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Abstract. Three factors have been identified that re- 
constitute nuclear protein import in a permeabilized 
cell assay: the NLS receptor, p97, and Ran/TC4. Ran/ 
TC4, in turn, interacts with a number of proteins that 
are involved in the regulation of GTP hydrolysis or are 
components of the nuclear pore. Two Ran-binding pro- 
teins, RanBP1 and RanBP2, form discrete complexes 
with p97 as demonstrated by immunoadsorption from 
HeLa cell extracts fractionated by gel filtration chro- 
matography. A >400-kD complex contains p97, Ran, 
and RanBP2. Another complex of 150-300 kD was 
comprised of p97, Ran, and RanBP1. This second tri- 
meric complex could be reconstituted from recombi- 
nant proteins. In solution binding assays, Ran-GTP 
bound p97 with high affinity, but the binding of Ran- 

GDP to p97 was undetectable. The addition of RanBP1 
with Ran-GDP or Ran-GTP increased the affinity of 
both forms of Ran for p97 to the same level. Binding of 
Ran-GTP to p97 dissociated p97 from immobilized 
NLS receptor while the Ran-GDP/RanBP1/p97 com- 
plex did not dissociate from the receptor. In a digitonin- 
permeabilized cell docking assay, RanBP1 stabilizes the 
receptor complex against temperature-dependent re- 
lease from the pore. When added to an import assay 
with recombinant NLS receptor, p97 and Ran-GDP, 
RanBP1 significantly stimulates transport. These re- 
sults suggest that RanBP1 promotes both the docking 
and translocation steps in nuclear protein import by 
stabilizing the interaction of Ran-GDP with p97. 

p ROTEINS targeted to the nucleus cross the nuclear 
envelope through a large proteinaceous supramo- 
lecular structure called the nuclear pore complex 

(NPC) 1 (Feldherr, 1984; reviewed by Newmeyer, 1993; 
Melchior and Gerace, 1995). The pore complex forms an 
aqueous channel between the nucleoplasm and cytoplasm 
allowing diffusion of small molecules <9 nm in diameter, 
but restricting the movement of larger macromolecules in 
both directions. Multiple transport mechanisms are thought 
to exist to transport diverse macromolecules from small 
proteins to large ribonucleoproteins (G6rlich and Mattaj, 
1996). 

The import of nuclear proteins is mediated by single or 
bipartite stretches of primarily basic amino acid residues 
called nuclear localization sequences (NLSs) (Dingwall and 
Laskey, 1991). One of the earliest steps in nuclear protein 
import is recognition of the NLS by one of a family of cy- 
toplasmic NLS-binding proteins of 54-56 kD known as the 
NLS receptor/importin edkaryopherin et (Adam and Ger- 
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1. Abbreviat ions used in this paper: NLS, nuclear localization sequence; 
NPC, nuclear pore complex. 

ace, 1991; G6rlich et al., 1994; Weis et al., 1995). The NLS- 
containing proteins are then bound to the nuclear pore via 
a receptor complex containing the NLS receptor and a sec- 
ond factor, p97/importin [~/karyopherin [~ (Adam and Adam, 
1994; G6rlich et al., 1995b; Moroianu et al., 1995a). It is 
thought that p97 mediates interaction with the pore by 
dimerization with the NLS receptor and direct association 
with a subset of a peptide repeat-containing family of nu- 
clear pore complex proteins (nucleoporins) (Iovine et al., 
1995; Moroianu et al., 1995b; Radu et al., 1995b). Interac- 
tion of the receptor with an NLS-containing protein is not 
required for translocation of the NLS receptor and p97 as 
a small region of the receptor that binds p97, the importin 
[3-binding domain (IBB), can direct nuclear accumulation 
of a chimeric protein (G6rlich et al., 1996; Weis et al., 
1996). Subsequent release of the bound receptor complex 
and translocation through the nuclear pore complex re- 
quires the small GTPase Ran/TC4 and GTP hydrolysis 
(Melchior et al., 1993; Moore and Blobel, 1993). The trans- 
location step in permeabilized cells is enhanced by the ad- 
dition of another factor that interacts with Ran/TC4, pl0/ 
N'IT2 (Moore and Blobel, 1994; Paschal and Gerace, 1995). 

Ran/TC4, like other GTPases, is thought to act as a mo- 
lecular switch (Bourne, 1990). The GTPase activity of 
Ran/TC4 is regulated by two proteins: the Ran nucleotide 
exchange factor, RCC1 (Bischoff and Ponstingl, 1991a,b), 
and the Ran GTPase-activating protein, RanGAP1 (Bis- 
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choff et al., 1994; Becker et al., 1995). Mutational analysis 
of RCC1 and RanGAP1 has implicated both factors in 
protein import and RNA export (for review see Tartakoff 
and Schneiter, 1995; Corbett et al., 1995), although a direct 
linkage has not been shown and neither factor is required 
for import in permeabilized cells. 

