varies considerably

across the population. We asked whether this variation is related to

the variation in the maximal firing rates. Fig. 1F shows a scatter

plot of SLI vs. the firing rate of the neurons for their preferred

stimuli, for both excitatory and inhibitory populations. Clearly

there is a significant negative correlation (in this example,

r = 20.69 for excitatory neurons and r = 20.73 for inhibitory

neurons) between the SLI and maximal firing rates. The tendency

of weakly responding neurons to have sharper selectivity can be

explained by the spiking ‘iceberg’ effect, namely that for these

neurons spike thresholds are higher than the mean membrane

potential hence, they respond only to a narrow range of stimuli.

Mechanism of Selectivity in the Balanced Network
In the balanced network, even highly selective cells have

broadly tuned inputs, as illustrated in the example of Fig. 2A,

which is further sharpened by the spike threshold. There is a

strong correlation between the selectivity of membrane potential

and firing rate (r = 0.96 for excitatory neurons and r = 0.97 for

inhibitory neurons) (Fig. 2B).

The selectivity in the net input is in general the combined effect

of increased excitation in the preferred stimulus and decreased

inhibition. Neurons tend to receive peak excitatory input at the

preferred stimulus, while peak inhibitory input is more likely to be

received at the least preferred stimulus (Fig. 2C).

Emergence of Functional Specificity in Connectivity
To further elucidate the mechanism for tuning, we examined

the correlation between the similarity in the preferred stimuli

between pairs of neurons and their connection probability. We

calculated the connection probability between excitatory neurons

with similar preferred stimuli and compared it to the connection

probability between excitatory neurons with dissimilar preferred

Figure 2. Selectivity and sparseness generation mechanism. A) On top is response to stimuli of an example neuron and on the bottom are
time-averaged synaptic currents for corresponding stimuli. B) Scatter plot of neuron selectivity vs. voltage modulation index (VMI). Shown on left is
the excitatory population and inhibitory population is on the right. C) Histogram of the similarity between peak current (excitatory current in red and
inhibitory current in blue) and preferred stimulus for excitatory population. Similarity is defined as follows. For each neuron stimuli are ordered based
on magnitude of response they elicit. Similarity is the difference in ranks of the stimulus that elicits peak excitatory or inhibitory current and the
preferred stimulus, which is ranked 1. D) Dependence of connection modulation index (CMI, see Methods) on mean number of synapses a neuron
receives from a particular population. Only E-to-E, I-to-E and 0-to-E type connections are shown. Lines are fits to the function a=

ffiffiffiffi
K
p

where a is the
fitted parameter. Solid lines show CMI for our default parameters. Dotted lines correspond to a parameter set where JEE~1:270 VE{VLð ÞgE

L t1.
Excitatory network firing rate is kept at 10 Hz by adjusting the input mean firing rate at default input SPI = 0.75.
doi:10.1371/journal.pone.0089992.g002
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stimuli, using the Connection Modulation Index (CMI) as defined

in the Methods. CMI would be zero for no difference in

connection probabilities, would be positive for bias towards

neurons with similar preferred stimuli and negative otherwise.

As depicted in Fig. 2D, the CMI is positive for the excitatory

interactions (0-.E and E-.E) but is negative for the inhibitory

interactions (I-.E). Even if a random statistical rule was used to

generate the network, functional specificity in connectivity

emerged due to the inhomogeneity in this process. However, the

magnitude of CMI falls with K , which denotes the mean number

of synapses that a neuron receives from each population. In

particular the CMI for the recurrent excitatory connections, E-

.E, is only a few percent for K in the biologically relevant regime

of few hundreds to thousands. These results indicate that the

fluctuations in the feedforward connections provide the main

source of selectivity in the output layer, while the recurrent

excitatory and inhibitory connections mainly play the role of

balancing the mean input.

