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Abstract

T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and
even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus
containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus.
Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP205–212 CD8 T cell
epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-
reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino
acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening
infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty
necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally
immunodominant PV NP38–45 -specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that
compromise protective immunity by impairing more protective T cell responses.
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Introduction

The desired consequence of vaccination or viral infection is long

lasting immunity that protects the host from re-infection or else

quickly restricts viral replication to prevent disease and immune

pathology. In many cases neutralizing antibody produced by stable

plasma cell populations restricts re-infection for the lifetime of the

host. In other cases effective neutralizing antibody responses may

wane with time or not develop, and resistance relies more on a rapid

response by memory T cells [1]. CD8 T cell memory is stable in a

pristine environment, but it can be compromised by subsequent

viral or bacterial infections [2,3]. This compromise may be in the

form of type 1 interferon (IFN)-induced attrition, resulting in a Bim-

dependent apoptosis and loss of memory T cells [4]. Alternatively,

this compromise may be in the form of skewing the memory T cell

repertoire as a consequence of CD8 T cell cross-reactivity between

heterologous agents. Such cross-reactivity is commonplace and is

seen in humans between influenza A virus (IAV) and hepatitis C

virus (HCV), between IAV and Epstein-Barr virus, and within

members of the flavi-, hanta-, and orthomyxo-virus groups [3].

It could therefore be expected that protective immunity could

be altered by an intervening viral infection, especially against an

agent poorly controlled by neutralizing antibodies and reliant on T

cell-dependent immunity, as exemplified by the New World

arenavirus Pichinde virus (PV) [5,6]. PV is distantly related to

LCMV, an Old World arenavirus, and these two viruses encode

cross-reactive epitopes at nucleoprotein (NP) positions 205–212.

Heterologous challenge of LCMV-immune mice with PV results

in about a 10-fold reduction in PV titer by day 4 post-infection (PI)

when compared to naı̈ve controls, and PV-immune mice

synthesize about 2–5 times less LCMV on LCMV challenge

[6,7]. Alterations in the T cell epitope immunodominance

hierarchy of the previously immunized animals occurs following

heterologous challenge in the LCMV and PV system in either

direction [6]. T cell responses to the NP205 epitopes are normally

subdominant during infections with either virus alone, even after

re-challenge with homologous virus, but in mice sequentially

infected with heterologous virus, they become dominant, with

narrowly focused oligoclonal repertoires [8].

The beneficial effects of CD8 T cell-mediated clearance of viral

infections are sometimes offset by immunopathology, and in

experimental models of autoimmunity specific so-called ‘‘patho-

genic epitopes’’ may elicit immunopathology due to their cross-

reactivity with self-antigens [9]. Herpes simplex virus-1-induced
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conjunctivitis and Theiler’s virus-induced encephalitis are cases

where viral epitopes induce cross-reactive T cells that target

proteins of the eye and brain, respectively [10,11]. We questioned

here whether select epitopes cross-reactive between two viruses

may at times act as pathogenic epitopes and cause immune

pathology even in the absence of autoimmunity and show here

how an LCMV infection disrupts protective immunity to PV due

to the presence of a cross-reactive ‘‘pathogenic’’ epitope.

Results

Generation and analysis of NP205 variants
To analyze the role of cross-reactive epitopes in the elicitation

or disruption of protective immunity and immune pathology, we

first characterized the molecular properties of wild type and

mutant epitopes cross-reactive between LCMV and PV. This

study uses both the Armstrong strain of LCMV and its highly

disseminating Clone 13 derivative; these viruses differ by only

three amino acids and have identical T cell epitopes [12]. LCMV

NP205–212 (YTVKYPNL) and PV NP205–212 (YTVKFPNM) are

class I MHC H2Kb-restricted epitopes that share 6 of 8 amino

acids (Figure 1). To evaluate the conformational differences

between the LCMV and PV epitopes, we solved the crystal

structures of WT H2Kb –NP205–212 from LCMV and PV to

2.50 Å resolution (Table S1). The structures show that positions 2,

5 and 8 are the anchor residues, whereas positions 2 and 6 are

partially exposed, and positions 1, 4 and 7 are solvent-exposed and

thus represent potential TCR contact points.

Overall the conformation of the WT LCMV and PV peptides

bound to H2Kb is similar, with a root mean square deviation

(rmsd) of ,0.24 Å (Figure 1A). The WT NP205 peptides from

LCMV and PV differ by only two residues at position 5 and 8,

which are MHC anchor residues, and are thus inaccessible for

direct TCR contact. The respective H2Kb binding clefts adopt

similar conformations (rmsd of ,0.3 Å) (Figure 1B), with the

largest difference in a specific region of the a2-helix (rmsd .0.5 to

0.9 Å) (Figure 1C). The presence of the P5-Tyrosine hydroxyl

group of the LCMV peptide, instead of the P5-Phenylalanine

found in the PV peptide, accounts for this perturbation of the a2-

helix. Namely, P5-Tyrosine alters the conformation of Serine-99,

which is located within the b-strand at the floor of the cleft

(Figure 1C), the effect of which is transmitted through the cleft by

a rearrangement of side chains of the Glutamine-114, Leucine-

Author Summary

The purpose of vaccination against viruses is to induce
strong neutralizing antibody responses that inactivate
viruses on contact and strong T cell responses that attack
and kill virus-infected cells. Some viruses, however, like HIV
and hepatitis C virus, are only weakly controlled by
neutralizing antibody, so T cell immunity is very important
for control of these infections. T cells recognize small virus-
encoded peptides, called epitopes, presented on the
surface of infected cells, and some of these epitopes
induce strongly protective and others weakly protective T
cell responses. However, the same T cells can sometimes
demonstrate cross-reactivity and recognize similar epi-
topes encoded by two different viruses. We questioned
here what infection with a virus encoding a weak cross-
reactive epitope would do to immunity to a previously-
encountered virus. Here we report that such an infection
can compromise protective immunity by enhancing the
normally weak response and suppressing the normally
strong response. Under these conditions such epitopes
function as ‘‘pathogenic’’ epitopes, and we suggest that
the potential for inducing responses to pathogenic
epitopes should be an important consideration in the
design of T cell vaccines.

