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Abstract

This paper summarizes the contributions from the Population-Based Association group at the Genetic Analysis
Workshop 19. It provides an overview of the new statistical approaches tried out by group members in order to
take best advantage of population-based sequence data.

Although contributions were highly heterogeneous regarding the applied quality control criteria and the number
of investigated variants, several technical issues were identified, leading to practical recommendations. Preliminary
analyses revealed that Hurdle-negative binomial regression is a promising approach to investigate the distribution
of allele counts instead of called genotypes from sequence data. Convergence problems, however, limited the use
of this approach, creating a technical challenge shared by environment-stratified models used to investigate rare
variant-environment interactions, as well as by rare variant haplotype analyses using well-established public
software. Estimates of relatedness and population structure strongly depended on the allele frequency of selected
variants for inference. Another practical recommendation was that dissenting probability values from standard and
small-sample tests of a particular hypothesis may reflect a lack of validity of large-sample approximations. Novel
statistical approaches that integrate evolutionary information showed some advantage to detect weak genetic
signals, and Bayesian adjustment for confounding was able to efficiently estimate causal genetic effects. Haplotype
association methods may constitute a valuable complement of collapsing approaches for sequence data. This paper
reports on the experience of members of the Population-Based Association group with several novel, promising
approaches to preprocessing and analyzing sequence data, and to following up identified association signals.

Background

Every 2 years, participants of the Genetic Analysis Work-
shop (GAW) explore a common data set using novel ap-
proaches and summarize their findings in a short paper.
Contributions to the GAW19, held August 24-27, 2014,
in Vienna, Austria, were split up by workshop organizers
into 9 thematic groups. The present article summarizes
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the methods and results from the Population-Based Asso-
ciation group, aiming at providing a motivating, intuitive
overview of the new approaches tried out by group mem-
bers. Technical details and descriptions of individual can
be found in the publications BMC Proceedings and
BMC Genetics.

Members of the Population-Based Association group
worked in pairs in the weeks preceding the GAW. Each
participant contacted the other pair member, read the
preliminary version of his/her individual contribution,
and discussed findings and results with him/her. On the
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first day of the workshop, group members briefly
presented the contributions of the other pair member.
Engaged discussions and intensive team work during 4
group meetings and a poster session led to a consensus
summary of the group contributions, which was pre-
sented to all GAW participants in a plenary session.

After submission and peer review, 9 individual
papers from the Population-Based Association group
were accepted for publication in the GAW19 pro-
ceedings [1-9]. Figure 1 represents a mind-map of
the 9 accepted contributions. Members of our group
explored novel approaches to circumvent the limitations
of current methods, and to take most advantage of next-
generation sequence data. Individual contributions could
be classified into 4 loose themes: development of new
methods for new types of data; manipulation of rare vari-
ants; behavior of rare variants acting alone and interacting
with environmental factors; and the follow up of associ-
ation signals from sequence data.

Methods

Material

Table 1 summarizes the genotypes and phenotypes
investigated by group members, and the applied filters for
quality control. Although most group members analyzed
whole exome sequence data in odd-numbered autosomes
from unrelated individuals, some participants focused on
genetic variability in the MAP4 gene. Regarding investi-
gated phenotypes, the use of real and simulated data was
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well-balanced. Two participants defined affected cases as
individuals with a systolic blood pressure greater than
140 mm Hg, or a diastolic blood pressure greater than
90 mm Hg, or taking antihypertension medication. A
group member simulated their own phenotypes. The ap-
plied quality control filters were highly heterogeneous. For
example, the threshold for variant exclusion owing to
missing calls varied from 5 to 25 %. Also the number
of investigated variants showed a large variability. In
contrast to a group member who considered 88 vari-
ants in 2 genes, another participant examined more
than 313,340 variants in odd-numbered autosomes.

New methods for new types of data
The relationship between genetic variability and a given
phenotype is usually investigated based on called genotypes.
Sequence data provides ancillary information on the distri-
bution of the number of reads at a particular position. This
includes the counts of reference and alternative alleles.
Gonzélez Silos et al. hypothesized that allele counts are
genotype measurements that are more informative than
called genotypes in the sense that the two counts, “no alter-
native allele out of 100 reads” and “one alternative allele out
of 10 reads,” both translate into the same called genotype
(reference allele homozygote). In other words, after applying
user-defined data quality filters, uncertainty in genotype call-
ing is rarely taken into account in genetic association tests.
To explore association test approaches that rely on
allele counts from sequence data as an alternative to

Allele counts vs called genotypes
(Gonzalez Silos et al)

New methods for new data types

Sparse-data apporaches and

collapsing tests (Shin et al)

Variant characteristics and kindship
assessment (Blue et al)