A family of Ran-binding proteins containing conserved 
domains for interaction with Ran-GTP has been identified 
and includes RanBP1, RanBP2 (NUP358), Nup2p, and C. 
elegans F59A2.1 protein (Lounsbury et al., 1994; Beddow 
et al., 1995; Dingwall et al., 1995; Hartmann and Grrlich, 
1995). Direct interactions between Ran-GTP and RanBP2 
(Melchior et al., 1995a; Wu et al., 1995; Yokoyama et al., 
1995), a XFXFG repeat-containing nucleoporin, and be- 
tween Ran-GTP and RanBP1 (Coutavas et al., 1993; 
Lounsbury et al., 1994) have been demonstrated by pro- 
tein overlay blot. Because of its peripheral cytoplasmic lo- 
calization on the NPC and its ability to interact with Ran- 
GTP and p97, RanBP2 may be the initial docking site for 
nuclear protein import, thus committing the receptor com- 
plex for translocation across the nuclear pore complex (Mel- 
chior et al., 1995a). RanBP1 is involved in the coactivation 
of RanGTPase via an interaction with RanGAP1 and Ran- 
GTP (Ren et al., 1995; Bischoff et al., 1995; Richards et al., 
1995) and inhibits GTP dissociation from Ran-GTP (Bisch- 
off et al., 1995). Furthermore, RanBP1 can form a com- 
plex with nucleotide-free Ran/TC4 and the guanine nucle- 
otide exchange factor, RCC1 (Bischoff et al., 1995; Hayashi 
et al., 1995; Saitoh and Dasso, 1995). Ran deletion mutants 
with the COOH-terminal DEDDDL sequence removed are 
unable to bind RanBP1 and are defective in RNA export, 
yet have no apparent effect on protein import (Ren et al., 
1995; Richards et al., 1995). However, mutants in a yeast 
homologue of RanBP1, Yrblp, were found to be defective in 
both nuclear import and export (Schlenstedt et al., 1995b). 

We have investigated the role of the Ran-binding pro- 
tein RanBP1 in nuclear protein import at the level of phys- 
ical interactions with the nuclear transport factors p97 and 
Ran. Docking and transport experiments in digitonin per- 
meabilized cells provide evidence that RanBP1 plays a 
role in the stabilization of a receptor complex during 
translocation through the pore by increasing the affinity of 
Ran-GDP for p97. 

Materials and Methods 

Cell Culture 
HeLa JW36 cells were grown in high glucose DMEM containing 10% neo- 
nate bovine serum (Biocell Laboratories, Rancho Dominguez, CA) and 
penicillin/streptomycin (Gibco Laboratories, Gaithersburg, MD). Cul- 
tures were maintained in a humidified incubator at 37°C with 5% CO2 at- 
mosphere. Cells were trypsinized from plastic culture dishes and reseeded 
onto 18 x 18 mm glass coverslips at 2 × 106 cells/6-well plate 18-24 h be- 
fore use. Replated cells were stimulated with fresh medium 1-3 h before 
performing transport assays (Adam et al., 1990; Adam and Adam, 1994). 
HeLa $3 ceils were grown in suspension culture in Minimum Essential 
Medium modified for suspension cultures containing 10% neonate bovine 
serum and penicillin/streptomycin. 

Expression and Purification of Recombinant Nuclear 
Transport Factors 
Human p97 used for binding and transport assays was expressed and puri- 
fied as described (Chiet aL, 1995). Human RanBP1 was amplified by PCR 

from a HeLa cDNA library (Clontech, Palo Alto, CA) using the following 
primers: 5'-CCATGGCGGCCGCCAAGGAC-3' and 5'-CGACCTC- 
GAGTrATTGC'Iq'CTCCTCAGC-3'. The amplified product was sub- 
cloned into the pGEX 4T-1 GST-fusion vector (Pharmacia Biotech Inc., 
Piscataway, NJ) and transformed into JM109 cells. Cultures were grown 
to an ODr00 of 0.7 and induced with 0.5 mM IPTG for 3 h at 37°C. Cells 
were collected by centrifugation at 5,000 g for 10 min and resuspended in 
0.02 vol of import buffer containing 2 mM D'VI'. Soluble RanBP1 was ob- 
tained by two cycles of freeze-thaw in the presence of 10 p.g/ml pancreatic 
DNase I (Boehringer Mannheim, Indianapolis, IN). Insoluble material 
was removed by centrifugation at 100,000 g for 30 min. Soluble RanBP1- 
GST was bound to glutathione agarose beads (Sigma Chem. Co., St. 
Louis, MO), and cleaved with 20 u of thrombin for 6 h at 22°C. Cleaved 
RanBP1 was further purified by FPLC MonoQ (Pharmacia). Fractions 
containing RanBP1 were collected and dialyzed against import buffer 
containing 2 mM DTT, 0A mM PMSF, and 1 p.g/ml each of aprotonin, leu- 
peptin, and pepstatin A. 

