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Abstract

Genome-wide association studies (GWAS) have yielded novel genetic loci underlying common diseases. We propose a
systems genetics approach to utilize these discoveries for better understanding of the genetic architecture of rheumatoid
arthritis (RA). Current evidence of genetic associations with RA was sought through PubMed and the NHGRI GWAS catalog.
The associations of 15 single nucleotide polymorphisms and HLA-DRB1 alleles were confirmed in 1,287 cases and 1,500
controls of Japanese subjects. Among these, HLA-DRB1 alleles and eight SNPs showed significant associations and all but
one of the variants had the same direction of effect as identified in the previous studies, indicating that the genetic risk
factors underlying RA are shared across populations. By receiver operating characteristic curve analysis, the area under the
curve (AUC) for the genetic risk score based on the selected variants was 68.4%. For seropositive RA patients only, the AUC
improved to 70.9%, indicating good but suboptimal predictive ability. A simulation study shows that more than 200
additional loci with similar effect size as recent GWAS findings or 20 rare variants with intermediate effects are needed to
achieve AUC = 80.0%. We performed the random walk with restart (RWR) algorithm to prioritize genes for future mapping
studies. The performance of the algorithm was confirmed by leave-one-out cross-validation. The RWR algorithm pointed to
ZAP70 in the first rank, in which mutation causes RA-like autoimmune arthritis in mice. By applying the hierarchical
clustering method to a subnetwork comprising RA-associated genes and top-ranked genes by the RWR, we found three
functional modules relevant to RA etiology: ‘‘leukocyte activation and differentiation’’, ‘‘pattern-recognition receptor
signaling pathway’’, and ‘‘chemokines and their receptors’’. These results suggest that the systems genetics approach is
useful to find directions of future mapping strategies to illuminate biological pathways.
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Introduction

Genome-wide association studies (GWAS) have identified a

large number of novel genetic loci underlying susceptibility to

common diseases [1], which leads to an interest in how these

discoveries may be translated into improvement in health care and

public health. Identification of associated variants can illuminate

causal pathways and provide a clue for therapeutic targets [2].

Ultimately, it may be possible to predict the development of

common diseases by genetic profiling, in which multiple genetic

loci are simultaneously tested [3].

There are conflicting views regarding the usefulness of genetic

variants in disease prediction [4–8]. The idea widely received is

that the predictive ability of genetic profiling is limited with some

exceptions [5] because most common genetic variants identified to

date confer relatively small effects on disease risk and explain a

small portion of the individual variation in disease risks [9]. The

risk estimates will be updated and become more accurate with new

genetic discoveries by conducting more large-scale GWAS [6] and

by extending the analysis of low frequency and rare variants [10].

There are some examples that individually rare variants with

relatively large effect contribute to complex trait variation [11–13].

It is important to infer the allelic architecture of as-yet-discovered

risk variants on the basis of current evidence of known disease-

associated variants in order to provide clues for future mapping

strategies [14].

There are prerequisites for evidence-based genetic testing. First,

a rigorous scientific basis for the genetic variants used for the

genetic profiling is essential [15]. In fact, most of the genetic

variants used by direct-to-consumer genetic testing to predict an

individual’s risk to common diseases have been shown to lack

consistent evidence of gene-disease associations [15]. Second, and
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probably most importantly, the predictive ability of genetic

variants should be evaluated [5]. The predictive ability can be

quantified by several measures such as the area under the receiver

operating characteristic curve [16]. Third, it is necessary to

corroborate the generalizability of a genetic risk prediction model

in independent datasets [17]. Systematic validation and charac-

terization of the evidence of genetic associations at both discovery

and translational phases of human genomics are also required

[18,19]. In these circumstances, meta-analysis can be a useful tool

to improve the estimation of effect sizes of genetic variants by

combining results from individual studies, thereby making it

possible to evaluate variants for model inclusion in a rigorous

way [20].

We propose here a systems genetics approach to utilize current

evidence of genetic associations for better understanding of the

genetic architecture of complex disease [21]. The outline of our

approach is schematically shown in Figure 1 (The left and right

columns correspond to the first three and last steps in the following

description). First, genetic variants associated with the disease of

interest are identified by exhaustively reviewing meta-analyses of

genetic association studies. Second, the association and the

predictive ability of the selected variants are confirmed in real

case-control subjects. Third, a framework of simulation study is

formulated to address how many additional loci should be mapped

for the establishment of acceptable levels of genetic risk prediction.

Fourth, a network analysis is implemented where information on

disease-associated genes are integrated through human inter-

actome such as the protein-protein interaction (PPI) network for

the design of future mapping studies and exploring biological

pathways [22].

We applied the systems genetics approach to rheumatoid

arthritis (RA, [MIM 180300]). RA is a common autoimmune

disease characterized by chronic, destructive and debilitating

arthritis [23]. The etiology of RA is not completely known and

most likely involves a complex interplay of both genetic and

environmental factors. It has been shown that multiple alleles at

the HLA-DRB1 locus within the major histocompatibility complex

(MHC) region are associated with RA. RA susceptibility loci

outside the MHC region have been identified through candidate

gene approaches and GWAS [24,25]. The subdivision of RA

patients in terms of the presence or absence of rheumatoid factor

(RF) and antibodies against cyclic citrullinated peptide (anti-CCP)

is increasingly recognized for possible prevention and treatment

strategies. Genetic factors may also contribute to the phenotypic

diversity in RA [26].

Results

Electronic database searches
We sought published meta-analyses that had evaluated the

association between genetic variants and RA risk in population-

based studies through two electronic databases: PubMed and

NHGRI GWAS catalog. Figure S1A shows the outline of our

literature search strategy using PubMed database. The reasoning

for each of the excluded articles in the abstract reading, full-text

search and data extraction stage is listed in Tables S1, S2, and S3,

respectively. After selecting meta-analyses that fulfilled inclusion

criteria, we found 29 articles addressing 27 variants located on 18

genetic loci [27–55]. After reducing redundant variants on the

same genetic locus, 20 variants were identified (Text S1A). We also

retrieved seven articles addressing the contribution of the HLA-

DRB1 locus [56–62].

In order to overview the retrieved meta-analyses, we classified

individual studies analyzing the same genetic variants into three

groups: studies showing significant evidence of increased and

reduced risk, or non-significant result (Figure 2). In cases of single

nucleotide polymorphism (SNP) rs7574865 at the STAT4 locus,

rs2476601 at the PTPN22 locus, and rs6920220 and rs10499194

at the TNFAIP3-OLIG3 locus, consistent lines of evidence of

associations were observed. In the other cases, more than half of

the individual studies did not show significant evidence of

association. However, the direction of associations in the studies

showing significant evidence was consistent for each variant except

for rs1800629 at TNF-a and rs396991 at FCGR3A. This result

suggests that most of the individual studies may be underpowered

to detect small genetic effect [63,64]. Thus, conclusions derived

from meta-analyses may be useful to select genetic variants for risk

prediction models.

The outline of the NHGRI GWAS catalog search is shown in

Figure S1B. Eight articles were retrieved [52,65–71]. We found

the 61 associations with P,1.061025: 7 for the HLA region and

54 for the non-HLA region comprising 34 distinct genetic loci.