Selectivity and Sparseness Depend Only on the First Two
Moments of the Input Population Activity

We asked what features of the input rate distributions determine

the network behavior. Due to the random connectivity and large

number of synapses, both neuron-to-neuron and stimulus-to-

stimulus variations of synaptic currents in the network are well

approximated by a Gaussian distribution. This fact has been used

in analytical treatments of balanced networks to come up with

statistical descriptions of network activity [13,14,31,37]. There-

fore, only the first two moments of the input population rate

distribution and lifetime rate distributions should affect the

network’s operation. We tested this observation by using a

different ensemble of activity patterns at the input layer than the

default one while matching first two moments of the two

ensembles (Fig. 3A). As expected, network SLI and SPI

distributions for both stimulus ensembles are identical (Fig. 3B,C).

Note also that in our model all stimuli are statistically identical,

hence the rate distribution (and in particular the SPI) is the same

for all stimuli (Fig. 3B).

Selectivity and Sparseness Vary with Stimulus Intensity
Dependence of sensory representations to stimulus intensity has

been a subject of many studies, e.g. [4,38–42]. We modeled a

change in stimulus intensity as a change in the mean firing rate of

the input population (and the concomitant change in the rate of

the output populations) without changing the shape of the rate

distribution, i.e., with fixed input selectivity and sparseness (see

Methods). We found that the selectivity and sparseness generated

in the network decrease with decreasing the input rate, except for

very low rates (Fig. 4A). Interestingly, this effect is opposite to what

is expected from the above-mentioned ‘iceberg’ effect. The reason

for this can be understood from a theoretical analysis of balanced

networks in the low rate limit, given in [31]. It was shown that in

the limit of infinite K , as the network rate decreases, the

magnitude of the quenched neuron-to-neuron variation in the

inputs decreases faster relative to the magnitude of stochastic

fluctuations, which become the dominant drive to raise the voltage

above spike threshold. Then, in this limit SPI should go to 0. A

similar argument could be given for stimulus-to-stimulus variations

and SLI. However for finite K this is not the case. At a very low

firing rate (of the order of O 1=
ffiffiffiffi
K
p� �

) the mean number of input

spikes to a neuron is so small that the system is no longer in the

balanced state and the temporal fluctuations are small. In this

regime the selectivity and sparseness increases to high values with

decreasing mean rate (Fig. 4B), reflecting the fact that the spiking

activity is dominated by the large static depolarization caused by a

rare stimulus.

Selectivity and Sparseness Increase Monotonically with
Sparseness of Input

We examined the relation between the sparseness and selectivity

of the input layer activity patterns and that of the output layers.

For this purpose we have varied the ratio of the standard deviation

of the rate distribution over its mean, resulting in changes in the

SLI and SPI (recall that at the input layer SLI and SPI are

identical) while the mean firing rate is held fixed. Note that this

manipulation completes the study of the dependence of balanced

network operation on input layer activity, since only first two

moments of the input layer activation statistics is important for the

balanced network’s operation and we already discussed the

variation with respect to the mean with SLI and SPI kept fixed.

In Fig. 4C we plot network selectivity and sparseness as a

function of input population selectivity. We observe that selectivity

and sparseness in the network grow with increasing input

selectivity. The results also demonstrate that SLI and SPI differ

significantly when the input is nonselective (namely all stimuli

activate uniformly all input neurons). In this limit all stimuli will

elicit the same response for each output neuron, hence SLI = 0.

On the other hand, the network can still generate significantly

sparse response (i.e., SPI is high), because randomness in

connection probability creates heterogeneity in the number of

synapses a neuron receives, which in turn leads to sparseness even

if all presynaptic input neurons fire at the same rate.

To emphasize this last point, we simulated another randomly

connected network with nonselective input. This network had

identical parameters, except that number of synapses a neuron

receives from each population was constrained to be exactly K . In

this case both SLI and SPI were 0, confirming our point.

In Fig. 4C, which is based on our default parameter set, the

selectivity of the output layer is almost always lower from the input

one, implying lack of amplification of stimulus selectivity by the

network feedforward and recurrent connections. This however

depends on the precise values of these connections. For other

parameter sets, such as shown in Fig. 4D, SLI of the excitatory

population may be larger than the input SLI. In this example,

inhibitory synapses to excitatory neurons are strengthened leading

to increased inhibitory population rate, which is positively

correlated with selectivity, as discussed in more detail below.