To make recombinant NLS receptor, the mouse pendulin cDNA was 
subcloned into the pET30a His/S-tag fusion expression vector (Novagen, 
Madison, WI) and transformed into BL21(DE3) cells. 250-ml cultures 
were grown at 37°C to an ODr00 of 0.6 and induced with 1 mM IPTG for 
3 h at 30°C. Cells were collected by centrifugation and resuspended in 20 
mM Hepes (pH 7.0), 0.5 M NaC1, 1 I~g/ml each of aprotonin, leupeptin, 
pepstatin A, 2 mM DTT and 500 Ixg of lysozyme and incubated on ice for 
30 min. Ceils were disrupted by sonication and insoluble material was re- 
moved by centrifugation at 100,000 g for 30 min. Phenyl sepharose equili- 
brated in import buffer containing 2 mM DTT and 1 I~g/ml each of aproto- 
nin, leupeptin, and pepstatin A, was added to the soluble material and 
mixed at 4°C for 1 hour. The sepharose was washed two times in import 
buffer and the bound proteins were eluted with 75% ethylene glycol. 
Eluted NLS receptor was dialyzed against import buffer containing 2 mM 
DTT and 1 p~g/ml each of aprotonin, leupeptin, and pepstatin A. 

p97 used for adsorption experiments was subcloned into pET30a and 
expressed in BL21(DE3) cells. Cultures were grown at 37°C to an OD600 
of 0.8 and induced with 1 mM IPTG in the presence of 1 mM ZnCI2 for 3 h 
at 37°C. Cells were collected by centrifugation and resuspended in 0.025 
vol of 20 mM Hepes (pH 7.4), 0.5 M NaCI, 1 tzg/ml each aprotonin, leu- 
peptin, and pepstatin A, 2 mM DTT and 40 i.tg/ml of lysozyme and incu- 
bated on ice for 30 min. Cells were disrupted by sonication and insoluble 
material was removed by centrifugation at 100,000 g for 30 rain. Further 
purification was as described (Chi et al., 1995). 

Recombinant Ran Protein Purification 
and Nucleotide Loading 
Expression and purification of recombinant human Ran/TC4 was modi- 
fied from Melchior et al. (1995b). Recombinant Ran subcloned into a 
pET11d vector was transformed in BL21(DE3). Cells were grown to an 
ODr00 of 0.8 and induced with 0.9 mM IPTG for 2.5-3 h before harvesting 
by centrifugation at 6,000 g. The cell pellets were frozen overnight at 
-20°C and thawed at 23°C. Cells were immediately placed on ice and re- 
suspended into 0.025 vol of B1 buffer (50 raM, Tris/HC1, pH 8.0, 75 mM 
NaCl, 1 mM MgCl2, 2 mM DTT, 1 ~.g/ml each of aprotonin, leupeptin, and 
pepstatin A). Lysozyme was added to 1 mg/ml and the suspension was in- 
cubated for 90 min on ice. Insoluble material was removed by centrifuga- 
tion at 100,000 g and the supernatant was applied to a 20-ml DEAE 
Sepharose FF column (Pharmaeia) previously equilibrated with five col- 
umn volumes of B1 buffer. The flow through and the first 20 ml of wash 
with B 1 was collected. The protein was then concentrated by precipitation 
at 55% ammonium sulfate and stored on ice. 

20 IxM Ran in Ran loading buffer (50 mM Hepes pH 7.4, 10 mM 
EDTA, 2.5 mM D'Iq', and 1 p~g/ml each of aprotonin, leupeptin, and pep- 
statin A) was incubated with 1 mM ATP and 1 mM GDP or GTP at room 
temperature for 30 rain, and then on ice for 15 min. Ran samples were di- 
luted 2.5-fold with import buffer containing 2 mM D'IT and 0.1 mM 
PMSF, and magnesium acetate was added to 10 mM. After incubation on 
ice for 30 min, Ran was purified by gel filtration on a Superose 12 FPLC 
column (Pharmacia) to remove free nucleotides. Samples were immedi- 
ately aliquoted and stored at -80°C. 

In Vitro Nuclear Import and Nuclear Pore 
Binding Reactions 
HeLa cells grown on glass coverslips were permcabilized with digitonin as 
described (Adam et aL, 1990; Adam and Adam, 1994). Allophycocyanin 
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chemically conjugated to a SV40 large T antigen NLS-peptide (APC- 
NLS) at a ratio of five peptides to each APC was used as a fluorescent re- 
porter in import and binding experiments (Adam et al., 1990). Import 
experiments were performed for 30 min at 25°C in a 50-pA vol contain- 
ing 1 ixM Ran-GDP, 400 nM p97,400 nM NLS receptor, l ~g APC-NLS, 
1 mM ATP and 1 mM GTP in import buffer (20 mM Hepes, pH 7.35, 
110 mM potassium acetate, 2 mM magnesium acetate, 0.1 mM EGTA, 
and 2 mM DTF) (Adam and Gerace, 1991). RanBP1 was added in con- 
centrations as indicated. Binding experiments were carried out in a 50-~1 
vol containing p97 and NLS receptor at a 1:2 molar ratio with 1 Ixg APC- 
NLS in import buffer at 4°C or with 1 i~g APC-NLS, 1 mM ATP and 1 mM 
GTP in import buffer at 25°C for 20 min. RanBP1 was added in the pro- 
portions indicated to the binding mix with p97 and NLS receptor. The ad- 
dition of nucleotides in the 4°C incubation had no effect on binding. When 
nucleotides were not included in the 25°C incubation, the extent of de- 
crease in binding was more heterogeneous between cells, with ~20% of 
the cells showing somewhat less than a 40% decrease in nuclear envelope 
binding. We have calculated the concentration of p97 and NLS receptor in 
HeLa ceils at 100-500 nM, based on quantitative immunoadsorptions 
(data not shown). The concentration of Ran in HeLa cells is at least 10- 
fold greater. 