Restricting the statistical significance level at P,5.061028, 18

associations, 10 of which did not overlap those from the PubMed

search, were retrieved. All of the retrieved associations were

derived from meta-analyses of several GWAS and replication

studies [69–71].

Re-analysis of published meta-analyses and selection of
genetic variants

We re-analyzed the meta-analyses addressing 20 genetic

associations (Table S4; Text S1A). For each meta-analysis, a

median of 6,758 cases (interquartile range [IQR]: 3,445–10,994)

and 7,643 (IQR: 3,367–14,406) controls had been involved. We

found that there were 10 meta-analyses showing statistically

significant between-study heterogeneity. This indicates that the

between-study heterogeneity was more frequent than what would

be expected by chance (P = 7.261026). The median of I2 metric

was 40.4% (IQR: 16.1–63.9%). In 14 of 20 meta-analyses, the

genetic associations passed the significance threshold of P =

2.561023 under the fixed effects model meta-analysis in the

overall populations. Even when applying the random effects model

meta-analysis, which is a conservative approach under the

presence of between-study heterogeneity, evidence of association

was confirmed in all of the 14 polymorphisms (P,0.05).

From the PubMed search, we identified the following 14

variants that fulfilled our selection criteria: rs7574865 (STAT4);

rs3087243 (CTLA4); rs7528684 (FCRL3); rs3761847 (TRAF1-

C5); rs2812378 (CCL21); rs4810485 (CD40); rs42041 (CDK6);

rs2240340 (PADI4); rs2476601 (PTPN22); rs2073838 (SLC22A4);

rs2004640 (IRF5); rs6920220 and rs10499194 (TNFAIP3-OLIG3);

and rs333 (CCR5). Among these 14 polymorphisms, 13 were SNPs

and one was the 32 bp-deletion polymorphism in CCR5 (referred

to as rs333).

For the HLA-DRB1 alleles, we selected six alleles that were

significantly associated with RA risk in a comprehensive review

article [62] using the largest collection of relevant articles: HLA-

DRB1*01:01, DRB1*09:01, DRB1*10:01, DRB1*04:04, DRB1*04:01,

and DRB1*04:05.

We identified an additional 10 SNPs from the NHGRI GWAS

catalog: rs3093024 (CCR6); rs874040 (RBPJ); rs11676922 (AFF3);

rs13017599 (REL); rs6859219 (ANKRD55); rs934734 (SPRED2);

rs2736340 (BLK); rs26232 (C5orf30); rs13315591 (FAM107A); and

rs706778 (IL2RA).

Collectively, 23 SNPs, one deletion polymorphism, and six

HLA-DRB1 alleles that were significantly associated with RA risk

were identified. Allele frequencies of the genetic variants with

validated associations with RA were highly differentiated between
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East Asian and European populations (Table S5). Among them,

15 SNPs with minor allele frequency greater than 5% in Japanese

and six HLA-DRB1 alleles were selected through our database

searches.

Ethnic differences
We examined the ethnicity-specific effects of these variants

(Table S6). We found heterogeneity in the odds ratios (ORs)

between ethnic groups at P,0.05 for rs2240340 (PADI4) and

rs7528684 (FCRL3). The OR of rs2240340 was larger for East

Asian (OR = 1.31, 95% confidence interval [CI]; 1.22–1.41,

P = 5.6610213) than for European descent populations (OR =

1.03, 95% CI; 0.99–1.07, P = 0.16). Similarly, the rs7528684

association was stronger for East Asian populations (OR = 1.16,

95% CI; 1.09–1.24, P = 7.861026) than for European descent

populations (OR = 1.03, 95% CI; 0.98–1.09, P = 0.27). The effects

observed with East Asian populations were used in the genetic risk

score (Table 1).

Figure 1. The systems genetics approach proposed in this study. A) Databases from which knowledge is extracted. Meta-analyses and GWAS
findings are sought in PubMed and NHGRI GWAS catalog, respectively. Human protein-protein interaction data is obtained from HPRD. B) Retrieved
information is used to create two types of networks: ‘gene-disease association network’ and ‘protein-protein interaction network’. C) The data
analysis phase. The gene-disease associations are confirmed by using real case-control subjects. The predictive ability of selected genetic variants is
evaluated and the result is used in the simulation study to infer allelic architecture of as-yet-discovered genetic variants. Two types of networks are
integrated to prioritize genes by the global measure of distance to known disease-associated genes within the protein-protein interaction network.
Hierarchical clustering algorithm is applied to a subnetwork comprising top-ranked genes and functional annotation for each cluster is used for the
inference on biological pathways underlying the disease of interest. D) The systems genetics approach emerges two types of clues: Future mapping
strategies, and biological pathways.
doi:10.1371/journal.pone.0025389.g001
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Association analysis
We conducted a case-control study of 1,287 RA cases and 1,500

controls in Japanese (see Materials and Methods for description of

our cohort). Genotype counts for six HLA-DRB1 alleles and 15

SNPs are shown in Table S7. For the SNPs, the missing genotype

rates were small (at most 1.3% for rs2736340). SNP rs2004640

(IRF5), which deviated from the HWE in controls at P,0.001, was

excluded from subsequent analyses.

We assessed the association of each genetic variant with RA risk

by logistic regression analysis (Table 1). For the HLA-DRB1 alleles,

HLA-DRB1*04:05 allele showed highly significant evidence of

association with the risk of RA. It should be noted that the ORs of

all the HLA-DRB1 alleles in the multivariate logistic regression

analysis were larger than those in the univariate analysis. When an

allele was evaluated in the univariate analysis, the other five

putative risk alleles were grouped together into one referent group,

which resulted in a weakened association signal.

For the SNPs, strong evidence of association was observed with

rs3093024 in CCR6 (P = 4.161025, OR = 1.25), rs2240340 in

PADI4 (P = 1.561024, OR = 1.23), rs2736340 in BLK (P =

3.261024, OR = 1.24), and rs4810485 in CD40 (P = 4.761024,

OR = 0.80). We found that four SNPs showed nominally signi-

ficant associations at P,0.05 for rs26232 (C5orf30), rs2073838

(SLC22A4), rs11676922 (AFF3), and rs7528684 (FCRL3). SNPs on

SPRED2 and STAT4 showed suggestive associations at P,0.1.

SNPs on CTLA4, TRAF1-C5, and IL2RA had the same direction of

effect as identified in previous studies. SNP rs10499194 on

TNFAIP3-OLIG3 showed the opposite direction of effect. The

observed opposite direction of rs10499194 seems to be attributable

to the difference in linkage disequilibrium between marker and

true disease allele across populations. Shimane et al. showed a

similar result and identified a non-synonymous SNP (rs2230926) in

TNFAIP3 associated with RA [72].

The ORs for SNPs obtained with the univariate analysis were

similar to those with the multivariate analysis, indicating that the

associations of these SNPs are independent association signals.

These results suggest that a substantial proportion of the loci

identified in the meta-analyses are likely to be shared across

populations.