Also, it is possible to find cases in which the inhibitory selectivity or

sparseness is larger than the excitatory one, implying that in the

balanced network the relative selectivities of the three populations

vary with the specific values of the synaptic strength.

Selectivity and Sparseness Generated in the Balanced
State are Robust to Changes in Mean Number of
Connections

Next we asked whether the selectivity and sparseness generated

in the network are robust to changes in K . In the balanced

network, this dependence should be weak as long as Kstays small

compared to the network size, since the variation in input current

relative to the mean is O 1ð Þ even for large K [31,32,37]. This

expectation is borne out in the numerical results of Fig. 5A, which

show that the SLI histograms and SPI curves for excitatory

population at K~500, 1000 and 2000, are very similar. Fig. 5B

shows that both the mean selectivity and the sparseness are almost

independent of K except for a slight decrease in their values (for

the excitatory population) when K drops below 200.

Selectivity and Sparseness in Balanced Networks
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Densely Connected Input to Inhibitory Population
Diminishes Inhibitory Selectivity

Inhibitory neurons in our model show high selectivity, however

experiments report both selective and unselective interneurons in

sensory cortex [7,43–45]. Here we show that it is possible to

achieve a balanced state with an unselective inhibitory population

by increasing the density of connections to inhibitory neurons from

the input (0-.I) and the excitatory (E-.I) populations, but

keeping inhibitory to inhibitory (I-.I) connectivity sparse. We

denote the mean number of 0-.I and E-.I synapses per

inhibitory neuron by KI . We scaled the strength of these

connections so that the mean input to inhibitory neurons does

not change. In Fig. 5C, we vary KI from 10% of the excitatory

and input population network size to 100%. As KI increases, a

large decrease in inhibitory population selectivity is observed but

inhibitory sparseness is mildly affected (Fig. 5C middle). The

Figure 3. Only first two moments of the input activity determine network response. On the left is the balanced network with our default
input population activity, consisting of a delta function at the origin with weight 0.5 and an exponential tail. On the right is the same network driven
with another ensemble of stimuli, whose first two moments are matched to the default activity. Here, the response distribution is given by a beta
distribution (with maximal firing rate 45 Hz), where its two parameters are chosen to match the mean and variance of the distribution in A. B)
Population sparseness for different stimuli. C) SLI histograms.
doi:10.1371/journal.pone.0089992.g003
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decreases in excitatory population selectivity and sparseness are

also small. The limit of all-to-all 0-.I and E-.I connectivity

provides an understanding of these effects. In this limit, 0-.I and

E-.I inputs to each inhibitory neuron are proportional to

corresponding presynaptic population’s average firing rate. There

are no stimulus-to-stimulus or neuron-to-neuron variations in this

input. Sparse connectivity within the inhibitory population causes

neuron-to-neuron variations and temporal irregularity in the

inhibitory responses. Therefore, inhibitory neurons show no

selectivity but exhibit sparseness, which is reduced due to the

disappearing variations in E-.I and 0-.I synaptic currents. The

reductions in selectivity and sparseness of the inhibitory population

lead to the (small) reductions in excitatory selectivity and

sparseness.

We also observe a decrease in the CV of ISIs in the inhibitory

population as KI increases (Fig. 5C right). This can be explained

by the reduction in temporal variability in the E-.I and 0-.I

synaptic currents due to averaging from a larger pool of

presynaptic neurons.

Synaptic Strengths have a Modest Effect on Selectivity
and Sparseness

The parameters denoting synaptic strengths within and between

populations form a high dimensional space, which is hard to

explore exhaustively. To demonstrate the effect of changing

synaptic parameters, we simulated 1000 networks where all

synaptic weights were varied randomly within a 10% range of

our default parameters. In all cases, the input SLI was kept fixed

and the mean input rate was adjusted to keep the mean rate of the

excitatory neurons at 10 Hz. Fig. 6A shows the scatter plot of the

resultant values of SLI and SPI against the mean firing rate of the

inhibitory population. Network selectivity and sparseness are

modestly affected by changes in synaptic weights. As can be seen,

the main factor that controls the variability in the selectivity and

sparseness of the population is the increase in the inhibitory

activity, which is positively correlated with increase in selectivity.