Accumulation of the APC-NLS on the nuclear envelope or within the 
nucleus was observed by epifluorescence illumination with a Zeiss Ax- 
ioskop microscope equipped with a 63× 1.25NA oil immersion objective. 
Quantitation of fluorescence was performed by analyzing images captured 
with a CCD camera (Electrim Corp., Princeton, N J), and relative intensity 
values were determined and averaged with a computer program written 
by Dr. Guenter  Albrect-Buehler (Northwestern University, Chicago, IL). 
For binding experiments, the rim of the nucleus as observed at the equato- 
rial plane was measured and for import experiments, the average intensity 
over the entire nucleus was measured. 

Metabolic Labeling and Preparation of RIPA 
Soluble Fractions 
HeLa $3 cells grown in suspension were labeled with 20 IxCi/ml L-[35S] 
Pro-Mix (Amersham, Arlington Heights, IL) in 10% Met media (DMEM 
containing 10% of the normal methionine concentration) for 3-4 h at 
37°C. The cells were collected by centrifugation at 100 g for 5 min and 
washed two times in cold PBS. The cells were resuspended and solubilized 
for 15 min on ice in RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium 
deoxycholate, 0.1% SDS, and 50 mM Tris-HCl pH 8.0) containing 2 mM 
DTI" and 1 p~g/ml each of aprotonin, leupeptin, and pepstatin A. The ex- 
tract was precleared of insoluble material by centrifugation at 100,000 g 
for 30 min at 4°C. 

The RIPA soluble material from 107 35S-labeled HeLa cells was frac- 
tionated by chromatography on a Superose 12 HR10/30 gel filtration col- 
umn (Pharmacia) equilibrated in RIPA buffer containing 0.5 mM DTT. 
0.5-ml fractions were collected, and 1 p~g/ml each of aprotonin, leupeptin, 
and pepstatin A were added to each fraction. These fractions were used 
for immunoadsorptions. 

Immunoadsorptions 
Anti-p97 mAb3E9 was prepared according to Chi et al. (1995). Mouse 
IgG was obtained from Sigma. Immobilized antibody-agarose was pre- 
pared by binding mAb3E9 or mouse IgG to goat anti-mouse IgG agarose 
beads in 50 mM Tris-HCl, pH 8.0, and 0.5 M NaC1 at 1-2 mg antibody/ml 
beads. After two washes with the same buffer to remove unbound anti- 
body, the beads were washed twice with 0.2 M sodium borate buffer, pH 
9.0, and finally resuspended in 10 vol of the same buffer. Dry dimethyl 
pimelimidate was added to 20 Ixg/ml and incubated at room temperature 
for 30 min with mixing. The beads were then washed two times with 0.2 M 
glycine, pH 8.0, and stored in PBS containing 0.1% gelatin. 

A RIPA buffer extract from 5 × 10635S-labeled HeLa cells in a I ml vol 
was added to 20 txl of antibody beads and incubated at 4°C for 90 min. The 
beads were washed with RIPA buffer containing 0.5 mM DTT and 1 p.g/ml 
each of aprotonin, leupeptin, and pepstatin A, and eluted with 20 p.1 of 1× 
sample loading buffer containing 40 mM DTT. Immunoadsorbed proteins 
were separated on 10% SDS-polyacrylamide gels and detected either by 
autoradiography or immunoblot. Specific proteins were detected after 
electrophoretic transfer to nitrocellulose membranes and blocking of non- 
specific binding with 5% nonfat dry milk in TBST/M (50 mM Tris-HCl, 
150 mM NaCl, 0.05% Tween-20, and 0.001% merthiolate) for I h at room 
temperature. After three 5-min washes with TBST/M, the following pri- 

mary antibodies were used: affinity-purified rabbit anti-Ran/TC4 (1: 
2,000); rabbit anti-RanBP1 serum (1:1,000); rabbit anti-RanBP2 serum (1: 
1,000), affinity-purified rabbit anti-bovine NLS receptor polyclonal anti- 
body (1:50), and rabbit anti-NPI serum (1:1,000) (O'Neill et al., 1995). Biotin- 
labeled anti-rabbit IgG (Vector Laboratories, Burlingame, CA) was used 
at 1 ixg/ml as secondary antibody, and peroxidase-conjugated anti-biotin 
IgG was used at 1 ixg/ml for detection. Detection on immunoblots was 
with luminol based chemiluminescence (Scheppenheim et al., 1991) and 
Kodak XAR5 film. For autoradiography, destained gels were treated with 
Enhance (New England Nuclear Research Products Boston, MA), dried 
under vacuum and exposed to Kodak XAR5 film at -80°C. 