Sequence data:
challenges and opportunities

Fig. 1 Mind-map with the 9 accepted contributions from the Population-Based Association group

Incorporating evolutionary history
{Thompson and Fardo)

Handling rare variants

Bayesian variable selection (Oh)

Rare variant behavior

Variant-by-environment interactions
(Fernandez-Rhodes et al)

TYpe | error rates under nonnormal
null hypotheses (Schwantes-An et al)
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Table 1 Genotypes, phenotypes, and quality control filters applied by authors of accepted papers in the Population-Based Associ-

ation group

Contribution

Genotypes

Phenotypes

Quality control

Blue et al. [2]

Datta et al. [9]

Fernandez-Rhodes et al. [7]

Gonzalez-Silos et al. [1]

Oh [5]

Schwantes-An et al. [6]

Shin et al. [3]

Thompson and Fardo [4]

GWSNPA data for odd-numbered autosomes
from 959 subjects in 20 pedigreesWES data

for odd-numbered autosomes from 464
subjects in 20 pedigrees

WES data within ULK4 and MAP4 from
1943 unrelated subjects

GWSNPA data for odd-numbered
autosomes from 959 subjects
in 20 pedigrees

WES variants in chromosome 3 from
407 samples with information on blood
pressure medication out of 1943
unrelated samples

WES data in MAP4 from 1943
unrelated subjects

WES data in odd-numbered autosomes
from 1943 unrelated subjects

WES data in MAP4 from 1943
unrelated subjects

Variants in TNN, LEPR, GSN, TCIRG],
and FLT3 including 100,000 base
pairs upstream and downstream

Longitudinal SBP, real and
simulated phenotypes

Cases were defined as persons
with a SBP >140 mm Hg,

DBP >90 mm Hg or taking
antihypertension medication.
Other persons, including
individuals with a missing
medication field, were

treated as controls

Hypertension phenotype PHEN
simulated based on 984 variants
with main SBP effects, and

3 CYP3A43 variants that
interacted with medication

but showed no main effect

DBP

Log-transformed baseline
measurements of SBP and DBP

Four traits were simulated
by the authors under a null
hypothesis of no genetic
association. The fifth trait
was Q1 provided

Real data: Cases were defined
as persons with SBP >140 mm
Hg, DBP >90 mm Hg or taking
antihypertension medication.
Other persons, including
individuals with a missing
medication field, were

treated as controls

Simulated phenotypes: Null
trait Q1 (dichotomomized)
and PHEN, both with disease
prevalence of 17.8 %

Simulated phenotypes Q1
and PHEN on 1943
unrelated subjects

Support vector machine filter,
exclusion of variants with more
than 10 % missing calls, extracted
with VCFtools

Exclusion of variants with more
than 25 % missing calls or a
MAF >0.001, leaving 70 ULK4
and 18 MAP4 variants for analysis

Excluded 92 individuals with
missing phenotype data;
monomorphic and singleton
variants were filtered out. Only
the last SBP measurement
was considered

Reference and alternative allele
counts (AD fields in the FORMAT
tag of the vcf file), genotype
(GT field in the FORMAT tag)
and average genotype quality
(GQ field in the FORMAT tag),
extracted with VCFtools.
Nonbiallelic, monomorphic

and variants with a

MAF <0.003 were excluded,
leaving 8957 variants for analysis

Exclusion 92 individuals with
missing phenotype data,
monomorphic and singleton
variants were filtered out

Alternative allele counts

(NALTT field) were extracted
with VCFtools and converted

to 2-allele genotype calls.
Nonbiallelic and monomorphic
variants, and variants with more
than 5 % missing calls were
excluded, leaving 313,340
variants for analysis

Excluded 92 individuals with
missing phenotype data

Predicted alternative allele
counts (DOSAGE field) were
extracted with VCFtools;
monomorphic variants were
filtered out, leaving

90 variants for analysis

Data extracted with
VCFtools; monomorphic
variants were filtered out
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Table 1 Genotypes, phenotypes, and quality control filters applied by authors of accepted papers in the Population-Based Associ-

ation group (Continued)

Wang et al. [8] WES data 5 kb within, up- and
downstream of MAP4 from

1943 unrelated subjects

Simulated data, including
a null trait (25 variants
have true SBP effects)

Excluded 81 subjects without
age information; monomorphic
and low-coverage (<20x)
variants were filtered out,
leaving 94 variants