Figure 1. Analysis and comparisons of NP205-Kb structures. (A), (B) and (C): superposition of LCMV (pink) with PV (blue) structures, with the
peptide in stick representation and the MHC H2Kb in grey cartoon. The tip of the a2-helix is colored accordingly to the peptides bound by the H2Kb

molecules, representing the section from residue 150 to 156 of the a2-helix (B & C). (C) shows, with a different orientation, the residues that change
conformation between the peptide-MHC complexes, namely Serine-99, Glutamine-114, Leucine-156, Glutamate-152 as well as Glycine-151, for which
the Ca atom is represented by a sphere. (D) superposition of the LCMV (pink) with LCMV-V207A (green) structures, with peptide in stick
representation and MHC in grey cartoon. (E) and (F): comparison of LCMV (pink) and LCMV-V207A (green) mutant peptide, both bound to the H2Kb

molecule (grey cartoon) in the same orientation. The P3 residues are colored in yellow. Arginine-155, Glutamate-152 and Alanine-151 of the H2Kb

molecule are represented as grey stick to show the different interaction of their side chains between both structures. The red dashed lines represent
the hydrogen bond made between the residues.
doi:10.1371/journal.ppat.1002633.g001
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156, Glutamate-152 and Glycine-151, for which a maximum

displacement of 0.9 Å is observed. This altered positioning of the

a2-helix could affect the interaction with the TCR, as differences

in this region of the MHC has been shown to impact on TCR

ligations in many other systems [13,14]. This indicates that,

although the pMHC complexes are similar, they are not identical

epitopes from the perspective of the T cell, and this is reflected by

differences in the LCMV-specific vs. PV-specific NP205 reper-

toires of TCR generated by infection in vivo [8].

In our previous study we isolated a T cell escape variant of

LCMV Clone 13, where the Valine in the third position of the

LCMV NP205 epitope was converted into an Alanine (NP

V207A). This mutant epitope stabilized the expression of H2Kb on

RMA/S cells, indicating that it could be presented by the MHC

[8]. The PV-NP205, WT LCMV-NP205, and LCMV V207A

mutant peptides had very similar effects at stabilizing H2Kb in that

the pMHC complexes had an average Tm of 47uC.

To understand the impact of the V207A mutation, the crystal

structure of the H2Kb-NP V207A epitope was determined to

2.30 Å resolution (Table S1). The structure shows that the

mutation at P3-Valine of the LCMV peptide into Alanine (NP

V207A) did not affect the overall conformation of the H2Kb

binding cleft (rmsd .0.3 Å) (Figure 1D). The difference between

the LCMV WT and LCMV-V207A structures is limited to a

change in the Arginine-155 conformation between the two pMHC

complexes. Namely, within the H2Kb-NP205 complex, Arginine-

155 hydrogen bonds to the main chain of the P4-Lysine residue of

the peptide (Figure 1E). In the H2Kb-NP V207A epitope, on

account of subtle movement of the peptide, the conformation of

Arginine-155 is shifted such that it now points towards the tip of

the a2-helix and hydrogen bonds with the Alanine-151 (Figure 1F).

Arginine-155, a position previously termed the gatekeeper residue,

has been shown to be involved in interacting with the TCR in

most of the structures of TCR-pMHC solved to date and often

changes conformation upon TCR ligation [15,16]. The change of

conformation observed for the Arginine-155 due to the Valine to

Alanine mutation at position 3 between the LCMV WT and

V207A structures explains the effect on the TCR recognition and

on T cell activity that is associated with epitope escape.

Since the naturally selected V207A mutant was generated

during LCMV Clone 13 infection and may have had additional

mutations, we used reverse genetics approaches to generate

rLCMV (rV207A) with the specific mutation V207A within the

NP205–212 epitope of the Armstrong strain. As a control we also

used reverse genetics to rescue WT Armstrong virus (rWT),

thereby giving us highly defined viruses differing in a single

nucleotide. Because the LCMV-V207A peptides could stabilize

H2Kb and induce a weak but detectable T cell response, we tested

Alanine substitutions in different residues of the NP205 epitope to

find a variant that would not stabilize H2Kb. This was done by

converting a Leucine into an Alanine in the eighth (and anchoring)

position of the peptide, thereby eliminating MHC stabilization

(Figure 2). These results led us to design and generate by reverse

genetics the LCMV Armstrong anchoring mutant rL212A. Armed

with this assembly of mutant viruses and the knowledge of their

structures and biochemical properties we could now address the

biological aspects of heterologous immunity between LCMV and

PV.

Reduction in immunogenicity due to point mutations in
the LCMV NP205 epitope

The newly engineered rV207A variant of LCMV-Armstrong

was similar to the natural Clone 13 variant in that it induced

normal responses to all tested epitopes except for NP205

(Figures 3A and S1) [8]. Infection with the rV207A LCMV-Arm

variant resulted at day 8 PI in greatly diminished responses against

either the WT LCMV NP205 or the PV NP205 epitopes (e.g.