Discrimination using genetic risk models
This study is reported in accordance with the Strengthening the

Reporting of Genetic Risk Prediction Studies recommendations

[73]. With the use of the receiver operating characteristic (ROC)

curve, we calculated the area under the ROC curve (AUC) to

evaluate the predictive ability of the genetic risk scores based on

the selected variants (see Materials and Method for description of

the construction of genetic risk score). The AUC for the HLA

model was 65.9% (95% CI, 63.9 to 67.9%). The non-HLA model

including 14 SNPs showed an AUC of 58.8% (56.6 to 60.9%). The

AUC for the integrative model was 68.4% (66.4 to 70.4%). The

addition of 14 SNPs to the HLA-DRB1 alleles increased the AUC

by 2.5%. The observed increase in the AUC was statistically

significant (P = 2.861026). The integrative model shows better fit

than the HLA model in terms of Akaike’s information criterion

(Table 2). We examined an ad hoc model, where rs10499194 on

Figure 2. Overview of association studies in RA of 20 genetic variants examined in the meta-analyses met our inclusion criteria.
Colored bars displays number of individual studies according to the result of testing for association of each variant with RA: red, studies show
significant evidence of an increased risk; blue, studies show significant evidence of disease protection; and green, studies show non-significant result.
The significance level was set at P = 0.05.
doi:10.1371/journal.pone.0025389.g002
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TNFAIP3-OLIG3 showing the opposite effect as identified in

previous studies was removed. The AUC was then 68.6 (66.6 to

70.6%). The improvement in the AUC from the integrative model

was statistically significant (P = 0.034).

We performed the same ROC analyses by using only the

patients with both anti-CCP and RF positivity (Table 2). The

AUC for the HLA, non-HLA and integrative models was 68.3%

(65.2 to 71.4%), 60.0% (56.7 to 63.3%), and 70.9% (67.8 to

73.9%), respectively. For each genetic risk model, the AUC in

both RF and anti-CCP positive patients versus controls was

greater than that in overall patients versus controls. The result of

the association study for anti-CCP and RF positive RA is shown in

Table S8.

Figure 3 depicts the distribution of genetic risk scores by

phenotypic status for the integrative model. The distribution of the

genetic risk scores in cases differs from that in controls

(P = 1.1610261). The curve in RF and anti-CCP positive cases

shifts upward compared to the curve in overall cases, indicating

that the risk scores in RF and anti-CCP positive cases were larger

than those in overall cases. This was reflected in better

discrimination ability between both RF and anti-CCP positive

patients and controls (AUC = 70.9%) than that between overall

cases and controls (AUC = 68.4%). Each curve in Figure 3 looks

like multimodal distribution. The multimodality of these curves is

attributable to differences in genetic risk score among the HLA-

DRB1 genotypes.

Table 1. Association analysis of RA with selected genetic variants.

Gene SNP A1/A2A UnivariateB MultivariateB Previous reportC

OR (95% CI) P OR (95% CI) P OR (95% CI)

HLA-DRB1 *01:01 +/2 1.29 (1.03–1.61) 0.025 1.95 (1.52–2.48) 8.861028 1.60 (1.39–1.84)

*09:01 +/2 1.20 (1.04–1.39) 0.012 1.74 (1.48–2.04) 1.8610211 1.67 (1.44–1.94)

*10:01 +/2 2.88 (1.42–5.83) 3.361023 3.59 (1.72–7.52) 7.061024 2.35 (1.90–2.91)

*04:01 +/2 1.89 (1.23–2.90) 3.961023 2.70 (1.69–4.30) 3.061025 3.30 (3.01–3.61)

*04:04 +/2 1.49 (0.55–4.02) 0.43 2.92 (0.98–8.67) 0.054 1.85 (1.54–2.22)

*04:05 +/2 2.31 (2.01–2.66) 1.3610231 2.80 (2.40–3.27) 9.4610239 3.84 (3.30–4.46)

SNPs with strong evidence of association (P,2.561023)

CCR6 rs3093024 A/G 1.25 (1.12–1.39) 4.161025 1.26 (1.13–1.42) 6.361025 1.19 (1.15–1.24)

PADI4 rs2240340 T/C 1.23 (1.11–1.37) 1.561024 1.24 (1.11–1.40) 2.661024 1.31 (1.22–1.41)

BLK rs2736340 T/C 1.24 (1.10–1.39) 3.261024 1.24 (1.09–1.41) 7.861024 1.19 (1.13–1.27)

CD40 rs4810485 T/G 0.80 (0.72–0.89) 4.761024 0.82 (0.73–0.92) 7.861024 0.87 (0.83–0.90)

SNPs with nominally significant association signals (P,0.05)

C5orf30 rs26232 T/C 0.86 (0.77–0.98) 0.018 0.86 (0.75–0.98) 0.021 0.90 (0.87–0.94)

SLC22A4 rs2073838 A/G 1.14 (1.02–1.27) 0.022 1.17 (1.04–1.32) 0.012 1.11 (1.05–1.18)

AFF3 rs11676922 T/A 1.11 (1.00–1.24) 0.043 1.11 (0.99–1.24) 0.083 1.14 (1.10–1.18)

FCRL3 rs7528684 G/A 1.11 (1.00–1.24) 0.047 1.08 (0.96–1.21) 0.20 1.16 (1.09–1.24)

SNPs showing the same direction of effect

SPRED2 rs934734 G/A 1.14 (0.99–1.31) 0.064 1.17 (1.00–1.36) 0.043 1.13 (1.09–1.17)

STAT4 rs7574865 T/G 1.10 (0.98–1.23) 0.093 1.09 (0.97–1.23) 0.14 1.23 (1.19–1.27)

CTLA4 rs3087243 A/G 0.92 (0.82–1.04) 0.18 0.96 (0.84–1.10) 0.56 0.89 (0.85–0.95)

TRAF1 rs3761847 A/G 1.05 (0.95–1.17) 0.35 1.03 (0.91–1.15) 0.66 1.13 (1.09–1.17)

IL2RA rs706778 T/C 1.05 (0.95–1.17) 0.36 1.05 (0.93–1.17) 0.43 1.12 (1.09–1.16)

SNPs showing the opposite direction of effect

TNFAIP3 rs10499194 T/C 1.18 (0.96–1.46) 0.11 1.18 (0.94–1.48) 0.15 0.82 (0.77–0.87)

AA1 and A2 represent the coded and non-coded alleles, respectively.
BORs and 95% CIs were estimated by logistic regression analyses using univariate analysis for each allele and then using multivariate analysis including all the alleles. The
number of coded alleles (A1) was used as the predictor value in the logistic regression analyses.

CORs and 95% CIs were calculated by meta-analyses of published studies: HLA-DRB1 from [62]; CD40, SLC22A4, STAT4, CTLA4, TRAF1, TNFAIP3, and IRF5 from re-analysis of
meta-analyses shown in Table S4; PADI4 and FCRL3 from re-analysis of ethnicity-specific meta-analyses shown in Table S6; and CCR6, BLK, C5orf30, AFF3, SPRED2, and
IL2RA from original GWASs [69–71]. These ORs were used to create genetic risk scores.

doi:10.1371/journal.pone.0025389.t001

Table 2. The discriminative ability and the global model fit of
three predictive models according to subphenotype of case
patients.