DBP diastolic blood pressure, GWSNPA genome-wide single nucleotide polymorphism array, MAF minor allele frequency, NALTT number of nonreference alleles for
each individual thresholded, SBP systolic blood pressure, VCF variant call format, WES whole exome sequence

called genotypes, Gonzdlez Silos et al. fitted several
regression models treating alternative allele counts both
as response and as explanatory variables. Negative bino-
mial regression was applied to investigate the relation-
ship between alternative allele counts as response
variable, using the total number of reads at a particular
position as an offset, and the diastolic blood pressure
was adjusted for age, sex, and medication as an explana-
tory variable. Zero-inflated and Hurdle-negative bino-
mial regression were examined, too, because of their
flexibility in the presence of zero inflation. The geno-
type—phenotype relationship was also investigated based
on the ratio “alternative allele count/number of reads”,
which was alternatively considered as a response and an
explanatory variable in standard and robust linear re-
gression models. Type I error rates were roughly esti-
mated, assuming that most of the investigated variants
were under the null hypothesis of no genetic association,
and quantile-quantile plots were used to explore possible
disparities between small probability values from the in-
vestigated regression models. Table 2 lists key concepts
addressed in accepted papers from the Population-Based
Association group. In addition to allele counts, negative
binomial regression models, and extensions thereof,
Gonzalez Silos et al. dealt with the concept of “down-
sampling.” Table 3 presents related bibliography and
publicly available software used by group members.

Handling rare variants

Blue et al. compared kinship estimators and investigated
the ability of principal component analysis to capture
ancestry proportions relying on different subsets of
sequence data. Kinship was estimated using 4 different
approaches (method of moments; maximum likelihood
for noninbred pairs; robust Kinship-based INference for
Genome-wide association studies; and PC-AiR, a mo-
ment estimator that adjusts for population structure
using principal components). Three different strategies
were applied to select linkage-disequilibrium pruned
whole genome and exome sequence variants (agnostic
{every 100th variant], selective [variants with a minor
allele frequency (MAF) >5 %], and homogenizing [variants
with similar frequencies in African, Native American,
Asian, and European populations]). To examine the ability
of principal component analysis to capture ancestry,

principal components were estimated relying on a genetic
relationship matrix that was calculated based on 4 subsets
of whole genome sequence variants: rare (MAF <0.01 or
MAF <0.05) and common (MAF >0.01 or MAF >0.05).
Table 3 presents and briefly describes recent publications
in the field.

The analysis of association between binary phenotypes
and single rare variants is challenging because conven-
tional logistic regression approaches often violate the
large-sample assumption for test statistics, resulting in
poor type I error control and low statistical power. In
particular, standard score tests can be extremely anticon-
servative under the null. Shin et al. explored alternative
tests for low-frequency and rare variants, including 2
sparse-data approaches to single-variant tests, and
collapsing tests for sets of variants. The first explored
sparse-data approach was the Firth-type likelihood ratio
test based on the penalized log-likelihood function

L(B) = (B) + 5 logll(B)))

where i(f) is the Fisher information matrix. The
second sparse-data approach was a modified score test
which incorporates small-sample variance and/or kur-
tosis to obtain the null distribution. The investigated
variant-collapsing tests included a MAF-weighted bur-
den test, a nonburden sequence kernel association test
(SKAT), and a unified approach that optimally combines
SKAT and the burden test (SKAT-O). Investigated vari-
ant-collapsing tests were applied to sets of rare variants
alone, rare and low-frequency variants, and all vari-
ants within defined subregions built according to
physical proximity. Table 3 lists the software used
(R-package pmlr and SKAT).

Thompson and Fardo compared mapping methods
that account for the evolutionary relatedness among
individuals (tree-based) with standard methods that
ignore evolutionary relationships (non-tree-based asso-
ciation mapping methods). Each genetic variant has an
evolutionary history that can be represented by a phylo-
genetic tree (see Table 2). In Fig. 2, each tip represents a
copy of the variant. Time moves from past to present,
from left to right, across the tree, and the branch lengths
represent time. If 2 variants share a large portion of their
evolutionary history (the 2 blue diamonds), associated
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Table 2 Key concepts addressed by authors of accepted papers in the Population-Based Association group

Theme [Contribution reference] concept

New methods for new data types [1] Alternative allele count: Number of reads that support a given alternative allele based on
individual sequence data

[1] Negative binomial regression: Type of regression model used to investigate response variables
that are counts. In contrast to Poisson regression, negative binomial regression allows
for overdispersion—a variance larger than the mean

[1] Hurdle and zero-inflated models: Two statistical models used to investigate count response
variables with a large proportion of zeros. Hurdle models assume that a Bernoulli process
determines whether counts are zero or positive. If the response is positive, its conditional
distribution is governed by a truncated-at-zero count data model. Zero-inflated models
assume the response variable is a mixture of a Bernoulli and a count distribution, eg,
negative binomial

[1] Downsampling: Selecting a subset of the reads in a high-coverage position to improve
computational efficiency

Handling rare variants [2] Variant ascertainment bias: Variant selection criteria, such as minor allele frequency, can
influence kinship and population structure estimates