LCMV NP205 response induced by rWT = 1.860.24% vs.

rV207A = 0.160.05%, n = 3/group, p = 0.0002) (Figures 3A and

S1). H2Kb-MHC-Ig dimers were also employed to ensure that the

diminished NP205-specific CD8 T cell response in variant-

infected mice was due to a loss in specific T cell number and

not just due to an alteration in T cell function detected by ICS

assays. In the host infected with the rWT virus, similar frequencies

of antigen-specific CD8 T cell populations were detected using

either LCMV WT NP205-loaded MHC-Ig dimers or LCMV NP

V207A-loaded MHC-Ig dimers (2.060.1% vs. 1.860.25%,

respectively, n = 2) (Figures 3B and S1). On the other hand,

MHC-Ig dimers loaded with either peptide could detect only a

very small percentage of CD8 T cells in mice infected with the

rV207A variant virus (Figure 3B). The LCMV Armstrong rL212A

anchoring variant, whose NP205 peptide does not stabilize H2Kb,

induced T cell responses well against the LCMV GP33 and

NP396 epitopes but failed to induce NP205 responses at all above

background (Figures 3C and S1). Note that the L212A peptide did

sensitize targets to killing, but that effect was very sensitive to

dilution, much as we previously showed with the V207A peptide,

in comparison to wild type NP205–212 (data not shown) [8].

These mutants made it possible to assess the role of the NP205

epitope in heterologous immunity.

Association of cross-reactive NP205-specific CD8 T cells
with heterologous immunity

We used the three LCMV mutants that poorly induced NP205-

specific CD8 T cell responses to test the hypothesis that

Figure 2. Lack of MHC stabilization by LCMV NP L212A. MHC
stabilization assays for LCMV WT (NP205) and mutant (L212A) peptides.
RMA-S cells were incubated with different concentrations of peptides
and stained against H2Kb to detect its stabilization on the cell surface.
doi:10.1371/journal.ppat.1002633.g002
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heterologous immunity between LCMV and PV was dependent

on the NP205 epitope. Naı̈ve controls, LCMV WT immune, and

LCMV variant-immune mice were challenged with PV, and PV

titers were assessed by plaque assay 4 days PI. PV titers were

substantially lower in PV-challenged WT-LCMV-immune mice

than in PV-challenged naı̈ve controls (Table 1). These approxi-

mately 10-fold reductions in viral titers, while not the sterilizing

immunity normally seen during homologous virus challenge, are

typical of the reductions seen in heterologous immunity systems

and have been shown in other systems to correlate with protective

immunity and immunopathology [3]. In contrast, the PV titers in

the LCMV NP205 mutant-immune groups were not statistically

different from the PV-challenged naı̈ve controls (Table 1). These

studies were not done with PV as the first virus and LCMV as the

second, because heterologous immunity is weaker in that order of

infections, probably due to a lower frequency of NP205-specific

memory T cells in PV-immune than in LCMV-immune mice [6].

Nevertheless, these data conclusively show that heterologous

immunity can be ablated by a single nucleotide change within a

cross-reactive T cell epitope.

Acute fatty necrosis (AFN) upon PV re-challenge of
double immune mice previously infected sequentially
with PV and LCMV

We next designed experiments to test the hypothesis that an

intervening viral infection may disrupt protective T cell-dependent

immunity to a previously encountered virus. We chose PV as the

first virus, as it does not induce neutralizing antibodies that would

interfere with a homologous challenge. Here, PV-immune mice

were challenged with LCMV, and these double-immune mice

(PV+LCMV) were then re-challenged with PV and assessed for

viral titers and immune pathology (Figure 4A). The expectation in

this experiment was that the LCMV infection, whether with WT

or an NP205 mutant, should reduce the number of immunodo-

minant PV NP38-specific memory cells by IFN-induced attrition

[2,6,17], as shown by this representative experiment: PV immune

only = 5.464.2%; PV+rWT LCMV Armstrong = 0.9660.2%;

PV+rV207A LCMV Armstrong = 0.6760.09%, n = 5/group

(p,0.05 by Anova test). The next expectation was that the cross-

reactive NP205 response, after its initial reduction, should then be

amplified in an LCMV-preferred way to form a dominant but

Figure 3. Reduction in immunogenicity as a result of point mutation in the LCMV NP205 epitope (NP V207A). (A) B6 mice (3/group)
were inoculated with either rLCMV WT or rV207A variant LCMV-Armstrong. Eight days PI, splenocytes from each group were harvested and
stimulated ex vivo with a panel of LCMV-specific CD8 T cell peptides for ICS assays. Numbers represent frequencies of IFNc+, CD8a+ T cells. (B)
Splenocytes from rWT- or rV207A-infected mice 8 days PI were stained with LCMV NP205 WT and NP V207A peptide-loaded MHC-Ig dimers. (C) B6
mice (3/group) were inoculated with rLCMV WT or rL212A viruses. Spleens were harvested 8 days PI and stimulated ex vivo with indicated peptides.
Numbers represent frequencies of IFNc+, CD8a+ T cells in representative mice.
doi:10.1371/journal.ppat.1002633.g003
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narrow oligoclonal response in PV+WT LCMV-immune mice

[6,8]. This LCMV-skewed NP205 response may be less appro-

priate for effective control of PV.

Our preliminary data with WT viruses surprisingly showed that

the double immune mice developed a high incidence and severity

of AFN of the abdominal fat pads following the final PV re-

challenge (Figure 4A). This AFN was only in rare cases seen in PV-

immune mice later re-challenged with PV without the intervening

LCMV infection. In some cases (2 of 8 experiments) a loss of

protective immunity to PV in regards to virus load was observed

upon PV re-challenge of these double immune mice, but most of

the time virus could not be detected at day 4 when immune

pathology was examined. Clearly, however, rather than there

being sufficient protective immunity to prevent disease, the

intervening infection disrupted the immunity and predisposed

the double-immune mice to an immunopathological disease on re-

challenge (Figure 4A).