Case phenotype Model AUC (95% CI) AICA

Overall HLA 65.9 (63.9–67.9) 3477.7

Non-HLA 58.8 (56.6–60.9) 3630.7

Integrative 68.4 (66.4–70.4) 3421.9

RF & anti-CCP positive HLA 68.3 (65.2–71.4) 1603.7

Non-HLA 60.0 (56.7–63.3) 1694.2

Integrative 70.9 (67.8–73.9) 1578.0

AAkaike’s information criterion.
doi:10.1371/journal.pone.0025389.t002
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Simulation study: How many additional loci should be
mapped?

We investigated how many additional loci are required to

achieve an acceptable level of genetic risk prediction via simulation

study. We set AUC of 80.0% as an acceptable level based on the

diagnostic accuracy of anti-CCP antibody and RF for RA.

According to a recent meta-analysis [74], the pooled sensitivity

and specificity were 67% and 95% for anti-CCP antibody,

respectively, and 69% and 85% for IgM RF, respectively. The

naı̈ve estimate of the AUC was 81% for anti-CCP antibody and

75% for IgM RF.

We simulated the distribution of RA risks in the general

population based on observed ORs and allele frequencies for the

selected variants (see Materials and Methods, and Text S1B for

details). For the base model in which 13,392,312 multi-locus

genotypes generated by combining the six HLA-DRB1 alleles and

the 14 SNPs are included, the simulated AUC was 71.0%. The

AUC of the base model was similar to that observed in anti-CCP

and RF positive patients (AUC = 70.9%). Starting with the base

model, we evaluated the simulated AUC value assuming that

hypothetical additional loci were discovered.

Result of the simulation study is shown in Figure 4. Under the

common disease-common variant hypothesis, ,50 loci are needed

in the setting of additional loci with OR = 1.2 and risk allele

frequency (RAF) of 0.30. Taking into consideration the fact that

the ORs from recent GWAS of RA were close to 1.1, a scenario of

OR = 1.1 and RAF = 0.30 may be more realistic. In this scenario,

,220 loci are required. When assuming the multiple rare variants

with intermediate effects that remain undiscovered and setting the

additional loci with OR of 3.0 and RAF of 0.01, only ,20 loci are

sufficient for AUC of 0.80. When assuming OR = 2.0 and

RAF = 0.01, an additional 50 loci are needed.

We further implemented simulations in which combination of

common and rare variants was examined. When assuming HLA-

DRB1 alleles, 150 loci with OR = 1.1 and RAF = 0.30, and 10 loci

with OR = 3.0 and RAF = 0.01, the AUC was 80.2%. The

simulation rendered AUC = 95.2% under the assumption of HLA-

DRB1 alleles, 300 loci with OR = 1.1 and RAF = 0.30, and 140

loci with OR = 3.0 and RAF = 0.01.

Network analysis
The simulation study shows that many additional variants need

to be discovered. We hypothesized that variants within genes on

the same biological pathways of known RA susceptibility genes can

be associated with RA. Then, we performed following network

analyses to prioritize genes for future mapping studies.

We constructed the PPI network by using HPRD database

[75,76]. The PPI network contained 37,080 interactions between

9,521 human proteins. The selected variants were assigned to a

single protein-coding gene (Table S5; Text S1C). There are 19

RA-associated proteins mapped in the PPI network (HLA-DRB1,

STAT4, FCRL3, TRAF1, CCL21, CD40, CDK6, PTPN22,

SLC22A4, IRF5, CTLA4, TNFAIP3, CCR6, REL, SPRED2,

BLK, FAM107A, and IL2RA).

We used the random walk with restart (RWR) algorithm [77] to

prioritize genes in terms of the proximity to the validated RA

susceptibility genes within the PPI network (see Materials and

Method for details). As a preliminary test, we confirmed that the

value of restart probability, r, did not largely affect the ranking of

genes. When we examined different values of r (0.3, 0.5, and 0.7),

Figure 3. Distribution of risk scores by phenotypic status for the integrative model, in which six HLA-DRB1 alleles and 14 SNPs were
included. The curves were generated with a Gaussian kernel density smoother.
doi:10.1371/journal.pone.0025389.g003
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the spearman’s rank correlation coefficients ranged from 0.967 to

0.993. The predictive ability of the network-guided gene

prioritization method was evaluated by the leave-one-out cross-

validation. As shown in Figure 5, most of the left-out genes are

highly evaluated. For example, TRAF1 ranked 58th among 9,503

genes evaluated. The AUC by the leave-one-out cross-validation

was 84.4%, indicating an excellent predictive ability. This result

also suggests that the RA-associated genes are in proximity to each

other within the PPI network.

In the top-ranked genes, we can find many genes that may be

involved in the susceptibility to RA and other autoimmune diseases.

The RWR algorithm points to ZAP70 in the first rank. Notably, a

mutation in ZAP70 is identified to cause chronic autoimmune

arthritis in mice [78]. Sakaguchi et al. [78] demonstrate that the

mutation in the mouse ZAP70 affects thymic T-cell selection and

leads to the development of RA-like arthritis. ZAP70 has direct

interactions with PTPN22 and FCRL3 among proteins encoded by

RA-associated genes in the HPRD database. FCRL3 has a direct

interaction only with ZAP70 in the HPRD database, which might

cause upward bias in the ranking of ZAP70. Even when excluding

FCRL3 from the list of seed vertices, ZAP70 ranked 42th among

9,503 genes, indicating that the priority of the gene is robust and

that ZAP70 is located proximal to proteins encoded by the RA-

associated genes in the PPI network. We found that CD247, IL2RB

and IL2 ranked 32th, 34th and 39th, respectively, and have been

associated with RA in follow-up study of GWAS [79,80] and studies

exploring shared susceptibility loci among autoimmune diseases

[81,82]. CD80, FCGR2A, FCGR2B, ICAM1, JAK2, LYN, NFKBIA,

PTPN11, STAT3 and TRAF3IP2 were shown to be associated with

other autoimmune diseases according to the NHGRI GWAS

catalog and systematic review [83].

Figure 6A depicts an RA-associated network that is a

subnetwork of the PPI network in which vertices are the RA-

associated genes and genes ranked in the top 100 by the RWR

algorithm and edges are physical interactions between their

products. In order to detect functional modules in the RA-

associated network, we applied the EAGLE algorithm [84] and

found three complexes each containing more than 10 vertices

(referred to as CL1-3). The CL1 and CL2 overlap each other.

We further explored functional annotations of these three

clusters by using DAVID [85,86] (Table 3). The three clusters

fitted into different categories of immunological pathway. CL1 can

be assigned to an immunological pathway ‘‘leukocyte activation

and differentiation’’ according to Gene Ontology (GO) terms

annotated to genes in CL1 (Figure 6B). CL2 is associated with

‘‘pattern-recognition receptor signaling pathways’’ since genes in

CL2 are enriched for GO terms and KEGG pathways such as

Toll-like receptor and Nod-like receptor signaling pathways

(Figure 6C). CL3 is enriched for genes relevant to ‘‘chemokines

and their receptors’’ (Figure 6D). This result shows that the

exploration of topology of the network based on curated disease

susceptibility genes is useful to find functional modules involved in

disease pathology. We confirmed that similar biological pathways

are observed when the number of top ranked genes included into

the RA-associated network is altered to 50 and 150 (Figures S2,

S3, Tables S9, S10).