[2] Kinship estimation: the estimation of relationships among samples based upon
genotypes rather than known pedigrees is sensitive to the selected variants and
the applied statistical methods

[2] Population structure: Admixture events leave a signature in the patterns of genetic variation
within a population. This can bias genome-wide association studies, and be used as a tool
to identify genetic variants influencing a trait

[3] Firth’s penalized likelihood: A logistic regression likelihood penalized by Jeffrey's invariant
prior. A first-order bias term is introduced into the score function to reduce the bias in the
log odds ratio estimate that arises as a result of sparse data

[3] Small-sample-adjusted score test: A logistic regression score test in which the null distribution
of the test statistic is adjusted using estimates of small sample variance and kurtosis

[3,9] Sequence kernel association test: Variant-collapsing test for a subset of variants constructed
by aggregating individual variant score test statistics

[4] Quantitative trait mapping: The search for positions along the genome associated with
quantitative traits

[4] Tree-based methods: Methods that account for uneven evolutionary relatedness among
genetic variants

[4] Phylogenetic tree: A bifurcating tree used to represent the evolutionary relationships
among variants (illustrated in Fig. 2)

[5] Within-chain permutation: Permutation of individual phenotypes is a widely used strategy
to investigate the null distribution. Under the frequentist approach, statistics based on actual
data are compared with the distribution of statistics from permuted data sets. In Bayesian
analyses, computing time can be reduced by permuting phenotypes within the single
Markov chains used to infer posterior distributions.

[6] Minor allele count (MAC): The total count of minor alleles for all individuals evaluated at
a particular position. For rare variants, the MAC reflects better data sparsity than the minor
allele frequency

Rare variant behavior [7] Gene—environment interaction term model: Statistical approach that tests for gene—environment
interactions by including a gene-environment interaction term to measure the change
in the outcome when both the genetic marker and environmental factor are present,
as compared to when one or both factors are not present[7] Environment-stratified
models: Alternative approach to identifying gene—environment interactions, by comparing genetic
effect sizes between strata defined by an environmental exposure

Follow up of association signals [8] Bayesian adjustment for confounding: A Bayesian approach for estimating the average
causal effect of an exposure on an outcome in observational studies while accounting for
the uncertainty in confounder selection. It uses Bayesian model averaging to average
inference across many models according to posterior weight determined by a joint
model of the exposure and the outcome

[9] Logistic Bayesian LASSO (least absolute shrinkage and selection operator): Method based
on a retrospective likelihood that models the probability of haplotypes given disease status.
The odds of disease are expressed as a logistic regression model, whose coefficients are
regularized through Bayesian LASSO
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Table 3 Relevant bibliography and software used by authors of accepted papers in the Population-Based Association group

Topic

Bibliography

Software

New methods for new data types

Handling rare variants

Satten GA, Johnson HR, Allen AS et al. Testing
association without calling genotypes allows
for systematic differences in read depth between
cases and controls. In: Abstracts from the 22nd
Annual Meeting of the International Genetic
Epidemiology Society, Chicago IL, USA.
ISBN: 978-1-940377-00-1, 2012, 9. Original
proposal to use the proportion of calls for
the minor allele instead of called genotypes
Karazsia BT and Dulmen MHM: Regression
models for count data: illustrations using
longitudinal predictors of childhood injury.
Journal of Pediatric Psychology 2008;33:
1076-1084. Intuitive examples of widely
used models for count data

Conomos MP, Miller MB, and Thornton TA. Robust
inference of population structure for ancestry
prediction and correction of stratification in the
presence of relatedness. Genetic Epidemiology
2015;39(4):276-293. Reviews the complications of
population structure and kinship estimation

Kang HM, Sul JH, Service SK et al. Variance
component model to account for sample structure
in genome-wide association studies. Nature
Genetics 2010;42:348-354. Description of EMMAX,
an association testing tool for

dependent observations

Maples BK, Gravel S, Kenny EE, and Bustamante
CD. RFMix: a discriminative modeling approach
for rapid and robust local-ancestry inference.
American Journal of Human Genetics
2013;93:278-288. Description of RFMix,
which can be used for local ancestry mapping

Bull SB, Mak C, and Greenwood CMT: A modified
score function estimator for multinomial logistic
regression in small samples. Computational
Statistics & Data Analysis 2002,39:57-64

Firth D. Bias reduction of maximum likelihood
estimates. Biometrika 1993;80:27-38

Lee S, Emond MJ, Bamshad MJ, et al. Optimal
unified approach for rare-variant association
testing with application to small-sample
case—control whole-exome sequencing
studies. American Journal of Human

Genetics 2012,91:224-237

Thompson K, Kubatko L. Using ancestral
information to detect and localize
quantitative trait loci in genome-wide
association studies. BMC

Bioinformatics 2013;14:200

Mailund T, Besenbacher S, and

Schierup MH: Whole genome association
mapping by incompatibilities and local
phylogenies. BMC Bioinformatics 2006;7:454

R-packages stats and pscl to fit negative binomial/linear
and zero-inflated/Hurdle-negative regression
models, respectively

PC-AIR is implemented in R and is available from
http://www.bioconductor.org/packages/devel/
bioc/html/GENESIS.html

SNPRelate is an R package, available from
http://www.bioconductor.org/packages/release/bioc/
html/SNPRelate.html. PC-AiR and SNPRelate were
used for kinship estimation.