Knowing that LCMV infection would cause a skewed and

oligoclonal expansion of the cross-reactive NP205 epitope-specific

T cell pool, we tested for the importance of this epitope, first by

using the V207A LCMV Clone 13 variant instead of WT Clone

13 in the viral immunization sequence. The frequencies of

antigen-specific CD8 T cells in the blood of the PV+LCMV

Clone 13 WT and PV+LCMV Clone 13 V207A double immune

mice were monitored prior to the final PV re-challenge. As

expected, the cross-reactive NP205-specific CD8 T cell response

dominated the immune compartment of the PV+LCMV-Clone 13

WT double immune mice, in contrast to the PV+LCMV-Clone 13

NP-V207A double immune mice (Figures 4B and S1). The

average frequency of the cross-reactive NP205-specific CD8 T

cells in the PV+LCMV-Clone 13 WT double immune mice before

final PV re-challenge was 9.566.0% (n = 18) vs. 1.160.8%

(n = 20) in PV+LCMV-Clone 13 V207A double immune mice

(p = 0.0019, n = 5/group). These NP205 responses were thus

substantially reduced, but, notably, not completely lacking in the

mice that received the Clone 13 V207A mutant. As expected, the

normally dominant NP38 responses were quite low in the

PV+LCMV Clone 13 WT double immune mice (Figures 4B

and S1).

The incidence of AFN was higher in the PV+LCMV Clone 13

WT than in the PV+LCMV-Clone 13 V207A double immune

mice following PV re-challenge (p,0.05 by one way ANOVA

non-parametric Kruskai-Wallis test) (Figure 4C). The majority

(74%, n = 23) of the PV+LCMV-Clone 13 WT double immune

mice displayed AFN as compared to a smaller fraction (38%,

n = 25) of the PV+LCMV-Clone 13 V207A double immune mice.

In addition, the overall severity of the AFN was higher in the

PV+LCMV Clone 13 WT double immune mice re-challenged

with PV. These data indicate that a single naturally-derived point

mutation in an intervening heterologous virus infection can have a

dramatic effect on protective immunity against the first-encoun-

tered virus. Although the PV titer in the non-immune naı̈ve group

challenged with PV usually reached 103 to 104 PFU/ml in both

the spleens and the abdominal fat pads, no AFN was detected at

four days PI (n = 25). In these experiments plotted in Figure 4C no

PV PFU could be detected in either the spleens or the abdominal

fat pads of the PV+LCMV WT and PV+LCMV-V207A double

immune mice four days following the PV challenge (n = 23 and 24,

respectively). This failure to detect PFU would be a function of the

partial immune status of the host and to the relatively late time

point at which the organs were harvested.

The frequencies of cross-reactive NP205-specific CD8 T cells in

the abdominal fat pads were substantially higher in the

PV+LCMV Clone 13 WT than PV+LCMV Clone 13-V207A

double immune mice at day 4 following PV re-challenge

(22.267.6% vs. 2.661.4%, p = 0.0018, n = 4/group) (Figure 4D).

In contrast, the frequencies of the PV NP38-specific CD8 T cells

varied less dramatically but trended higher in the PV+LCMV-

Clone 13 V207A double immune mice after a PV challenge

(11.264.4% vs. 16.464.3%, respectively, p = 0.15). This further

implicates a role for the NP205-specific T cells in the immune

pathology.

Complete elimination of immunopathology with the
LCMV-Armstrong rL212A anchoring amino acid mutant

The experiments in Figure 4C were performed over a period of

6 years and used the naturally selected NP V207A mutant in the

LCMV Clone 13 system. While this variant elicited markedly

reduced NP205-specific responses, the responses were not

completely absent in the double immune mice, as shown in

Figures 4B and S1, and it was unclear whether the small fraction

of NP205-specific T cells induced may have affected the results.

We initiated tests with the LCMV-Armstrong rV207A variant

(Figures 5A and S1) and found that, as with the natural Clone 13

NP-V207A variant (Figures 4B and S1), there was a reduced but

still detectable NP205 response in the double immune mice prior

to PV re-challenge. Rather than continuing to explore that variant

in extensive pathogenesis studies, we focused on the LCMV-

Armstrong rL212A anchoring variant. Figures 3C and S1 show

that mice inoculated with the LCMV-Armstrong rL212A mutant

generated relatively normal acute T cell responses to the

immunodominant LCMV epitopes GP33 and NP396, but there

was virtually no response against either the LCMV or PV NP205

peptides or even to the L212A peptide (Figures 3C and S1).

Importantly, there also were no NP205-specific memory responses

in double-immune mice first immunized against PV and later

challenged with the LCMV-Armstrong rL212A variant (Figures 5B

and S1).

We next questioned how LCMV-Armstrong rL212A influenced

immunopathology in double-immune (PV+LCMV) mice re-

challenged with PV. Whereas detectable AFN was found in 80%

of the PV+LCMV-Armstrong rWT-immune mice after PV re-

challenge, none of the mice in the PV+rL212A-immune group

Table 1. Abrogation of heterologous immunity by point
mutation in NP205.

Experiment Organ Naı̈ve+PV
WT-
immune+PV

Variant-
immune+PV

Clone 13 vs. V207A Spleen 3.660.3 2.260.7 3.260.7

Fat 3.960.4 2.660.9 3.560.1

rArm vs. rV207A Spleen 3.760.1 2.960.2 3.960.4

Fat 4.160.2 3.660.2 4.560.3

rArm vs. rL212A Spleen 4.360.7 3.360.3 3.960.3

Fat 4.460.2 3.860.3 4.560.4

Immunologically naı̈ve control or LCMV-immune mice were challenged with
26107 PFU of PV and tested for PV PFU in spleens or abdominal fat pads 4 days
post-infection. Exp. 1 is representative of three experiments using WT LCMV
Clone 13 and its naturally derived V207A mutant. Exp. 2 is representative of two
experiments using rescued recombinant LCMV Armstrong and its rV207A
mutant. Exp. 3 is representative of two experiments using rescued recombinant
LCMV Armstrong and its rL212A mutant. n = 5 per group. All comparisons of WT
LCMV-immune to naı̈ve mice are p,0.05 as indicated by one-way ANOVA
analysis and p#0.02 by Students t-test. There was no statistically significant
difference in PFU in PV-challenged naı̈ve mice vs. challenged NP205 mutant
LCMV-immune mice.
doi:10.1371/journal.ppat.1002633.t001
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developed AFN. Examples of gross pathology and H&E sections

are displayed in Figure 5D. The AFN presented as chalky white

areas on the surface of the fat tissue (top) and as pink areas of dying

cells in the H&E sections (bottom). These studies with this

anchoring-deficient LCMV-Armstrong rL212A mutant strengthen

the argument that an intervening heterologous virus infection

bearing a cross-reactive epitope can alter immune pathology

developing in response to a previously encountered pathogen and

that a single base change can abrogate this effect.