For a fixed value of the inhibitory firing rate, the changes in the

selectivity and sparseness are small.

We also scaled all synaptic couplings simultaneously keeping

input rate and selectivity fixed. We found that increased overall

synaptic strength leads to increased selectivity and sparseness

(Fig. 6B). Neurons tended to fire with higher CV with increased

Figure 4. Dependence of selectivity and sparseness on input. A) and B) Selectivity and sparseness as a function of excitatory network firing
rate. Mean input rate is modulated keeping its sparseness fixed. C) Selectivity and sparseness as a function of input sparseness. Input mean firing rate
adjusted so that excitatory network fires at 10 Hz at default input SPI = 0.75. To achieve less sparse input population rate distributions than the
minimum sparseness allowed by our default stimulus ensemble, we set F rð Þ~ 1{pð Þd r{�rr0

� �
zpf rð Þ, where �rr0 is the mean of f , and therefore F . SLI

and SPI are now given by p= 1zpð Þ. Note that numerically calculating 0 for SLI is impossible due to finite network simulation time. Trial-to-trial
variability of Poisson-like firing neurons will lead to a residual selectivity even if the input is unselective, which will vanish only in the limit of infinite
simulation time. In our simulations, we increased simulation time as needed to minimize this effect, especially for low input selectivity. D) Same as in
C) but synaptic weight JEI is changed from its default value to JEI~12 VI {VLð ÞgE

L t1 .
doi:10.1371/journal.pone.0089992.g004
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overall synaptic strength. The changes in excitatory and inhibitory

network firing rates were small.

Selectivity and Sparseness Decrease with Shorter
Membrane Time Constant

Next, we studied the effect of membrane time constant on

network selectivity. Both excitatory and inhibitory neuron mem-

brane time constants were varied simultaneously (Fig. 6C). We

found that shorter membrane time constants lead to decreased

selectivity and sparseness. Neurons fired with decreased CV. The

changes in excitatory and inhibitory network firing rates were small.

Network Response to Mixtures of Stimuli Shows Strong
Suppression

How does the balanced network respond to mixtures of stimuli?

Assuming that input layer responses are additive, we presented the

Figure 5. Selectivity and sparseness are robust to changes in mean number of connections. A) SPI for different stimuli and SLI histograms
for excitatory and inhibitory populations at K~500, 1000 and 2000. B) Top: Population averaged SLI as a function of K . Bottom: Stimulus averaged
SPI as a function of K . Excitatory population firing rate was kept at 10 Hz for A) and B). C) Left: Population firing rates vs. density of E-.I and 0-.I
connectivity. Middle: Population averaged SLI and SPI vs. density of E-.I and 0-.I connectivity. Right: Population averaged ISI CV vs. density of E-.I

and 0-.I connectivity. In these figures NE~NI ~N0~5000 and 0-.I and E-.I synaptic strengths are scaled by
ffiffiffiffi
K
p

=KI where K~1000. Mean input
layer population firing rate was 10.18 Hz.
doi:10.1371/journal.pone.0089992.g005
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Figure 6. Dependence of selectivity and sparseness on synaptic weights and membrane time constants. A) Population averaged SLI and
stimulus averaged SPI for excitatory (red) and inhibitory (blue) populations in 1000 networks with randomly generated synaptic weights within a 10%
range of our default parameters. Mean input rate was adjusted to keep the mean rate of the excitatory neurons at 10 Hz and mean input SLI was kept
fixed. B) All synaptic weights are simultaneously scaled with a multiplicative constant, which we call the synaptic strength. 1 corresponds to original
parameters. Top: SLI and SPI as a function of synaptic strength. Middle: ISI CV averages for excitatory and inhibitory populations. Bottom. Population
firing rate. C) Membrane time constants are varied from 5 ms to 80 ms. Same quantities are plotted as in B.
doi:10.1371/journal.pone.0089992.g006
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network with a mixture of two stimuli and compared the resultant