EMMAX for genome wide association testing is available
from http://genetics.cs.ucla.edu/emmax/

RFMIX for local ancestry mapping is available from
https:/sites.google.com/site/rfmixlocalancestryinference/

R-package pmlr to conduct penalized logistic regression
likelihood ratio tests (http://cran.r-project.org/
web/packages/pmir)

SKAT to perform single-variant score tests, and 3
variant-collapsing tests: burden, nonburden sequence
kernel association test, and optimal unified test
(http://cran.r-project.org/web/packages/SKAT/)

Blossoc to estimate phylogenetic trees

R packages ape and geiger to manipulate phylogenetic trees


http://www.bioconductor.org/packages/devel/bioc/html/GENESIS.html
http://www.bioconductor.org/packages/devel/bioc/html/GENESIS.html
http://www.bioconductor.org/packages/release/bioc/html/SNPRelate.html
http://www.bioconductor.org/packages/release/bioc/html/SNPRelate.html
http://genetics.cs.ucla.edu/emmax/
https://sites.google.com/site/rfmixlocalancestryinference/
http://cran.r-project.org/web/packages/pmlr
http://cran.r-project.org/web/packages/pmlr
http://cran.r-project.org/web/packages/SKAT/
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Table 3 Relevant bibliography and software used by authors of accepted papers in the Population-Based Association group

(Continued)

Rare variant behavior

Follow up of association signals

Tabangin ME, Woo JG, and Martin LJ. The effect
of minor allele frequency on the likelihood of
obtaining false positives. BMC Proceedings
2003;3 Suppl 7:541

Goh L and Yap VB. Effects of normalization on
quantitative traits in association test. BMC
Bioinformatics 2009;10:415.

Manning AK, LaValley M, Liu CT, et al.
Meta-analysis of gene-environment interaction:
joint estimation of SNP and SNP X environment
regression coefficients. Genetic Epidemiology
2011,35:11-8. Application of 1° of freedom

(df) and 2 df tests of gene—environment
interactions using a model with a
gene—environment interaction term

Randall JC, Winkler TW, Kutalik Z, et al. Sex-stratified
genome-wide association studies including 270,000
individuals show sexual dimorphism in genetic loci

for anthropometric traits. PLoS Genetics 2013;9:21003500.

Application of a 1 df test of gene—environment
interactions by comparing the genetic effects
across environmental strata

Aschard H, Hancock DB, London SJ, and Kraft
P. Genome-wide meta-analysis of joint tests
for genetic and gene-environment interaction
effects. Human Heredity 2010,70:292-300.
Application of a joint 2 df test of gene—environment
interactions and genetic main effects by comparing
the genetic effects across environmental strata

Wang C, Parmigiani G, and Dominici F. Bayesian
effect estimation accounting for adjustment
uncertainty. Biometrics 2012,68:661-671

Wang C, Dominici F, Parmigiani G, Zigler CM.
Accounting for uncertainty in confounder and
effect modifier selection when estimating
average causal effects in generalized linear
models. Biometrics 2015, in press.

These two papers proposed the Bayesian
adjustment for confounding (BAC) method

Biswas S and Lin S: Logistic Bayesian LASSO
for identifying association with rare haplotypes
and application to age-related macular
degeneration. Biometrics 2012,68:587-597

Biswas S, Xia S, and Lin S: Detecting rare
haplotype-environment interaction with logistic
Bayesian LASSO. Genetic Epidemiology 2014;38:31-41

MMAP to fit linear mixed model in a family-based sample,
estimate either model-based or robust standard errors,
and conduct a 1 df test of gene-environment interactions
in an “interaction model” using the estimates
gene-environment interaction term

METAL to estimate 1 df and 2 df tests of gene-environment
interactions using a model with a gene-environment
interaction term (“interaction model”)

R-package EasyStrata to estimate 1 df and 2 df tests of
gene-environment interactions by comparing the genetic
effects across environmental strata ("“med-diff” approach)

Codes that implement Bayesian adjustment for confounding
are available at http:/sweb.uky.edu/~cwa236/