Discussion

The phenomenon named ‘missing heritability’ has received

much attention [9] and calls into substantive question the

usefulness of genetic profiles for disease risk prediction. In this

Figure 4. Simulation study addressing how many additional loci should be mapped for the establishment of excellent genetic risk
prediction. Five scenarios with different combination of OR and RAF were examined.
doi:10.1371/journal.pone.0025389.g004
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study, we performed a systematic approach to overview and

validate current evidence of genetic associations with RA and

utilized them to find directions of future mapping strategies.

One fundamental question is whether genetic risk factors for RA

overlap across ethnic groups [87]. Although the associations of two

SNPs (PADI4 and FCRL3) were significantly stronger in East

Asian than in European, these two SNPs represented significant

association in the overall populations and the recent European

GWA meta-analysis [70] captured weak association signals of

these SNPs. This suggests that these SNPs may be common risk

factors but that their contribution to RA risk may differ across

ethnic groups. Furthermore, we confirmed that most of the

selected genetic variants from meta-analyses and NHGRI GWAS

catalog were consistently replicated in a case-control study of

1,287 RA cases and 1,500 controls of Japanese. These results

suggest that a substantial proportion of the loci identified in the

meta-analyses are likely to be shared across populations.

The predictive ability of genetic variants for the development of

RA was moderate: the AUC for the integrative model was 68.4%

(66.4 to 70.4%). Notably, the AUC improved to 70.9% (67.8 to

73.9%) when we used patients with both RF and anti-CCP

positivity. This finding is consistent with European study

(AUC = 71% [68 to 73%] for anti-CCP positive RA) although

the list of selected variants used was slightly different [88]. This is

the first study showing that the predictive ability of genetic variants

for RA mainly derived from European GWAS is similar between

European and non-European populations by using a substantial

number of case and control subjects. However, the predictive

ability is suboptimal at the current stage.

When we implemented a simulation study addressing how

many additional loci should be mapped, we set a goal of genetic

risk prediction that achieves a similar level of accuracy with anti-

CCP antibody for RA. Such genetic risk prediction may have

clinical utility: when patients have primary symptoms such as joint

pain and stiffness, prior knowledge of their higher genetic risks for

RA may inspire them to undergo highly specific diagnostic tests

such as anti-CCP antibody. Early detection and treatment can

prevent severe disability for many patients.

According to the simulation study, more than 200 loci with

OR = 1.1 and RAF = 0.30 are required to achieve AUC of 80.0%,

implying that efforts relying only on GWAS may be reaching

limits for improving predictive ability. With the advent of the

development of massively parallel DNA sequencing technologies,

exploring rare variants of large effect has attracted increased

attention [89]. There is some evidence of rare variants with a large

impact on risk of RA and autoimmune diseases [13,90,91].

Functionally defective rare variants in SIAE were recently shown

to be associated with autoimmune diseases including RA with ORs

estimated at approximately 8.0 [91]. In our simulation study,

additional 20 rare but not private variants (minor allele frequency

of 1%) with intermediate effect (OR of 3.0) suffice for AUC of

80.0%. Several hundreds of cases and controls must be

resequenced for the discovery of such rare variants. However,

whole-genome and whole-exome sequencing of large samples are

costly and otherwise infeasible. The use of bar-coded multiplexed

and target enrichment sequencing of the exonic regions of

hundreds of candidate genes [92,93] could be an alternative

strategy if appropriate candidate genes were selected.

We applied the RWR algorithm to prioritize genes by using

information on the list of curated RA-associated genes and the PPI

network from HPRD database. The predictive ability of the RWR

algorithm was proved to be excellent based on the leave-one-out

Figure 5. ROC curve using the leave-one-out cross-validation method to evaluate the predictive ability of the RWR algorithm. The
gray diagonal line corresponds to the AUC of 0.5 and no discrimination (i.e., random performance).
doi:10.1371/journal.pone.0025389.g005
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Figure 6. RA-associated network. A) Entire RA-associated network comprising known RA-associated genes and genes ranked in the top 100 by the
RWR algorithm and edges are physical interactions between their products. Nodes are color coded by hierarchical clusters detected by the EAGLE
algorithm: CL1, red; CL2; cyan, and CL3, yellow. Overlapped region between CL1 and CL2 are rendered in green. Node size is based on the ranking in the
RWR algorithm. Official gene symbols are shown for known RA-associated genes. B–D) Subnetworks corresponds to the hierarchical clusters CL1-3.
doi:10.1371/journal.pone.0025389.g006
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cross-validation by omitting each RA-associated gene (AUC

= 84.4%). This result suggests that the RA-associated genes are

in proximity to each other within the PPI network, which is

consistent with the recent study showing that the products of RA-

associated genes are more interconnected than would be expected

by chance [94]. The top-ranked genes with the RWR algorithm

are intriguing. The gene in the first position (ZAP70) is a causal

gene of RA-like autoimmune arthritis in mice [78]. Furthermore,

recessive and compound heterozygous mutations in ZAP70 cause

human severe combined immunodeficiency [95–97]. Within the

top 100 ranked genes, genes implicating susceptibility to RA

(CD247, IL2RB and IL2) and to other autoimmune diseases (CD80,

FCGR2A, FCGR2B, ICAM1, JAK2, LYN, NFKBIA, PTPN11, STAT3

and TRAF3IP2) are enriched.

We also found that the analysis of network topology was useful

to find functional modules involved in the disease pathology. This

method has two steps: first, a disease-related network comprising

genes in the vicinity to curated susceptibility genes within the PPI

network is constructed using the RWR algorithm. Second, the

overlapping and hierarchical structure of the disease-related

network is explored and functional annotation is implemented

for each cluster. The systems genetics approach proposed here will

be applicable to most common diseases and will work well

especially when genes associated with the disease of interest are in

proximity to each other within the PPI network. When applying

the method to RA, the resulting clusters were fitted into different

categories of immunological pathways.

CL1 is related to ‘‘leukocyte activation and differentiation’’

(Figure 6B, Table 3). T-cell differentiation plays an important role

in autoimmunity. Strongly self-reactive T cells are primarily

eliminated in the thymus by negative selection (central tolerance).

Some of the self-reactive T cells, however, may escape from

negative selection and can cause autoimmune diseases. Defect in

thymic T-cell selection due to a mutation of Zap70 causes

autoimmune arthritis in mice [78]. CL2 fits into ‘‘pattern-

recognition receptor signaling pathways’’ (Figure 6C, Table 3).