response to the response of the network to the individual stimuli. It

is known that mean firing rate of a balanced network changes

linearly with mean input firing rate [31,32], leading to a linear

population response to a mixture. However, when individual

neurons are inspected, we observed that neurons with low firing

rates show sublinear response but neurons with high firing rate

show supralinear response (Fig. 7A). The observation of sublinear

response for neurons with low firing rates led us to investigate if

there is a suppressive effect in responses to mixtures. When we

examined the pool of neurons that respond to only one of the

stimuli (where null-response is defined as firing below 20% of the

mean firing rate), we found that a large majority of these neurons

showed significantly reduced firing rates when presented with the

mixture (Fig. 7B). This effect was robust to network firing rate or

density of connectivity. Although the quantitative effect depends

on the threshold defining non-response, the suppression effect is

significant for a wide range of the threshold (Fig. 7C).

Paradoxical Behavior of Network Response to Changes in
Inhibitory Activity

Networks stabilized by inhibition are known to exhibit a

‘‘paradoxical’’ effect when input to inhibitory cells is altered

[46,47]. Increasing the excitatory input to inhibitory cells causes a

decrease in the firing rates of both excitatory and inhibitory

populations, and conversely decreasing excitatory input causes an

increase in inhibitory and excitatory firing rates. Balanced

networks, being inhibition stabilized, also show this behavior. To

see this, suppose external excitatory input to inhibitory neurons is

increased. The change in the activity of excitatory and inhibitory

networks should be in the same direction (both increase or both

decrease) for balancing to be sustained in the input to excitatory

population. Detailed analytical study of balanced networks [13,31]

shows that elimination of unbalanced states requires the network

to be in a parameter regime (which is the case considered here) in

which activity of both populations would decrease. The opposite is

also true for decreasing external excitatory input to inhibitory

neurons. For example, for a balanced network firing at about 5 Hz

mean excitatory rate and 10 Hz mean inhibitory rate, elimination

of all external input to the inhibitory neurons caused a drastic

increase in the network response to rates above 50 Hz for both

populations.

Random Networks with Weak Synapses
To make explicit the role of the balanced state in generating

selectivity, we investigated a network, which is obtained by scaling

all synaptic weights of the network by 1=K rather than 1=
ffiffiffiffi
K
p

.

Thus, in this network, both the net excitatory and inhibitory

potentials are of the order of the spike threshold, hence there is no

pressure for balancing excitation and inhibition. Contrary to the

balanced state, the spiking in this network are regular, as

quantified by low CV values of ISI distributions (Fig. 8A). For

the example parameters, excitatory neurons fire with a mean rate

9.6 Hz and mean C.V 0.36. Inhibitory neurons fire at 9.1 Hz with

a mean CV 0.49. Both selectivity and sparseness fall as K increases

(Fig. 8B). Due to the weak scaling of synaptic weights, now the

variation in input current is O 1=
ffiffiffiffi
K
p� �

relative to the mean

current, which vanishes in the infinite K limit. Selectivity and

sparseness fall as stimulus intensity increases (Fig. 8C), as expected

from the ‘iceberg effect’ caused by spike threshold nonlinearity.