R-packages hapassoc, haplostats, LBL to implement the
haplotype association methods
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Fig. 2 lllustration of the evolutionary history of a particular genetic variant represented by a phylogeny tree. In the phylogenetic tree, time moves
from past (left) to present (right). Suppose some of the variants represented in this tree are associated with a trait. Then, a large covariance is
expected among trait values from 2 variants (eg, the blue diamonds) sharing a large portion of their evolutionary history (shown by the branches
in blue). In contrast, the 2 variants denoted by black circles share a smaller portion of evolutionary history, so that little covariance in the

phenotypic traits are expected to be correlated, whereas
if 2 variants share little evolutionary history (illustrated
by the 2 black circles), trait values are expected to be
uncorrelated. Tree-based association mapping methods
that integrate evolution history in the statistical analysis
may have improved ability to detect weaker associations
but existing tree-based methods are unable to consider
external covariate information and are computationally
expensive. Related literature and software in the field is
sparse (see Table 3).

The identification of rare-variant associations by mul-
timarker approaches, for example, collapsing, simple-
sum, and weighted-sum methods, has recently drawn
much attention. Table 3 presents a noninclusive list of
available software. These methods first collapse rare
variants and then implement a LASSO (least absolute
shrinkage and selection operator), partial least-squares
regression model, or other supporting statistical method
that relies on common and collapsed rare variants.
Variant pooling may dilute rare variant effects, and the
cutoff definition to distinguishing rare from common
variants is arbitrary. To circumvent these limitations, Oh
extended previous work and presented a Bayesian vari-
able selection approach to detect associations with both
rare and common genetic variants. Under his approach,
rare variant mapping is framed as a variable selection
problem in a sparse space where risk index scores are
constructed for a group of rare variants over the gen-
omic region. Technical details on the chosen priors and
on inference relying on marginal posterior probabilities
of latent variables can be found in the GAW 19 proceed-
ings. Table 2 provides a brief explanation of within-chain

permutation of phenotype data to calculate empirical
thresholds and adjust false-positive rates.

Rare-variant behavior
In next-generation sequence data, the proportion of rare
variants is substantially larger than the proportion of
common variants typically measured in array-based
genome-wide association studies. Rare variants present a
challenge because often there are too few of the rare
alleles for traditional statistical tests, and the increased
variant density results in multicollinearity, making it diffi-
cult to identify independent associations. Schwantes-An et
al. investigated the effect of the MAEF, chromosomal pos-
ition, significance threshold, and departure from
normality of the investigated phenotype on the type I
error rate. Five quantitative phenotypes were simulated
under the null hypothesis. The first phenotype followed
a standard normal distribution, the second followed a
gamma distribution. The third and fourth phenotypes
were the log;o (rank-based inverse normal) transforma-
tions of the second phenotype. The fifth phenotype was
the null trait Q1 provided by workshop organizers.
Ferndndez-Rhodes et al. compared type I error rates
and statistical power for 2 gene—environment interaction
methods. The first method (“interaction model”) uses a
gene—environment interaction term to measure the
change in outcome when both the genetic marker and
environmental factor are present, compared to the pres-
ence of the genetic marker alone. The second method
tests for effect-size differences between strata under
distinct environmental exposures (medication vs nonme-
dication in the present context, “med-diff’ approach).
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The 2 methods can be applied to test gene—environ-
ment interactions with 1° of freedom (df), as well as to
test both main genetic and gene—environment inter-
action effects with 2 df tests. They were compared
relying on genotype-medication interactions simulated
by the GAW19 organizers. Gene—environment inter-
action analyses were adjusted for age, sex, population
structure, and family relatedness.

Follow up of association signals

Estimation of causal effects of genetic variants on
disease may help to bridge the gap between assessment
of association and function, allowing at the same time
an improved localization of disease variants. The causal
effect of genetic variants on clinical phenotypes may be
confounded by demographic and clinical characteristics,
and also by other genetic variants as a result of linkage
disequilibrium. Wang et al. explored the estimation of
the average causal effect of genetic variants on clinical
phenotypes using the Bayesian adjustment for confounding
method. This method has been proposed to estimate
average causal effects in the presence of many confounders,
assuming all of them have been measured.

Bayesian adjustment for confounding utilizes a Bayesian
model averaging approach and estimates causal effects by
a posterior weighted average of average causal effect
estimates from a battery of models with different sets
of covariates. In contrast to standard Bayesian model
averaging, Bayesian adjustment for confounding incor-
porates the strength of associations between covariates
in the model and the exposure into the prior. It has
been shown that the method tends to give large
posterior weights to models that have been fully ad-
justed for confounding, thus resulting in unbiased
causal effect estimates (see articles by Wang et al.
listed in Table 3). The bias and variability of average
causal effect estimates were examined by comparison
with a “true model” (age, sex, their interaction, and 25
variants with true systolic blood pressure [SBP] ef-
fects), and a “full model” (age, sex, their interaction,
smoking status, and 94 variants within, up-, and
downstream of MAP4). Table 3 provides a link to
software developed by Wang et al.