The innate immune functions of macrophages and neutrophils

depend on pattern-recognition receptors such as Toll-like

receptors and Nod-like receptors. Genes relevant to these

pattern-recognition receptor signaling pathways were enriched in

CL2. CL3 corresponds to ‘‘chemokines and their receptors’’

(Figure 6D, Table 3). The main function shared by chemokines

and chemokine receptors is leukocyte chemotaxis, which helps

direct migration of leukocytes to an injury site. Genetic defects in

these biological pathways can inappropriately activate immune

cells leading to inflammation and host cell destruction that can

cause autoimmune diseases. Notably, the clusters inferred from

this study are similar to the pathways implicated by Zhernakova

et al. [83], in which genes associated with autoimmune diseases are

grouped into four categories: ‘T cell differentiation’, ‘immune-cell

activation and signaling’, ‘innate immunity and TNF signaling’,

and ‘cytokines and chemokines’.

Some limitations of our study should be noted. Our electronic

database search had been performed a year ago (on June 18 2010).

Continuing efforts to examine whether more updated genetic

findings appear in publication to renew the list of susceptibility

genes to RA is required. By searching for the NHGRI database

deposited after June 18 2010, we found four relevant arti-

cles.[80,98–100] Genetic variants outside the MHC region passing

the genome-wide significant threshold (5.061028) were retrieved.

Table 3. Top-ranked GO and KEGG annotations for three clusters in RA-associated network.

Annotation TermA CountB %C FED P-value

Cluster 1

GO:0045321 Leukocyte activation 20 40.0 23.3 1.4610221

GO:0002521 Leukocyte differentiation 15 30.0 32.3 8.0610218

hsa04660 T cell receptor signaling pathway 15 30.0 15.7 1.1610213

GO:0006468 Protein amino acid phosphorylation 19 38.0 8.0 2.8610212

Cluster 2

hsa04620 Toll-like receptor signaling pathway 20 40.0 18.2 2.0610220

hsa04622 RIG-I-like receptor signaling pathway 14 28.0 21.7 7.5610215

GO:0007249 I-kappaB kinase/NF-kappaB cascade 12 24.0 31.6 4.3610214

hsa05200 Pathways in cancer 20 40.0 5.4 2.0610210

hsa04623 Cytosolic DNA-sensing pathway 10 20.0 22.0 2.0610210

hsa04621 NOD-like receptor signaling pathway 11 22.0 15.1 8.7610210

Cluster 3

GO:0006935 Chemotaxis 9 52.9 47.6 1.9610212

GO:0007626 Locomotory behavior 9 52.9 27.8 1.5610210

GO:0006955 Immune response 11 64.7 13.5 2.7610210

GO:0006952 Defense response 10 58.8 13.7 3.161029

GO:0019957 C-C chemokine binding 4 23.5 231.8 4.461027

GO:0016493 C-C chemokine receptor activity 4 23.5 231.8 4.461027

AWithin each cluster, related terms are not shown to reduce redundancy. Among terms with parent-child relationships, we selected one showing highest significance
enrichment P-value.

BNumber of GO or KEGG category genes in each cluster.
CPercentage of GO or KEGG category genes in each cluster.
DFold Enrichment of genes in each cluster compared to a background list.
doi:10.1371/journal.pone.0025389.t003
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Two Asian GWASs detected SNPs on two genetic loci (AIRE, and

PADI4) [98,99]. European GWAS identified 8 loci as shared

genetic factors between RA and celiac disease [80]. We

reconsidered our network analysis by including newly discovered

loci. We could assign these 10 loci to 8 unique genes: AIRE,

PADI4, TRAF1, STAT4, YDJC, UBASH3A, CD247, and ATXN2.

TRAF1, STAT4, and PADI4 were already included into our model.

YDJC is not deposited in the HPRD database. Thus, 4 genes

(AIRE, UBASH3A, CD247, and ATXN2) were newly included. We

re-examined the RWR algorithm using a total of 23 genes as initial

vertices. The rank correlation in genes between before and after

including the 4 genes was 0.978. This indicates the ranking of

candidate genes were not largely affected. The result from the

hierarchical clustering method and functional annotation rendered

similar biological pathways (Figure S4, Table S11). As previously

mentioned, CD247 was one of top-ranked genes (32th) in the

original RWR analysis. The result of network analysis by using

additional 4 newly discovered genes converged on the same

biological pathways, suggesting the strong relevance of these

pathways to the etiology of RA. Only physical PPI data were used

to construct the molecular network and it is inevitably noisy and

incomplete. A PPI network integrated with a transcription

profiling network could improve the predictive ability of

network-guided prioritization of genes [22,101].

We have demonstrated that recent successful discoveries of

genetic variants associated with diseases are valuable resources to

provide targets for future resequencing studies to reveal the

biological pathways. Such efforts utilizing GWAS discoveries will

accelerate genetic discoveries and improve the predictive ability of

the genetic variations. While exploration of other types of genomic

variation such as rare and low frequency single nucleotide changes

and insertions and deletions of nucleotides is promising, it may be

challenging because the variants are likely to be population-

specific. The biological pathways highlighted by the various

common genetic variants associated with the disease across

populations will encourage examination and functional annotation

of newly discovered rare variants.

Materials and Methods

Ethics statement
The Ethics Committee of Tokai University approved the study

protocols and all participants gave written informed consent.

Study participants
1,287 RA subjects and 1,500 control subjects of Japanese origin

were recruited. All cases were diagnosed by board certified

rheumatologists and fulfilled 1987 American College of Rheuma-

tology criteria [102]. The dataset was updated from our previous

study [103].

Information on the positivity of anti-CCP and RF for 481 and

462 cases, respectively, was measured. Anti-CCP antibody titers

were measured with the second generation ELISA kit (MESACUP

CCP; Medical & Biological Laboratories Co. Ltd, Nagoya, Japan).

A cut-off value of 4.5 U/ml was used for anti-CCP antibody

positivity. RF positivity was determined by using N-Assay TIA RF

Nittobo (Nitto Boseki Co., Ltd, Koriyama, Japan). The positivity

of anti-CCP and RF was observed in 90.4% and 80.5% cases,

respectively.

Genotyping
All study participants were genotyped for HLA-DRB1 alleles and

selected SNPs described below. Genotyping of HLA-DRB1 alleles

was performed by Luminex Multi-Analyte Profiling system

(xMAP) with a WAKFlow HLA typing kit (Wakunaga, Hiroshima,

Japan). Genotyping of SNPs was performed by TaqMan SNP

Genotyping Assays on the ABI PRISM 7900HT Sequence

Detection System (Applied Biosystems, Tokyo, Japan). Departure

from Hardy-Weinberg equilibrium (HWE) in control samples was

examined at the significance level of P,0.001 by means of the

exact test using PLINK software [104].

Electronic database search strategies
PubMed search. We identified published meta-analyses

addressing the association between genetic variants and RA risk

in population-based studies. We performed a literature search of

the PubMed database (last search June 18, 2010). Searches were

conducted using the following keywords: ‘‘rheumatoid arthritis’’

and [genetic(s) or polymorphism(s) or allele(s) or mutation(s)] and

(meta-analysis or metaanalysis or ‘‘systematic review’’). Reference

mining of retrieved articles was used to identify additional articles.

Meta-analyses included in our analysis had to meet all of the

following criteria: evaluated RA risk as the outcome (analyses of

pharmacogenomics and RA severity were excluded) and published

in English. Two researchers (HN and TC) conducted literature

searches independently, and any disagreement between the two

researchers was accommodated by the third researcher (AT).