This is in contrast to the balanced network, where we showed that

as the stimulus intensity increases, selectivity and sparseness

increase, except at very low rates. Finally, in our networks with

weak synapses, for the set of parameters we investigated in this

paper, the paradoxical behavior was not observed. For example,

elimination of all external input to inhibitory neurons caused a

large increase in excitatory population rate from 12 Hz to 35 Hz

but decreased the inhibitory population activity from 14 Hz to

11 Hz.

Figure 7. Network response to mixtures of stimuli. A) Scatter plot of excitatory responses to a mixture of two stimuli versus the sum of the
responses to individual stimuli. Black line is the diagonal. Mean input layer population firing rate was 12.2 Hz for a single stimulus, leading to 11 Hz
excitatory population firing rate. B) Mixture responses of neurons that do not respond to one of the component stimuli but respond to the second
stimulus. Null response is defined as firing rate lower than 20% of the mean firing rate (in this case, the threshold is 2.2 Hz). Neurons are sorted by the
magnitude of their response to the second stimulus. In red is the response to the second stimulus; in blue is the response to the mixture of two
stimuli. A neuron is said to show suppression effect if the response to the mixture is less than response to the second stimulus. C) Ratio of the number
of excitatory neurons showing suppression effect to the total number of excitatory neurons that respond only to one stimulus, as a function of the
null-response threshold. The threshold is shown as a fraction of the mean excitatory firing rate. This curve is plotted for several connectivity numbers
and mean rates.
doi:10.1371/journal.pone.0089992.g007
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Discussion

We showed that randomly connected networks can generate

and maintain stimulus selectivity and population sparseness

robustly in the balanced regime. In randomly connected networks,

stimulus-to-stimulus and neuron-to-neuron variations in the

synaptic input are small compared to the untuned component of

the synaptic input. Balanced networks solve this problem by using

strong synapses to amplify the variation in synaptic input and

using recurrent inhibition to cancel the untuned mean. Moreover,

selectivity and sparseness are robust to changes in the connection

density. An unbalanced network, on the other hand, can show

sharp selectivity at some low connection densities due to thresh-

olding, but selectivity rapidly decreases with increasing connection

density due to decrease in stimulus-to-stimulus variation in the

synaptic input. Sparseness in the unbalanced network follows the

same trend.

A well-known hypothesis regarding cortical connectivity (‘fire

together wire together’) is that excitatory neurons with similar

response properties are more likely to be connected (or their

connections are stronger) than pairs with dissimilar response

properties. In this paper, we studied networks with random

connectivity, where the term ‘random connectivity’ is used to

characterize the generative statistical rule used to build the

network, namely connections between neuronal pairs are drawn

from a statistical distribution that is independent of any stimulus

related feature. Naively, a randomly connected network should not

exhibit preferential connectivity between neurons with similar

response properties. However, in our network we observed a

correlation between connection probability and response similar-

ity. Excitatory neurons with similar preferred stimuli connect with

a higher probability to each other. Note that this connection

probability is conditioned on response similarity, and is a different

quantity than the connection probability that was used to generate

the network. Hence, functional specificity emerged even if the

network was randomly connected and it is the heterogeneity in

connectivity caused by the random generative statistical rule that

lead to this result. Then, observation of functional specificity is not

sufficient to claim non-random connectivity. It is the magnitude of

this specificity that distinguishes randomly connected networks.

We quantified this magnitude by the CMI and showed that CMI

varies significantly with the mean number of synapses a neuron

receives, K .

Fig. 2D shows that at low K the CMI of the feedforward

excitatory connections (i.e., 0-.E) is large in our random network.

This is understandable, given that information about the stimulus

in the output layer comes from the stimulus selectivity of the input

layer. The CMI of the recurrent connections within the output

layer are much weaker but can nevertheless be significant in low

K . Since the recurrent connections are drawn independently from

the input connections, the residual CMI of the recurrent

connections reflect the fact that the stimulus preference of the

output of each neuron is the combined effect of the stimulus

modulation in the three synaptic inputs, the 0-.E, the E-.E and

the I-.E. Thus, although the stimulus preference at the output

neurons is largely determined by the input from the input layer,

they are biased also by the selectivity of the recurrent sources. The

weak modulation of the output preference by the recurrent

excitatory inputs implies that the functional role of the recurrent

excitation is mostly to increase the drive of the neurons by

providing essentially untuned excitation. Furthermore, the mag-

nitude of the modulation of connectivity in all three pathways falls

off strongly with increasing the mean number of connections,

despite the fact that the firing rate selectivity is insensitive to

increased K . This dissociation between the strength of the synaptic

tuning and the sharpness of the spiking output is the hallmark of

the balanced network.