Solution Binding Assays 
Partially purified S-tag p97 was adsorbed to 6 p.l of S-protein agarose 
beads (Novagen) at 4°C for 1 h in binding buffer (20 mM Hepes, pH 7.3, 
150 mM KOAc, 2 mM Mg(OAc)2, 2 mM DTT, 0.1% Tween-20, 0.1% 
casamino acids, and 1 Ixg/mI each of aprotonin, leupeptin, and pepstatin 
A) as described (Rexach and Blobel, 1995). S-tag p97 beads were washed 
two times with binding buffer to remove unbound material and resus- 
pended in 0.5 ml binding buffer. 2 ~g of Ran-GDP or Ran-GTP and 2 l~g 
of RanBP1 were added in various combinations as described in Results, 
and beads were incubated for 1 h at 4°C. For Ran-dissociation experi- 
ments, GST-p97 was bound to S-tag NLS receptor immobilized on S-pro- 
tein agarose beads at 4°C for 1 h. Unbound material was removed with 
two washes of binding buffer and 2 ~g Ran-GDP or Ran-GTP and RanBP1 
were added as described in Results. The beads were then washed three times 
with binding buffer. Bound proteins were eluted with 50 Ixl 1 × SDS-PAGE 
sample loading buffer and resolved by 12.5% SDS-PAGE (Dreyfuss et al., 
1984). Proteins were detected by staining with Brilliant Blue R-250. 

For the titration of Ran in solution binding assays, 2.5 Ixg of S-tag p97 
immobilized on S-protein beads were incubated with 1.5 Ixg of RanBP1 
and Ran as indicated in 0.5 ml binding buffer for 1 h at 4°C. Beads were 
washed three times with binding buffer to remove unbound material. 
Bound proteins, eluted from beads with 50 pA of 1× sample loading 
buffer, were resolved by 12.5% SDS-PAGE and visualized by staining 
with Brilliant Blue R-250. Quantitation of Ran was performed by laser 
scanning densitometry (LKB Instruments, Uppsala, Sweden). 

Immunofluorescence Staining of Cells 
HeLa JW36 cells were extracted and fixed as described (Chi et al., 1995). 
Rabbit anti-Ran antibody was diluted in 0.2% BSA in PBS at 25 p~g/ml 
and incubated on the cells at room temperature for 1 h. After extensive 
washing in PBS, the antibody was detected with rhodamine-labeled goat 
anti-rabbit (Cappel Research Products, Durham, NC) diluted in the same 
buffer. The coverslips were mounted in 75% glycerol, 40 mM Tris-HCl, 
pH 8.0, and 0.1% p-phenylenediamine. The cells were observed by epifiu- 
orescence illumination as described above. 

Results 

Association of Nuclear Import Components with p97 

Most aspects of nuclear protein import can be reconsti- 
tuted in digitonin permeabilized cells with three purified or 
recombinant factors: the NLS receptor (importin a/karyo- 
pherin a), p97 (importin [3/karyopherin 13), and Ran/TC4 
(G6rlich and Mattaj, 1996). Immunoadsorptions of p97 
from cell lysates with a specific monoclonal antibody 
(mAb3E9), identified other proteins that coimmunoad- 
sorbed with p97 (Chi et al., 1995). To further characterize 
these proteins, immunoadsorptions with mAb3E9 were 
performed on cell extracts of 35S-labeled HeLa cells pre- 
pared with various detergents. Extraction of cells with the 
detergent combination RIPA (see Materials and Meth- 
ods) solubilized greater than 90% of the total cellular pro- 
tein, including the glycosylated nucleoporins (data not 
shown). From this extract, three proteins with approxi- 
mate molecular masses of 25, 30, and 350 kD were specifi- 
cally coadsorbed with p97 (Fig. 1 A). These proteins had 
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Figure 1. Immunoadsorp- 
tions and immunoblot analy- 
sis. (A) Immunoadsorptions 
of 35S-labeled HeLa cell 
RIPA soluble extracts were 
performed as described in 
Materials and Methods with 
mAb3E9 or mouse IgG. Ar- 
rows indicate proteins specif- 
ically coadsorbed with p97. 
(B) Immunoadsorptions of 
HeLa cell RIPA soluble ex- 
tracts and immunoblotting 
with antibodies to Ran/TC4, 
RanBP1, and RanBP2. (C) 
Immunoblot of total HeLa 
cell lysate, mAb3E9, and 
mouse IgG immunoadsorp- 
tions performed from HeLa 
cell RIPA soluble extracts 
with polyclonal antibodies to 
the NLS receptor homologue 
NPI. 