Haplotype analysis is a typical follow-up step after
identification of single-association signals. Haplotype-
based methods can be more powerful than single—single
nucleotide polymorphism (SNP) methods when causal
variants are not genotyped, and when multiple variants
act in cis. In some situations, they also have increased
power to detect rare-variant associations over recently
developed “collapsing” methods. Datta et al. investi-
gated possible associations with rare haplotypes in 2
hypertension-associated genes, ULK4 and MAP4. They
analyzed sliding haplotype windows of 5 variants using
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4 haplotype association methods: haplo.score, hap-
lo.glm, hapassoc, and logistic Bayesian LASSO (LBL)
and the three collapsing methods (SKAT, SKAT-O and
SKAT-RC, see Tables 2 and 3). LBL models the probability
of haplotypes given disease status. Unobserved haplotypes
are treated as missing data and the frequencies of haplo-
type pairs are modeled, allowing for Hardy-Weinberg
disequilibrium. The odds of disease are expressed as a
logistic regression model, whose coefficients are regular-
ized through a double-exponential prior centered at 0 and
a variance parameter, which is further assigned a hyper
prior. By regularizing regression coefficients through their
prior distributions, the LBL weeds out unassociated
(especially common) haplotypes, allowing the associ-
ated rare haplotypes to be detected more easily.

Results and discussion

Figure 3 shows the distribution of alternative allele
counts for the investigated variants in chromosome 3 as
an alternative to called genotypes. In contrast to the
histogram of mean counts (Panel A), the histogram of
median counts revealed that most variants had a
median count of zero (Panel B). Gonzalez Silos et al.
found 105 variants with a median count exactly equal
to 254 (Panel B). The origin of this peak was investi-
gated but, unfortunately, it could not be unveiled and
information on downsampling was not available. Panel
C represents a histogram of alternative allele counts
for the variant in position Ch3:16249998, which pre-
sented a median (mean) count of 254 (40.03). This
variant showed a MAF of 0.168 (280 reference allele
homozygotes, 117 heterozygotes, and 10 alternative
allele homozygotes). Panel D compares the distribu-
tions of the ratio “alternative allele count/number of
reads” and called genotypes.

The investigated regression models with the best
control of type I error rates were zero-inflated and
Hurdle-negative binomial regression for the relationship
between alternative allele counts and adjusted diastolic
blood pressure, and standard and robust linear regression
for the relationship between the ratio “alternative allele
count/number of reads” as response variable and adjusted
diastolic blood pressure as explanatory variable. The sim-
ultaneous consideration of ability to discriminate vari-
ants with small associated probability values,
occurrence of convergence problems, and robustness
of probability values against departing blood pressure
observations indicated that Hurdle-negative binomial
regression constitutes a promising approach.

Regarding the selection of variants for kinship estima-
tion, markers that were not ancestry informative resulted
in the most accurate estimates. The homogenizing selec-
tion strategy with the maximum likelihood and PC-
Relate estimators assigned correct relationships for more



Lorenzo Bermejo BMC Genetics 2016, 17(Suppl 2):2

Page 10 of 84

® A

5 8

T

Z o

5 g

b

o

E o

2 L [ I |

0 100 200 300 400
Mean alternative allele count

2 o B

s g

&

Z o

5 8

b

o

§ e 1 T 1

0 100 200 300 400
Median alternative allele count

9 C

e 3

§ — O 6T=14

o B GT=0/

S o @ GT=00

T 0

=

(0,20] (60,80] (120,140] (180,200) (240,260] (300,320]) (360,380]
Alternative allele count

° D

S

e o

§ 8

G 8

‘q-’ -

g o -L p—

=

(0,005 (01502 (03035 (04505 (06,065 (07508] (038,085
Alternative allele count ftotal read depth
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than 90 % of pairs of first- and second-degree relatives
and unrelated subjects. All methods assigned relation-
ships incorrectly for 20 % of third- and fourth-degree
relative pairs. European and Native American ancestries
were best captured by principal component analysis
based on common variants, with similar results for vari-
ants with a MAF >0.01 or >0.05. The ability to capture
African ancestry was poorer, and resulted as maximized
when principal components relied on variants with a
MAF <0.05. Clearly allele frequency plays an important
role in estimates of relatedness and population structure,
and should be carefully considered in such analyses.
Concerning the alternative tests for low-frequency and
rare variants investigated by Shin et al., the penalized

logistic likelihood ratio test and the small-sample modi-
fied score test were both better choices than standard
single-variant tests. In tests of association between a
simulated binary hypertension phenotype and variants in
the MAP4 gene, the sparse-data methods generally
improved the control of type I errors. Statistical power
was sufficient to detect low-frequency and common
variants, but remained low for the rare variants. The
occurrence of conflicting p values from standard and
small-sample tests of the same hypothesis can indicate
that large-sample approximations are invalid. Although
previous studies have found variant-collapsing tests to
have higher power than single-variant tests for rare
variants, simulation results for MAP4 showed low power
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for variant-collapsing tests when they only included rare
variants. The statistical power increased when low-
frequency variants were included. Because the power
of variant-collapsing tests depends on the number,
frequency, and effect sizes of associated and neutral
variants, identification of better grouping and weight-
ing strategies may translate into an improved power
to detect regions that only contain rare variants.