The existence of orientation selectivity in visual cortices with

‘‘salt-and-pepper’’ architecture [4,48,49], and the observation of

[50] that layer 2/3 neurons in mice visual cortices receive input

from a set of neurons with a wide range of preferred orientations

motivated a randomly connected balanced network model, similar

to the present one [33,37]. However, the lack of feature maps in

visual cortex does not necessarily imply that there is no

functionally specific connectivity or that the network is randomly

connected. It was observed in recent experiments in adult mice

[45,51] (but not in young; [30]) that pyramidal neurons with

similar preferred orientations are twice more likely to connect to

each other than pyramidal neurons with orthogonal preferred

orientations. Our analysis indicates that such a strong modulation

Figure 8. Selectivity and sparseness in a random network with weak synapses. A) Distribution of ISI CVs for excitatory (red) and inhibitory
(blue) populations. Vertical dashed lines show population means. Excitatory population fires 9.6 Hz while the inhibitory population fires at 9.1 Hz. B)
Population averaged SLI (solid lines) and stimulus averaged SPI (dashed lines) as a function of K . Excitatory population firing rate is kept fixed at
10 Hz by adjusting the mean input firing rate. C) Population averaged SLI (solid lines) and stimulus averaged SPI (dashed lines) as a function of
excitatory population rate. For our simulations with weak synapses, synaptic coupling parameters were scaled by 2=K .
doi:10.1371/journal.pone.0089992.g008
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of recurrent excitatory connections is inconsistent with the weak

modulation expected in randomly connected networks even in the

balanced state. Thus, these experiments suggest that despite the

lack of columnar organization for orientation, the recurrent

connectivity is tuned by orientation similarity by a non-random

mechanism, which could be Hebbian in origin.

In our networks, the stimulus selectivity of the output neurons is

biased away from the stimulus preference of the inhibitory inputs.

Thus, neurons in the balanced network are likely to receive peak

excitation at their preferred stimulus, while peak inhibition is more

likely to be received at the least preferred stimulus (Fig. 2C). This is

in contrast to balanced network models in which recurrent

connections are constructed as stimulus specific [13,14]. In these

networks both excitatory input and inhibitory input would show

peaks at or near the postsynaptic cell’s preferred stimulus. The

reason for this is that the strong tuning of the recurrent excitatory

input must be balanced (i.e. cancelled away) by similarly tuned

inhibition. This is not the case in our model where the tuning of

the excitatory input is relatively weak.

Random connectivity leads to Gaussianity of the distribution of

synaptic inputs to neurons. This in turn means that only first two

moments of the input layer activation statistics are important for

the balanced network’s operation. We varied these statistics

systematically. We showed that as the stimulus intensity (mean

firing rate of input layer neurons) increases, selectivity and

sparseness increase, except at very low rates. In the unbalanced

network, both selectivity and sparseness decrease sharply with

increasing stimulus intensity due to the ‘‘iceberg’’ effect. Varying

the second order statistic led us to conclude that selectivity and

sparseness increase with sparseness of the input. An interesting

observation was that when the input population was uniformly

responding to all stimuli (its SPI and SLI were zero), the balanced

network continued to produce strong sparseness while the

selectivity was zero (Fig.s 4C and D). Selectivity generated in the

random connected network is ultimately due to selectivity in the

input. Sparseness, on the other hand, is generated largely by the

heterogeneity among neurons in the number of synapses they

receive. We showed that if one were to set up the random

balanced network constraining the number of synapses that a

neuron receives to be strictly K , as in [52], sparseness would too

vanish for uniform input.

Network selectivity is modestly affected by changes in synaptic

weights. We observed that inhibitory activity is the main factor

that affects network selectivity when excitatory activity was kept

fixed (Fig.s 6A and B). Overall scaling of synaptic weights did lead

to a monotonic increase in selectivity while the changes in network

activity were small.

An interesting finding was that decreasing membrane time

constants led to a monotonic decrease of selectivity. This trend is

worth exploring further, since in the more realistic conductance-

based neuron models effective membrane time constants are

known to be small. It will be interesting to see if similar levels of

selectivity and sparseness can be achieved in balanced networks

with conductance-based neurons [13,53,54].