Genetic models and methods for combining studies examined in

the retrieved meta-analyses differed according to article. In order

to evaluate evidence of association of genetic variant with RA in

the same statistical manner, we performed re-analysis of published

meta-analyses. Therefore, we included the following meta-

analyses: greater than or equal to five independent studies were

included and the total number of cases and controls was larger

than 3,000; adequate data to calculate OR for each of the included

studies was provided; and per-allele effect of risk allele was

examined. When there were several meta-analyses on the same

variant including different studies, we created a comprehensive set

of individual studies using following criteria: i) studies did not

overlap data between studies, and ii) study with largest sample size

was used when studies overlapped data.

The NHGRI GWAS catalog. Recent update of GWAS

findings was sought by the NHGRI GWAS catalog (http://

www.genome.gov/gwastudies/ Accessed June 18, 2010). We

included the associations that met the genome-wide significance

of P,5.061028 in our analysis.

Re-analysis of published meta-analyses and selection of
genetic variants

In the re-analysis of all the retrieved meta-analyses, the per-

allele ORs for individual studies were combined using both fixed

effects model and Dersimonian-Laird random effects model meta-

analyses. We examined the test for association at the significance

level of P,2.561023 ( = 0.05/20) to correct the multiple testing.

Homogeneity across studies was examined by Cochran’s Q test at

the significance level of 0.1. The extent of between-study

heterogeneity was quantified by I2. I2 values over 50% indicate

large heterogeneity. All the meta-analyses were performed by

using STATA version 11.0.

We selected genetic variants according to the following criteria:

First, genetic variants showed evidence of association in the re-

analysis of meta-analysis (P,2.561023) or in the NHGRI GWAS

catalog (P,0.561028). Second, minor allele frequency was larger

than 5% in Japanese as Janssens et al. shows low-frequency genetic

variants with small effects does not largely affect the predictive

ability [105]. The allele frequency in Japanese population was

sought in SNP Control Database [106].
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In order to introduce possible genetic heterogeneity among

ethnic groups into the risk prediction model, we performed

subgroup analyses in which ORs per ethnic group were estimated.

We used the ethnic group-specific effect into risk prediction model if

meta-analysis fulfilled the following criteria: greater than or equal to

three independent studies were included and the total number of

cases and controls was larger than 2,000 in both target (East Asian)

and major (European descent) ethnic groups; the ethnic group-

specific OR was statistically significant (P,2.561023); and

heterogeneity in the ethnic group-specific OR between the target

and major ethnic groups was statistically significant (P,0.05).

Genetic risk models
We considered three logistic regression models: the HLA model

included the HLA-DRB1 alleles only; the non-HLA model

included the selected genetic variants at the non-HLA loci; and

the integrative model incorporated both of the HLA-DRB1 alleles

and the genetic variants at the non-HLA loci. In the logistic

regression analyses, the genetic risk score is as follows:

GR X,Zð Þ~
XL

i~1
Xi log ORiz

XM

j~1
Zj log ORj , ð1Þ

where Xi[ 0,1,2f g is the number of risk alleles of SNP locus i,

X~ X1,:::,XLð Þ is the genetic profiles of L loci genotypes,

Zj[ 0,1,2f g is the indicator variable, indexing the number of each

of selected HLA-DRB1 alleles, Z~ Z1,:::,ZMð Þ is the profiles

showing the subject’s HLA-DRB1 genotype, and the OR for each

variant is derived from the re-analysis of meta-analyses. The

integrative model was the full model that was expressed as the

equation [1], whereas the HLA and the non-HLA models were the

reduced models where the first and second terms on the right-

hand side of the equation [1] were excluded, respectively.

In order to assess the predictive ability of the models, we used

the ROC curve and calculated the AUC [16]. By definition, the

AUC is the probability that a randomly selected subject with the

disease of interest has a higher score than a randomly selected

subject without the disease. When the ROC analyses were

implemented, we restricted analyses to subjects with complete

genotype data. Thus, 1,231 cases and 1,445 controls were

available. We compared the fits of the three models with Akaike’s

information criterion.

Simulation study
In most common diseases, the predictive ability of common

genetic variants may be suboptimal at the current moment. We

therefore performed a simulation study to address how many

additional loci should be mapped to establish an acceptable level

of genetic risk prediction (AUC = 80.0%).

We assumed two scenarios of allelic architecture of as-yet-

discovered genetic variants. First, we assumed the common

disease-common variant hypothesis, in which a large proportion

of the missing heritability can be explained by common variants

[107]. In this model, the per-allele OR was set to be 1.1 or 1.2 and

the RAF was set to be 0.1 or 0.3. Second, we assumed that the

multiple rare variants with intermediate effects remain undiscov-

ered [14]. In this model, we assumed that the per-allele OR was

2.0 or 3.0 with RAF of 0.01.

To simulate the distribution of RA risks in the general

population, we considered the constrained multiplicative model

[108]. First, we set ‘base model’, where all the possible com-

binations of genotypes of HLA-DRB1 alleles and selected SNPs

were included. For the base model, the ORs derived from our

case-control association study were used and the allele frequencies

in Japanese were obtained from SNP Control Database [106]

(shown in Text S1B). Next, we added N diallelic loci to the base

model. For simplicity, we assumed that the frequency and the

effect size of the risk allele at each additional locus are the same as

p and OR, respectively. We assumed that each locus is both in

HWE and in linkage equilibrium. We denote K as the prevalence

of RA and set it to 0.01. Under the rare disease assumption, the

relative risk can be approximated by the odds ratio. The risk and

the joint probability of multi-locus genotype can be written as the

product across loci:

g X,Z,Wð Þ~bPL
i~1 OR

Xi
i PM

j~1 OR
Zj
j PMN

k~1 OR
Wk
k , and ð2Þ

p X,Z,Wð Þ~PL
i~1 p Xið ÞPM

j~1 p Zj

� �
PN

k~1 p Wkð Þ,

respectively, where b is the background risk so that E gð Þ~K ,

p Xið Þ is the probabilities of Xi, and W~ W1,:::,WNð Þ is the genetic

profiles of N-locus genotypes with Wk[ 0,1,2f g representing the

number of risk alleles of additional locus k. By the assumption that

each additional locus has the same p and OR, the equation [2] can

be written down as:

g X,Z,Wð Þ~bPL
i~1 OR

Xi
i PM

j~1 OR
Zj
j ORs, and ð3Þ

p X,Z,Wð Þ~PL
i~1 p Xið ÞPM

j~1 p Zj

� � 2N

s

� �
ps 1{pð Þ2N{s

,

where s~
PN

k~1Wk. For some genetic profiles with many risk

alleles, the risk expressed as the equation [3] can exceed 1. In the

constrained multiplicative model, if the risk exceeds 1, the risk is

set to 1 [108].