Prediction of the development of immune pathology
We next asked if one could predict whether a double-immune

host would develop immune pathology on re-challenge, by applying

Pearson correlation and linear regression analyses comparing the

frequencies of epitope-specific T cells in the PBL of PV+WT LCMV

Clone 13 double immune mice prior to PV re-challenge to the

degree of the immunopathology seen later on PV re-challenge.

There was surprisingly no correlation between the frequency of

NP205-specific CD8 T cells in double-immune mice before the PV

re-challenge and the severity of the AFN four days later (Figure 6A),

but there was a strong negative correlation between the frequencies

of the normally immunodominant PV NP38-specific CD8 T cells in

the double-immune mice with the severity of the AFN after

challenge with PV (p = 0.02, n = 18) (Figure 6B). Interestingly, an

even more and highly significant positive correlation (p = 0.004,

n = 18) was seen if the ratio between the cross-reactive NP205-

specific CD8 T cells and the PV NP38-specific CD8 T cells was

plotted against the severity of AFN (Figure 6C). T cells specific to

these epitopes compete with each other [6], and this ratio would

likely portend how quickly a protective NP38-specific T cell

response could be generated while in competition with the NP205-

specific T cells present in higher frequencies. No significant

Figure 4. High incidence of AFN in PV+LCMV double immune mice following PV re-challenge. (A) Naı̈ve, PV-immune, and (PV+LCMV WT)
double immune mice were re-challenged with PV, sacrificed 3 days PI, and the severity of AFN in the visceral fat pads was assessed. (*) indicates
p,.05 in frequency of AFN using the Kruskai-Wallis test (one-way ANOVA non-parametric). (B), (C), and (D) represent experiments performed using
the LCMV clone 13 system and its naturally derived V207A mutant. (B) Domination of NP205-specific CD8 T cells in PV+Clone 13 LCMV WT double
immune mice. PBL were collected from double-immune mice, before the final challenge with PV, and stimulated with peptides ex vivo in a standard
ICS assay. These are representative frequencies of the IFNc positive CD8a+ T cells from 4 independent experiments using 5 mice per group. (C)
Incidence of AFN after PV challenge. Naı̈ve, (PV+Clone 13 LCMV WT), and (PV+Clone 13 LCMV NP-V207A) double immune mice re-challenged with PV
were sacrificed 4 days PI, and the severity of AFN in the visceral fat pads was assessed. Compilation of data from 4 independent experiments. (*) and
(***) indicate p,.05 and p,.0001, respectively. (D) Domination of cross-reactive NP205-specific CD8 T cells isolated from the visceral fat pad of
(PV+Clone 13 LCMV WT) double immune mice following PV re-challenge. Standard ICS and FACs analyses were performed. Numbers are
representative frequencies of IFNc+, CD8a+ T cells from two similar experiments.
doi:10.1371/journal.ppat.1002633.g004
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correlation was found between the frequencies of the LCMV GP33-

specific CD8 T cells or the LCMV GP33/PV NP38 ratio and the

level of AFN (Figure 6D). On a smaller scale with double-immune

mice using the rWT Armstrong virus, two experiments that had

strong AFN on re-challenge with PV showed positive correlations

with the frequencies both of NP205-specific T cells (R2 = 0.48;

p = 0.027) and with the ratio of NP205- to NP38-specific T cells

(R2 = 0.41; p = 0.046) with the severity of AFN (n = 10). Thus, there

was predictive value in knowing the frequencies of the cross-reactive

and immunodominant PV-specific epitopes.

Discussion

This report shows that protective immunity to a virus can be

disrupted by an otherwise well-tolerated and controlled infection

with a second and different virus. Further, it shows that a single

cross-reactive CD8 T cell epitope on that second virus can dictate

the degree of immune pathology on re-challenge with the first

virus. The NP205 epitopes encoded by LCMV and PV are highly

cross-reactive because they differ only in their MHC-anchoring

amino acids, and our studies presented in Table 1 with NP205

mutants clearly implicate this cross-reactive epitope in protective

heterologous immunity between these viruses. However, these

epitopes induce distinct TCR repertoires, and sequential infections

with these viruses result in very narrowly focused repertoires

skewed in favor of the second-encountered virus [8]. These

inappropriate T cell repertoires may interfere with strong

protective immunity to the first encountered virus.

The effects of buried MHC polymorphisms on TCR recogni-

tion have been previously evaluated [8,18,19], and we show here

Figure 5. Analysis of immune response and immunopathology with the LCMV-Armstrong rL212A anchoring amino acid mutant. (A)
Diminished cross-reactive NP205 CD8 T cell responses in the (PV+rV207A) double immune mice. PV-immune mice were immunized with either rWT or
rV207A variant Armstrong strain LCMV. After six weeks, PBL were collected and stimulated with LCMV-specific CD8 T cell peptides. The data represent
average frequencies of the IFNc-positive, CD8a+ T cells. This is representative of 3 experiments, with n = 5/group. (B) Complete elimination of cross-
reactive NP205 CD8 T cell responses in (PV+rL212A) double immune mice. PV-immune mice were immunized with either rWT or rL212A LCMV
Armstrong. After six weeks, PBL were collected and stimulated with LCMV-specific CD8 T cell peptides. Data represent average frequencies of IFNc-
positive, CD8a+ T cells. This is representative of two experiments, with n = 5/group. (C) Prevention of AFN by the rL212A anchoring mutant. Naı̈ve, PV-
immune, (PV+rWT) and (PV+rL212A) double immune groups were re-challenged with PV. Four days later fat pads were harvested and AFN scores
evaluated. This is a compilation of two similar experiments. (***) indicates p,.0001. (D) Photographs of abdominal fat pads and tissue histology
sections. Abdominal fat pads were harvested, photographed (top), and then fixed in 10% neutral buffered formaldehyde and embedded in paraffin at
the UMMS histology core facility. Thin tissue sections (5 mm) were stained with hemotoxylin and eosin (bottom). The digital photographs of the
sections were taken using a Nikon Eclipse E300 microscope system.
doi:10.1371/journal.ppat.1002633.g005
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that epitope-anchoring amino acids buried within the MHC can