similar electrophoretic mobilities to Ran/TC4, RanBP1, 
and RanBP2 (NUP358). Immunoblotting of the immu- 
noadsorbed fractions with specific antibodies confirmed 
that Ran/TC4, RanBP1, and RanBP2 were specifically as- 
sociated with p97 (Fig. 1 B). The immunoadsorbed pro- 
teins had identical electrophoretic mobilities when com- 
pared on autoradiograms and immunoblots. The l l6 -kD 
protein identified in our earlier study was not observed in 
these experiments because it was removed from mAb3E9 
immunoadsorptions by washing with RIPA buffer (Chi, N., 
G. Visser, E. Adam, S. Adam, manuscript in preparation). 

It has been suggested that p97 and the NLS receptor 
form a heterodimer that is responsible for targeting a 
karyophile to the nuclear pore (Adam and Adam, 1994; 
Enenkel et al., 1995; Grrlich et al., 1995a; Imamoto et al., 
1995; Moroianu et al., 1995a). No 35S-labeled proteins with 
molecular weights corresponding to the NLS receptor 
were observed in the RIPA immunoadsorptions. Two ho- 
mologues of the NLS receptor have been identified in hu- 
man cells. Immunoblotting with antibodies to one of these 
homologues, NPI (O'Neill et al., 1995), did not detect NLS 
receptor among the specifically immunoadsorbed pro- 
teins, even though NPI was soluble in RIPA (Fig. 1 C). 
RIPA buffer was able to dissociate a NLS receptor-p97 
complex assembled from the recombinant proteins in solu- 
tion (data not shown), hence it was not surprising that the 
NLS receptor was absent from the immunoadsorptions. 

To determine whether p97, Ran, and the Ran-binding 
proteins interact as a single complex or as several discrete 
complexes, RIPA soluble HeLa extracts were fractionated 
by gel filtration chromatography, and individual fractions 
were immunoadsorbed with mAb3E9 (Fig. 2). p97 was 
found in at least two distinct complexes. The first complex 
fractionated with an estimated molecular mass of >400 kD 
and contained p97, RanBP2, and Ran/TC4, although we 
cannot discount the possibility that the Ran in this com- 
plex is the leading edge of the Ran peak in the second 

complex, p97 has been shown to bind RanBP2, as well as 
other peptide repeat containing nucleoporins on overlay 
blots (Iovine et al., 1995; Moroianu et al., 1995b). Notably, 
none of the other peptide-repeat--containing nucleoporins 
were observed to bind p97 in these experiments, although 
they were soluble in the RIPA extract (data not shown). It 
is likely that the interaction of p97 with RanBP2 in RIPA 
buffer is stronger than its interaction with the other nucle- 
oporins. 

The second peak of p97 corresponded to an estimated 
molecular mass of 150-300 kD and contained p97, Ran, 
and RanBP1. By Coomassie blue staining, Ran and 
RanBP1 were present in approximately equimolar amounts. 
When the entire column elution profile was immunoblot- 
ted with anti-Ran antibodies, the majority of Ran was 
present in fractions eluting later in the column, represent- 
ing molecular mass of 30-50 kD (data not shown). The 
amount of Ran present in the complex with p97 represents 
only a small percentage of the total Ran in the extract. 

In Vitro Assembly of Ran, RanBPI, and p97 

Recently, it was shown that Ran-GTP, but not Ran-GDP, 
binds directly to p97 (Rexach and Blobel, 1995; Floer and 
Blobel, 1996), and that Ran-GTP binding to p97 may re- 
quire a Ran-binding domain from a Ran-binding protein 
for high affinity binding (Lounsbury et al., 1996). The 
simple interpretation of the immunoadsorption results in 
Fig. 1, then, was that a complex of p97, Ran-GTP, and 
RanBP1 was adsorbed from the cell lysate, with Ran-GTP 
linking p97 and RanBP1. To verify the formation of a 
Ran-RanBP1-p97 complex, we carried out direct binding 
experiments with the recombinant proteins. Bacterially 
expressed S-tag p97 immobilized on S-protein agarose 
beads was incubated with bacterially expressed Ran-GDP, 
Ran-GTP, and RanBP1. As expected, Ran-GTP bound 
p97 (Fig. 3 A), and the addition of RanBP1 in the incuba- 
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The apparent increase in the affinity of Ran-GTP and 
Ran -GDP for p97 in the solution binding assays was 
verified by titration of Ran-GDP and Ran-GTP against 
fixed amounts of p97 and RanBP1 (Fig. 4). With RanBP1 
present in a 1.5-2-fold excess over immobilized p97, Ran- 
GTP showed an approximately threefold increase in bind- 
ing affinity for p97. An even more dramatic increase in af- 
finity for p97 was seen for Ran-GDP. In the absence of 
RanBP1, Ran-GDP binding to p97 was undetectable even 
at a fourfold excess of Ran-GDP over p97 (Fig. 3 A). 
However, RanBP1 increased the affinity of Ran-GDP for 
p97 such that the affinities of Ran-GDP and Ran-GTP for 
p97 were indistinguishable. 