In the olfactory cortex odor mixtures cause suppression, that is a

neuron responsive to one but not to another odor will show a

decreased response when presented with both odors [23]. Cross-

orientation suppression seen in visual cortices is a similar

phenomenon: responses of V1 neurons to preferred orientations

are suppressed by superimposed gratings of orthogonal orienta-

tions [55,56]. The balanced network shows a suppression effect,

purely due to recurrent interactions in the network, as the input

layer response in our model is additive.

Recent studies in mouse visual cortex [57–59] found that

optogenetic silencing or activation of inhibitory neurons caused an

increase or decrease respectively in the excitatory network activity

rate. In balanced networks, whether connectivity is tuned or not, a

change in excitatory input to inhibitory neurons would change the

excitatory and inhibitory population firing rates in the same

direction. In particular, as in other inhibition-stabilized networks

[46,47,60], a decrease in excitatory drive to inhibition caused

increased network firing rate for both populations (an effect

termed ‘‘paradoxical’’ [46]). The unbalanced network however,

does behave as observed in experiments. Furthermore, [57] found

that when interneurons are suppressed, which lead to increased

pyramidal cell population firing rate, visually evoked inhibitory

postsynaptic conductance is reduced in pyramidal cells while

visually evoked excitatory conductance did not change. In

contrast, balanced networks would require both to track each

other.

In the random networks we considered, inhibitory neurons are

almost as selective as excitatory ones. Experiments report both

selective and unselective interneurons in the sensory cortex.

Olfactory cortex neurons are broadly tuned and provide global

inhibition [7,44]. In mouse visual cortex, somatostatin-expressing

interneurons are as selective as pyramidal cells [43], but

parvalbumin-expressing (PV) interneurons have low selectivity

[43,45]. Potential explanation for the latter behavior comes from

the finding that local connectivity from pyramidal cells to PV

interneurons is dense, that is the probability of a pyramidal cell

making a synapse to a nearby PV interneuron is almost 1 [5].

Combined with the salt-and-pepper architecture of mouse visual

cortex, this means that within layer excitatory synaptic input to PV

interneurons is almost untuned. In our model, by making both

within layer and feedforward excitatory synapses to inhibitory

neurons dense, we could achieve a balanced state and get low

inhibitory neuron selectivity (Fig. 5C). It remains to be seen if

other types of input to PV interneurons are also untuned.

In the models we presented, selective and sparse response results

from the heterogeneity in the number of synapses a neuron

receives. Real neural networks exhibit many other sources of

heterogeneity. For example, synapses of a given type do not have

the same strength but are lognormal distributed [61] and the

single-cells of a population differ in their physiological properties.

Our preliminary observations (data not shown) suggest that both

types of inhomogeneity (the latter being modeled as variability in

neuron thresholds) increase selectivity and sparseness in the

network. It would be interesting to study more conclusively the

effect of such heterogeneities.

In conclusion, the ‘salt and pepper’ architecture of several

cortical networks, particularly in rodents, suggest that stimulus

selectivity can be sustained even when local cortical connectivity is

poorly tuned to stimulus selectivity, as is the case in the random

balanced networks. Alternatively, activity dependent plasticity may

induce strong stimulus selectivity in the recurrent connections

without any topographic order. At present the experimental

support for this paradigm is ambivalent. In mouse visual cortex,

strong orientation tuning of layer 2/3 local recurrent excitatory

connections exists in the adult animal but not at eye opening

despite the early presence of sharp tuning. On the other hand, at

eye opening, there seems to be a weak modulation on the

recurrent connections as a function of signal correlations when the

animal is presented with natural movies [30]. This might be a sign

of structure in connectivity that is independent of orientation

tuning. Networks with such structure are beyond the scope of this

paper. In addition, currently, the degree of selectivity in the

feedforward input (from LGN or layer 4) to layer 2/3 neurons in
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mouse visual cortex is unknown. In olfaction, recent experiments

indicate that the projections from the olfactory bulb to the piriform

cortex in mouse are random [24–29]. It would be interesting to

know whether the recurrent connections in piriform cortex are

also poorly tuned.
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