alter the conformations of determinants accessible to the TCR

[20], explaining why different TCR repertoires can react with

these LCMV and PV NP205 epitopes (Figure 1A,B,C). Further,

we show how a mutation in the third position of the LCMV

NP205 epitope will allow for epitope binding to the MHC yet alter

its interaction with T cells generated in response to the wild type

epitope (Figure 1D,E,F). Strikingly, single nucleotide changes

altering the cross-reactive epitope of the second intervening virus

removed its ability to interfere with the protection from disease

(Figures 4 and 5). In this case we suggest that the loss of T cells

specific to a protective and normally immunodominant epitope

(NP38) by a combination of IFN-induced attrition and competi-

tion with T cells responding to a normally subdominant cross-

reactive epitope (NP205) tips the balance from efficient protective

immunity to less efficient immunopathology.

Previous studies, as well as results presented here, have shown

that the immunodominant PV NP38 response is substantially

reduced in double (PV+LCMV)-immune mice in comparison to

PV only-immune mice [6,17]. Protective T cell-dependent

immunity to tumors can be lost after bacterial infections [21],

and a recent report shows that protective immunity to Plasmodium

is lost in mice subjected to a series of infections [22]. In our present

study, however, the reduction of the immunodominant NP38-

specific T cell response caused by the intervening LCMV infection

was partially compensated for by the cross-reactive NP205

response, which became dominant in double immune mice. The

price for the increased cross-reactive response, which was not ideal

for protection against PV, was enhanced disease associated with

immune pathology on PV rechallenge. If LCMV NP205 was

mutated in a way (V207A) that resulted in a reduced though still

detectable T cell response, the PV+LCMV-double immune hosts

responded to PV re-challenge with less pathology; if the

intervening LCMV was mutated in an MHC anchoring site

(L212A) to prevent any T cell response at all, the PV+LCMV

double-immune hosts responded to PV re-challenge with even less

pathology, which was undetectable.

The ratio of NP205-specific to NP38-specific T cells in double-

immune mice had strong predictive value for the production of

immune pathology on re-challenge with PV (Figure 6). The ratios

Figure 6. Correlation of frequencies of CD8 T cells in double-immune mice with pathology after PV re-challenge. Linear regression
analyses comparing the frequencies of antigen-specific CD8 T cells in the (PV+WT LCMV) double immune mice with the severity of AFN following PV
re-challenge. These represent data compiled from four independent experiments using LCMV Clone 13 virus. (A) LCMV NP205-specific CD8 T cell
response. (B) PV NP38-specific CD8 T cell response. (C) Ratio of LCMV NP205 to PV NP38. (D) LCMV GP33 and the ratio of GP33/PV NP38.
doi:10.1371/journal.ppat.1002633.g006
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of these epitope-specific T cells in double immune mice might

predict their relative abilities to compete with each other in their

early response to the PV re-challenge. Analyses of T cells in

diseased tissue day 4 after PV re-challenge are complicated by the

severe necrosis and collateral cell damage in the adipose tissue, but

many NP205-specific T cells are found at that time (Figure 4D). It

is likely, however, that T cell responses occurring very early after

challenge may have controlled viral load and affected the

outcome.

Severe immune pathologies associated with cross-reactive T cell

responses in humans have been reported in fulminant HCV-

associated hepatitis, infectious mononucleosis, and dengue hem-

orrhagic fever and shock syndrome [23–26]. Aberrant pathology

associated with cross-reactive pathogenic epitopes is thus an issue

that should be considered in vaccine construction. For instance,

some strains of HCV encode an epitope that strongly cross-reacts

with an epitope of IAV [27], and HCV vaccines containing this

cross-reactive epitope are under evaluation [28]. One wonders

what a sequence of an IAV infection (or vaccine) and an HCV

vaccination, in either order, would have on a subsequent

encounter with either virus. We suggest that these concerns would

be less for viruses or viral vaccines that would induce high levels of

neutralizing antibody, which might prevent infection in the first

place. However, viruses like HCV, HIV, and CMV are relatively

poor at inducing effective neutralizing antibody responses, and

individuals infected with these viruses often become super-infected

with slightly different variants. Cross-reactive pathogenic epitopes

might also be an issue with influenza virus infections when

individuals with poor neutralizing antibodies but strong cross-

reactive T cells to new influenza virus strains become infected.

The panniculitis described in our current model may seem

unusual, but panniculitis is a pathology commonly found in

humans in the form of erythema nodosum, which involves

inflammation of subcutaneous fat tissue [29]. Erythema nodosum

sometimes occurs following infections or in association with

autoimmune diseases such as Crohn’s [30]. Of relevance to our

present work, panniculitis is sometimes found in humans after

vaccinations for smallpox, hepatitis B and papilloma viruses [31–

33]. In mice, panniculitis and AFN of visceral fat pads is a

common feature of virus infections by the intraperitoneal route,

but it is particularly noticeable in models of heterologous

immunity, where memory T cells induced by an earlier

heterologous viral infection rapidly respond to but inefficiently

clear an infection of the fat pads by a second virus [3,7,34]. The

Armstrong strain of LCMV replicates poorly in the fat pads and

does not directly elicit AFN, but a history of an LCMV infection

can prime a mouse for AFN after infection with certain

heterologous viruses that do grow in the fat. The mechanism of

AFN is best studied in LCMV-immune mice infected with vaccinia

virus, where cross-reactive T cells enter the fat pads and stimulate

necrosis through an IFNc, TNF, and Fas ligand-dependent

mechanism that reflects the private specificity of the T cell

populations in LCMV-immune mice, as shown in assays using

adoptive transfers of immune T cell [7,35,36]. PV, used in the

current study, does replicate in fat tissue, and the disruption of the

memory T cell response specific to PV by the LCMV infection has

apparently created the conditions that predispose to AFN rather

than pathology-free clearance of virus on re-challenge with PV.