Figure 2. Gel filtration analysis of p97 complexes. 35S-labeled HeLa 
cell RIPA soluble extract was fractionated by gel filtration chro- 
matography. Individual gel filtration fractions were immunoad- 
sorbed with mAb3E9. Size standards are indicated by vertical ar- 
rows above the fraction numbers. Size standards are (A) blue 
dextran, 400 kD; (B) 13-amylase, 200 kD; and (C) IgG, 155 kD. 
Horizontal arrows indicate proteins that are coadsorbed specifi- 
cally with mAb3E9. Molecular mass markers are indicated on 
the left. 

tion with Ran-GTP and p97 led to the binding of RanBP1 
and a slight increase in the amount of Ran-GTP bound. 
Neither Ran-GDP nor RanBP1 alone bound p97 under 
these conditions. However, when Ran-GDP and RanBP1 
were added together, both Ran-GDP and RanBP1 associ- 
ated with p97 to approximately the same degree as Ran- 
GTP and RanBP1. Ran charged with GMP-PNP binds p97 
and RanBP1 in an identical manner as Ran-GTP (data not 
shown). 

It has been suggested that one function of Ran-GTP in 
nuclear protein import is the dissociation of a p97-NLS re- 
ceptor complex upon binding of Ran-GTP to p97 (Rexach 
and Blobel, 1995). To test if Ran-GDP/RanBP1 binding to 
p97 has the same complex-dissociating ability as Ran- 
GTP, we assembled a p97-receptor complex on immobi- 
lized NLS receptor (Fig. 3 B). As expected, the addition of 
Ran-GTP dissociated p97 from the immobilized receptor 
and this dissociation was not abrogated by the presence of 
RanBP1. Conversely, Ran-GDP and RanBP1 bound to 
the p97-receptor complex and did not dissociate p97 from 
the immobilized receptor. 

R a n B P 1  Stabi l izes  the  R e c e p t o r  C o m p l e x  
on the  N u c l e a r  Pore  

The nuclear pore binding, or docking, step in protein im- 
port can be reconstituted with purified or recombinant 
NLS receptor and p97 (Adam and Adam, 1994; Chi et al., 
1995; G6rlich et al., 1995a, Radu et al., 1995a). Pore bind- 
ing showed a temperature dependence with a moderate 
decrease in binding when the temperature of incubation 
was increased from 4°C to 25°C (Fig. 5 A). The decrease in 
binding was accompanied by a slight accumulation of the 
APC-NLS within the nucleus, suggesting that residual Ran 
present in the permeabilized cells is capable of supporting 
transport at a basal level (Melchior et al., 1995a; Moore 
and Blobel, 1995). The inclusion of RanBP1 in the incuba- 
tion at 4°C with p97 and receptor had little or no effect on 
binding of the APC-NLS to the pore. However, inclusion 
of RanBP1 at 25°C led to a dramatic increase in the 
amount of APC-NLS binding at the nuclear pore. At both 
4°C and 25°C, RanBP1 stimulated small amounts of accu- 
mulation within the nucleus even in the absence of exoge- 
nous Ran (Fig. 5 A). The extent of intranuclear accumula- 
tion with RanBP1 was higher at 25°C than at 4°C in ~30% 
of the cells. This RanBP1 stimulated accumulation sug- 
gests that the Ran present on the pore in permeabilized 
cells must be available for limited rounds of transport. 
RanBP1 was unable to substitute for either the NLS re- 
ceptor or p97 under any of the above conditions (Fig. 5 B), 
indicating that it was acting as a distinct factor in the assay. 

Saturation of nuclear pore binding in the permeabilized 
cell assay was reached at 300 nM NLS receptor and 150 nM 
p97 when assayed at 4°C on 2 × 106 HeLa cells (Fig. 6). 
The extent of binding was dependent also on the number 
of cells present in the assay; that is, when a greater number 
of cells was used for binding, an increased concentration of 
the import factors was required to achieve saturation (data 
not shown). When the incubation was carried out at 25°C, 
nuclear pore binding was decreased by ,--,40% relative to 
incubations at 4°C at all concentrations of the two binding 
factors (Fig. 6). Inclusion of RanBP1 at 500 nM in the 
binding assays increased karyophile binding to the pore at 
25°C to 80-90% of the level observed at 4°C, but had no 
significant effect at 4°C. The temperature dependence of 
docking suggested that RanBP1 stabilized the interaction 
of the receptor complex with the pore and exerted its ef- 
fects on an energy using transport factor, presumably Ran, 
that is present at the pore complex. 
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Figure 3. Assembly of com- 
plexes wi th  recombinant 
transport factors. (A) S-pro- 
tein agarose beads bound 
with S-tag p97 were incu- 
bated with recombinant Ran- 
GDP, Ran-GTP, and RanBP1 
at various combinations as 
indicated. (B) S-protein agar- 
ose beads bound with S-tag 
NLS receptor were incu- 
bated with Ran-GDP, Ran- 
GTP, RanBP1, and GST- 
p97 at various combinations 
as indicated. 