The probability of multi-locus genotype given disease status is:

p X,Z,WjDiseaseð Þ~g X,Z,Wð Þ|p X,Z,Wð Þ=X
X,Z,W

g X,Z,Wð Þ|p X,Z,Wð Þ, and

p X,Z,WjNonDiseaseð Þ~ p X,Z,Wð Þ{½

K|p X,Z,WjDiseaseð Þ�= 1{K½ �:
ð4Þ

For an arbitrary cut-off value of t, the true and false positive

rates are:

TPR tð Þ~
X

X,Z,W:g X,Z,Wð Þ§t
p X,Z,WjDiseaseð Þ, and

FPR tð Þ~
X

X,Z,W:g X,Z,Wð Þ§t
p X,Z,WjNonDiseaseð Þ,

respectively:

Given the TPR and FPR at each cut-off value t, the ROC curve

can be drawn and then the AUC can be calculated by the

trapezoid rule [109].
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Network analysis
We assigned selected genetic variants to a single protein-coding

gene according to the following hierarchy: coding.intronic.59U-

TR.39UTR.near gene (within 2 kb to 59 or 0.5 kb to 39 of a

gene).intergenic. If a selected variant mapped an intergenic

region, we sought literature of fine-mapping studies or GWAS of

RA and other autoimmune diseases showing evidence of

association of variants in higher levels of the hierarchy.

The physical PPI network was constructed using the HPRD

database [75,76]. In PPI networks, vertices are proteins and edges

represent a physical interaction between two proteins. We

projected the RA-associated genes onto the constructed PPI

network and candidate genes were then ranked based on the

global distance to the RA-associated genes within the PPI network

by using random walk with restart (RWR) algorithm [77]. The

RWR algorithm is a powerful tool to measure proximity between

vertices on complex network.

In a random walk, starting at some initial ‘seed’ vertices (i.e.,

proteins encoded by the RA-associated genes), we chose at

random an edge that is attached to the current vertex and move

along the chosen edge to the linked vertex, and iterate many steps.

In the RWR, at each step of the walk we return to the initial seed

vertices with the restart probability, r. All vertices are ranked by

the number of times that the walker visits to corresponding vertices

in the process. The outline is described below.

The adjacency matrix A of the PPI network

is the matrix with elements Aij as follows:

Aij~
1 if there is an edge between vertices i and j

0 otherwise

�
. We de-

fine the transition probability matrix M so that the transition

probability Mij from protein i to protein j is: Mij~Aij

.P
j Aij . Let

p(t) be a vector whose i-th element holds the probability of a

random walker being at vertex i at step t and p(0) be the initial-state

probability vector, the probability vector at the step t+1 is as

follows:

p tz1ð Þ~ 1{rð ÞMp tð Þzrp 0ð Þ:

In this study, p(0) was defined as the vector with elements:

p
0ð Þ

i ~
1=number of RA-associated genes if vertex i is RA-associated gene

0 otherwise

�
.

The restart probability r was set to be 0.5. We considered the

random walker reached a steady-state when the difference between

p(t+1) and p(t) (measured by the L1 norm) reached 10210. All the

genes in the PPI network were ranked according to the

corresponding values in the steady-state probability vector p(‘).

The predictive ability of the network-guided prioritization of

genes was tested using leave-one-out cross-validation by omitting

each RA-associated gene in turn from initial ‘seed’ vertices and

performing the RWR algorithm for the purpose of its own

evaluation. The ROC curve was drawn by plotting the TPR

versus the FPR for all genes ranked above a sliding ranking

threshold.

We define RA-associated network as a subnetwork in which

vertices are the RA-associated genes and genes ranked in the top

100 by the RWR algorithm and edges are physical interactions

between their products. Functional modules are then explored in

the RA-associated network. The overlapping and hierarchical

clusters were detected by using the EAGLE algorithm [84]. The

functional annotation for the retrieved clusters was performed by

using DAVID [85,86]. We set 9,521 genes on the PPI network

from HPRD as the background in enrichment analysis.

Supporting Information

Figure S1 Flowchart detailing the exclusion and inclu-
sion criteria and the number of studies excluded and
included at each step of the electronic database
searches. A) PubMed, and B) NHGRI GWAS catalog.

(TIF)

Figure S2 RA-associated network comprising known
RA-associated genes and genes ranked in the top 50 by
the RWR algorithm and edges are physical interactions
between their products. Nodes are color coded by hierarchical

clusters detected by the EAGLE algorithm: CL1, red; CL2; cyan,

and CL3, yellow. Overlapped regions between CL1 and CL2 are

rendered in green. Node size is based on the ranking in the RWR

algorithm.

(TIF)

Figure S3 RA-associated network comprising known
RA-associated genes and genes ranked in the top 150 by
the RWR algorithm and edges are physical interactions
between their products. Nodes are color coded by hierarchical

clusters detected by the EAGLE algorithm: CL1, red; CL2; cyan,

CL3, yellow; and CL4, orange. Overlapped regions between CL1

and CL2, CL1 and CL4, and CL2 and CL4 are rendered in green,

pink, and purple, respectively. Node size is based on the ranking in

the RWR algorithm.

(TIF)

Figure S4 Re-consideration on RA-associated network.
The RWR algorithm was re-examined by adding recently

discovered 4 genes (AIRE, CD247, UBASH3A, and ATXN2). Nodes

are color coded by hierarchical clusters detected by the EAGLE

algorithm: CL1, red; CL2; cyan, and CL3, yellow. Overlapped

regions between CL1 and CL2 are rendered in green. Node size is

based on the ranking in the RWR algorithm.

(TIFF)

Table S1 Result of ratings for 87 abstracts retrieved
from PubMed. The scoring was conducted by independent two

authors (Hirofumi Nakaoka and Tailin Cui), which is color-coded

in green and blue, respectively. Any disagreement between the two

researchers was accommodated by Atsushi Tajima. The final

decision is rendered in red.

(DOC)

Table S2 Result of rating for 54 full-text articles.

(DOC)

Table S3 Result of screening of extracted data from 51
full-text articles.

(DOC)

Table S4 Re-analysis of meta-analyses addressing ge-
netic associations with RA risk.

(DOC)

Table S5 Assignment of a single gene to genetic variants
associated with RA and the allele frequencies in
European and Japanese.

(DOC)

Table S6 Ethnic group-specific analysis of published
meta-analyses of genetic associations with RA risk. The

SNPs in which the heterogeneity in the ORs between European

and East Asian populations are significant are highlighted in

yellow.

(DOC)
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Table S7 Genotype counts for six HLA-DRB1 alleles and
15 SNPs.
(DOC)

Table S8 Association analysis of RF and anti-CCP
positive RA patients versus control subjects with
selected genetic variants.
(DOC)

Table S9 GO and KEGG annotations for three clusters
in RA-associated network comprising RA-associated
genes and genes ranked in the top 50 by the RWR
algorithm.
(DOC)

Table S10 GO and KEGG annotations for three clusters
in RA-associated network comprising RA-associated
genes and genes ranked in the top 150 by the RWR
algorithm.
(DOC)

Table S11 Re-consideration on RA-associated network.
The RWR algorithm was re-examined by adding recently

discovered 4 genes (AIRE, CD247, UBASH3A, and ATXN2). GO

and KEGG annotations for three clusters in RA-associated

network comprising RA-associated genes and genes ranked in

the top 100 by the RWR algorithm.

(DOC)

Text S1 Supplementary methods.
(DOC)
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