With reference to the consideration of evolutionary rela-
tionships, the type I error rate of tree-based mapping
methods appeared to be well controlled, whereas non—
tree-based association mapping showed inflated type I
error rate for all 5 investigated genes. Regarding detection,
both methods performed well when analyzing genes with
large-effect variants, and both methods showed small
power in the analysis of genes with low-penetrance
variants. Regarding localization of true causal loci, both
methods showed similar mapping abilities for genes with
large effects. In the case of small-effect variants, tree-
based outperformed non-tree-based association mapping,
which may point to an advantage of using evolutionary
information to detect weak genetic signals.

Under the Bayesian variable selection approach to detect
associations with both rare and common genetic variants,
marginal posterior probabilities were quite robust against
the MAFs used to define variant rarity (from 0.05 to 5 %),
and they clearly surpassed empirical probabilities based on
permuted phenotypes for several positions, pointing to
associations between rare and common variants in MAP4
with SBP and diastolic blood pressure (DBP).

In agreement with Fig. 3 from Gonzalez Silos et al.,
77 % of the variants investigated by Schwantes-An et
al. were extremely rare (MAF <0.0025), and more
than half had the variant allele in only a single individual.
Type I error rates were not inflated for the normal and
rank-based inverse normal transformed gamma null phe-
notypes. However, type I error rates for the gamma and
log-transformed gamma-distributed phenotypes increased
with decreasing MAFs, with increasing departure from
normality, and with decreasing significance thresholds.
Although Q1 was nearly normally distributed, type I error
rates for common variants were higher than expected.
The inflation of type I error rates for rare and extremely
rare variants for null traits that departed from normality
was ameliorated by transforming nonnormally distributed
traits to those with a more normal distribution.

Regarding the behavior of rare variants interacting
with environmental factors, type I error rates did not
surpass the expected nominal 5 % significance threshold
for either of the 2 investigated gene—environment
interaction methods (“interaction model” and “med-diff”
approach to test effect size differences between strata)
for variants with at least a MAF of 1 %. The statistical
power was higher for the “med-diff” approach for variants
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with a MAF <1 %, but it was higher for the “inter-
action model” when a variant with a MAF >5 % was
evaluated. Nonconvergence was a limitation of the
“med-diff” approach.

Finally, in respect of the follow up of association
signals, mean squared errors were smaller for estimates
based on Bayesian adjustment for confounding than for
full-model-based estimates of the average causal effect
in the investigated scenarios. The reduced variation of
estimated average causal effects was a result of the
simultaneous consideration of an exposure model and
an outcome model in the Bayesian adjustment for
confounding, suggesting that this method is able to
efficiently estimate the causal effect of genetic variants.

Rare-variant haplotype analyses revealed that “hapassoc”
often showed convergence problems and, when it
converged, association results were similar to that of
“haplo.glm.” The haplotypes found to be associated
depended on the method. The ranking of methods by the
total number of significant haplotypes found on the 2
genes was LBL < haplo.score < haplo.glm. However after
permutation of the case—control status to mimic the null
scenario, the ratio of associated haplotypes to the total
number of haplotypes was also lower for LBL than for
“haplo.score” and “haplo.glm,” indicating a controlled false-
positive rate for LBL compared to “haplo.score” and
“haplo.glm.” SKAT and its variants did not identify statisti-
cally significant association signals. Based on these results,
haplotype association methods seem to be useful and
complementary to collapsing approaches for sequence data.

Conclusions

With their results, members of the Population-Based
Association group identified several current methodo-
logical gaps regarding both the preparation and the
statistical analysis of sequence data. Sequence data is
noisy, and the investigation of the distribution of allele
counts instead of relying on called genotypes could offer
some advantage. The selection of genetic variants was
found to play a major role in the assessment of popula-
tion structure and cryptic relatedness. Most statistical
methods with good properties for common variants were
found inappropriate for rare ones. Methodological gaps
were also identified in the follow up of association
signals. Novel methods are needed to investigate rare
haplotypes and interactions between the environment
and rare variants found in sequence data, as well as for
causal effect estimation.
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