The unique finding of our current study, however, is not simply

another demonstration of heterologous immunity. Rather, it is the

finding that the heterologous immunity associated with an

intervening infection with a virus containing a cross-reactive

epitope can have a profound impact on the homologous immunity

against a previously immunized pathogen. Hence, lasting

immunity to a previously encountered pathogen can be compro-

mised by subsequent infections with other pathogens bearing

cross-reactive pathogenic epitopes.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the U. S. National Institutes of Health.

All animal work was reviewed and approved by the UMMS

institutional Animal Care Committee (Animal Welfare Assurance

# A3306-01), and all the efforts were made to minimize suffering

of mice.

Mice
C57BL/6 (B6, H2Kb) male mice were purchased from the

Jackson Laboratory (Bar Harbor, ME) and maintained under

specific pathogen-free conditions at the University of Massachu-

setts Medical School (UMMS) Department of Animal Medicine.

All animal work was reviewed and approved by the UMMS

Institutional Animal Care Committee.

Viruses
The AN3739 strain of PV and several strains and variants of

LCMV were propagated in BHK-21 cells. These include LCMV,

strain Armstrong, and recombinant (r) Armstrong variants

harboring laboratory-directed mutations in the NP205–212 epitope:

rLCMV wild type (rWT), rV207A, and rL212A. The Clone 13

natural variant of LCMV, which has mutations in the glycoprotein

and polymerase that allow for greater replication and dissemina-

tion in vivo [37] was also used, as well as a naturally-derived CD8 T

cell escape variant in the NP205–212 epitope, LCMV-clone 13

V207A. Clone 13 can be used at high doses to establish persistent

infections, but the experiments described here use lower doses that

generate immune responses that clear infection similarly to that of

the Armstrong strain. To avoid immune responses generated to

bovine serum following sequential infections, PV was purified by

sucrose density gradient ultra-centrifugation and diluted in serum-

free HBSS before immunization [7]. LCMV stocks were

propagated to titers over 107 PFU/ml as assayed on vero cell

monolayers and diluted in serum-free HBSS prior to infection of

mice.

Experimental procedures used for the generation and rescue of

recombinant LCM viruses (rLCMV) were as described [38].

Briefly, BHK-21 cells were transfected with T7 RNA polymerase

(T7RNP)-based expression plasmids that directed intracellular

synthesis of full-length S and L genome RNA species of LCMV

Armstrong strain, together with pol II-based expression plasmids

expressing T7RNP and the minimal viral trans-acting factors (L

and NP) required for virus RNA replication and gene transcrip-

tion. At 60 h post-transfection, tissue culture supernatants were

collected (referred to as P0), clarified at low speed and used to

infect fresh monolayers of BHK-21 cells. At 48 h p.i., TCS were

collected (P1) and titrated by plaque assay.

All inoculations were by the intraperitonal route. For primary

infections with LCMV, male mice 6–8 weeks of age were

inoculated with 56104 to 56105 PFU of LCMV. For primary

infections with PV, mice were inoculated with 26107 PFU of

purified PV. Mice were considered immune 6 weeks after

immunization. For homologous challenge, PV-immune mice were

inoculated with 26107 PFU of purified PV. For heterologous

challenge, LCMV-immune mice were inoculated with 26107 PFU

of purified PV. For generation of double immune mice, PV-
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immune animals were challenged with 56105 to 16106 PFU of

LCMV WT or LCMV variants. Re-challenge of (PV+LCMV)

double immune mice was done with 26107 PFU of purified PV.

Synthetic peptides
LCMV-encoded peptide epitopes used were GP33–41 (KAVYN-

FATC), NP396–404 (FQPQNGQFI), LCMV NP205–212 (YTV-

KYPNL), mutated NP205–212 V207A (YTAKYPNL) and L212A

(YTVKYPNA). PV-encoded epitopes were NP38–45 (SALDFHKV)

and PV NP205–212 (YTVKFPNM). Synthetic peptides were from

BioSource International or 21st Century Biochemicals at 90%

purity.

Peptide/MHC stabilization assay
TAP-1 deficient RMA-S cells [39] were seeded into 96-well U-

bottom plates at 56105 cells per well. Following incubation in 5%

CO2 at 27uC for 4 hours, variants of LCMV NP205 peptides were

added at different concentrations and incubated overnight. The

cells were then stained with mAb to H2Kb (clone AF6 88.5)

conjugated with PE (BD Bioscience) and analyzed by fluorescence-

activated cell sorting (FACS).

Protein expression, purification, crystallization and
structure determination

H2Kb and b2-microglobulin molecules were expressed in

Escherichia coli as inclusion bodies, refolded with the LCMV-

NP205, PV-NP205 or LCMV-V3A (V207A) NP205 peptides and

purified as previously described [40]. The three plasmid (p) MHC

complexes were concentrated to 2–5 mg/ml, using the hanging-

drop vapor diffusion technique at 20uC. Crystals were grown with a

reservoir containing 16–24% polyethylene glycol (PEG) 3350,

0.1 M Na-Cacodylate, pH 6.5, and 0.2 M Na acetate. The crystals

belong to space group P21 and the unit cell dimensions were

consistent with two molecules per asymmetric units (Table S1).

The crystals were flash frozen to a temperature of 100 K before

data collection using an in-house X-ray generator with a RAXIS-

IV detector for the H2Kb-LCMV NP205 or at the Australian

Synchrotron on the BM1 beamline with a MarCCD or an ADSC

Q210r detector for the H2Kb-LCMV-V207A (V3A) and H2-Kb-

PV NP205 structures. The data were processed and scaled with

the XDS [41]. The crystal structure was solved using the

molecular replacement method in the program Phaser [42] from

the CCP4 suite of programs (1994). The search probe used to solve

the structure was the structure of mouse MHC class I H2Kb minus

the peptide (Protein Data Bank accession number 2ZSV) [43].

The progress of refinement was monitored by the Rfree value with

neither a sigma nor a low-resolution cut-off being applied to the

data. This protocol includes several cycles of refinement with the

PHENIX software [44] followed by manual model rebuilding with

Coot program [45]. Final refinement statistics are summarized in

Table S1. The coordinates of the three complexes have been

deposited with the Protein Data Bank under accession numbers

3P4M, 3P4N and 3P4O for the H2Kb-NP205-LCMV, H2Kb-

NP205-PV and H2Kb-LCMV-V3A (NP V207A), respectively.

Thermostability measurements of recombinant class I
complexes using circular dichroism (CD)

Circular Dichroism Spectra were measured on a Jasco 815

spectropolarimeter using a thermostatically controlled cuvette. A

far-UV spectra was collected from 190 nm to 250 nm. The UV

minimum was determined as 219 nm for the three peptide-MHX

complexes. The measurements for the thermal melting experi-

ments were made at the minimum, at intervals of 0.1uC at a rate of

1uC/min from 20uC to 90uC. The Jasco Spectra Manager

software was used to view and smooth the traces, and then the

GraphPad Prism software was used to plot temperature versus %

unfolded. The midpoint of thermal denaturation (Tm) for each

protein was determined as the point at which 50% unfolding was

achieved. The measurements were done in duplicate at two

concentrations (5 mM and 10 mM) in a solution of 10 mM Tris

pH 8, 150 mM NaCl.

Acute fatty necrosis (AFN) scores
The severity of AFN was scored based on the guidelines from a

previous publication: (1–2) very mild to mild disease with a few

white necrotic spots on one or both lower abdominal fat pads; (3–4)
mildly moderate and moderate with larger patches of necrosis of the

lower abdominal fat pads and extension into the upper left quadrant

fat pad around the spleen; (5–6) moderately severe to severe with

very extensive large patches of necrosis on the lower abdominal fat

pads and spotty fatty necrosis throughout omental fat pads as well as

the splenic fat pad; (7) very severe disease with such severe fatty

necrosis that the organs are adherent to each other [7,35].

Tissue histology
Abdominal fat pads from different groups of mice were

harvested and fixed in 10% neutral buffered formaldehyde and

embedded in paraffin at the UMMS histology core facility. Thin

tissue sections (5 mm) were stained with hemotoxylin and eosin.

The digital photographs of the sections were taken using the Nikon

Eclipse E300 microscope system at the UMMS core facility.

Isolation of lymphocytes from adipose tissue
The infiltrating leukocytes in the fat pads were isolated by

mincing and digesting with collagenase B (200 mg/ml) in MEM

plus 4% BSA for 1 hour at 37uC, and then by separation over

Lympholyte-M from Cederlane Laboratory (Burlington, ON).

Intracellular cytokine staining (ICS)
Leukocytes from spleens, blood and abdominal fat pads (16106

cells/well) were stimulated with 1 mM peptides in medium

containing 0.2 ml of GolgiPlug and human recombinant IL-2

(BD Pharmingen) at 37uC for 5 hours. Intracellular cytokine

staining (ICS) was performed using a cytofix/cytoperm kit from

BD Bioscience. Intracellular cytokine-producing cells were detect-

ed with allophycocyanin (APC)-conjugated anti-mouse IFNc
monoclonal antibodies (1:1000) (XMG1.2) and phycoerythrin-

Cy7 (PE-Cy7)-conjugated anti-mouse TNFa (1:200) (MP6-XT22).

Cell surface and MHC-Ig dimer staining by flow
cytometry

All the surface antibodies were used at a 1:200 dilution per well.

Single-cell suspensions of splenocytes or blood lymphocytes were

first incubated with anti-mouse CD16/CD32 Fc-block antibody

(1 ml/well) for 15 minutes on ice. Subsequently a cell surface

staining procedure was performed using PerCP-Cy5.5 anti-mouse

CD8a (clone 53-6.7) and FITC anti-mouse CD44 (clone IM7).

The samples were incubated on ice for 20 minutes.

Soluble dimeric mouse H2Kb-Ig fusion proteins (MHC-Ig

dimer) were purchased from BD Bioscience (San Diego, CA). The

LCMV WT NP205 and mutant V207A peptides (1 mg/ml) were

incubated with the MHC-Ig dimer at an 800 to 1 molar ratio and

with recombinant human beta-2 micro-globulin (0.15 mg/mg of

dimer) from BD Bioscience at 4uC for 4 days for passive loading of

the peptide onto the MHC. The final products were used for

surface staining assays as above and previously reported [2].
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Statistical analysis
Statistical analysis was performed using GraphPad Prism software

(5.0b). Comparisons between two groups were performed using the

unpaired Student’s t test (2-tailed). Comparisons between more than

two groups were performed using one way Anova analysis (2-tailed).

Pearson’s correlation and linear regression tests were used to

measure the correlation between two independent variables. P values

less than 0.05 were considered statistically significant.

Supporting Information

Figure S1 Graphic analysis of dot plots from Figures 3,
4, and 5. This figure graphs the magnitude and variance of

epitope-specific T cell responses from replicas associated with the

representative data presented in Fig. 3A (n = 3/group), 3B (n = 2/

group), 3C (n = 3/group), 4B (n = 5/group), 5A (n = 5/group), and

5B (n = 5/group). All show means 6 standard deviations

(p,0.05*).

(TIF)

Table S1 Data collection and refinement statistics.
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