Localization of  Ran on the Nuclear Envelope in 
Permeabilized Cells 

Previous studies have suggested that digitonin permeabili- 
zation of cultured cells releases >90% of Ran from the 
cell (G6rlich et al., 1995b; Melchior et al., 1995a; Moore 
and Blobel, 1995). To verify that our permeabilized cells 
contained endogenous Ran, we performed indirect immu- 
nofluorescence with anti-Ran antibodies on HeLa cells. 
As expected, a small but detectable concentration of Ran 
was found at the nuclear envelope (Fig. 7) (Moore and 
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Figure 4. Affinity of Ran-GTP and Ran-GDP for p97. Solution 
binding assays were carried out as in Fig. 3 and the amount of 
Ran-GTP or Ran-GDP bound was determined. The data set for 
Ran-GDP binding is not shown because no binding could be de- 
tected. (0, Ran-GTP; • Ran-GDP + RanBP1; I ,  Ran-GTP + 
RanBP1.) 

Blobel, 1995). Immunoblotting of digitonin soluble and in- 
soluble cell fractions confirmed that a small amount 
(<10%) of Ran remained in the permeabilized cell after 
digitonin extraction (data not shown). 

RanBP1 Stimulates Nuclear Protein Import 

The import of proteins into the nucleus can be reconsti- 
tuted in permeabilized cells with the NLS receptor, p97, 
and Ran in the presence of ATP and GTP (Melchior et al., 
1993; Moore and Blobel, 1993). A fourth factor, pl0/ 
NTF2, has been suggested to stimulate nuclear protein im- 
port under the conditions used here (Moore and Biobel, 
1994; Paschal and Gerace, 1995), but recombinant human 
NTF2 had no effect in our assays, and was not included 
(data not shown). Because of the stabilizing effect of 
RanBP1 on the association of a karyophilic protein with 
the pore complex and the stimulation of small amounts of 
transport in the docking assay (Fig. 5 A), RanBP1 was 
added along with NLS receptor, p97, and Ran-GDP in the 
presence of ATP and GTP to determine its effect on trans- 
location into the nucleus. The addition of RanBP1 to 1 txM 
in the transport reaction increased the level of intranu- 
clear APC-NLS accumulation by 40-50% over reactions 
without RanBP1 (Fig. 8 A). Titration of Ran and RanBP1 
demonstrated that the extent of APC-NLS accumulation 
was stimulated by RanBP1 at all concentrations of Ran 
tested (Fig. 8, A and B). As shown also in Fig. 5, RanBP1 
stimulates import in the absence of exogenous Ran (Fig. 8 B). 
As expected from previous results, the final extent of im- 
port was dependent upon the amount of Ran present in 
the assay (Melchior et al., 1995a). 

Discussion 

A number of proteins have been identified as components 
of the nuclear protein import machinery. These proteins 
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Figure 5. RanBP1 stabilizes nuclear pore binding. (A) Nuclear pore binding assays were performed at 4°C or 25°C with 100 nM p97 and 
200 nM NLS receptor (NLSR) or 100 nM p97,200 nM NLS receptor, and 500 nM RanBP1. (B) Nuclear pore binding assays were per- 
formed at 4°C with 200 nM NLS receptor and 500 nM RanBP1 or 100 nM p97, and 500 nM RanBP1. 

include the 54/56-kD NLS receptor/importin edkaryophe- 
rin eq and a2, p97/importin 13/karyopherin 13, Ran/TC4, 
NTF2/pl0, and hsc70/hsp70 (Powers and Forbes, 1994). 
Although import can be reconstituted in permeabilized 
cells with the NLS receptor, p97 and Ran/TC4, the rela- 
tively high concentrations needed for import in vitro sug- 
gests that other factors may be involved. Some likely can- 
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Figure 6. Quantitative analysis of RanBP1 stabilizing activity. In- 
creasing concentrations of NLS receptor and p97 were included 
in the pore binding assay as described in Materials and Methods 
at the following conditions: A, 4°C; A, 4°C and 500 nM RanBP1; 
D, 25°C; II, 25°C and 500 nM RanBP1. Average fluorescence in- 
tensity of the nuclear envelope was measured as described in Ma- 
terials and Methods. 

didates for these unknown factors have been identified by 
their interaction with p97 (Chi et al., 1995; Imamoto et al., 
1995) or Ran/'I'CA (Lounsbury et al., 1994; Saitoh and Dasso, 
1995). Here we demonstrate a biochemical and functional 
interaction between p97, Ran/TC4, and RanBP1 and a bio- 
chemical interaction between p97, Ran/TC4, and RanBP2. 

p97 Forms Specific Complexes with Ran, RanBP2, 
and RanBPI 

p97 was originally identified as one of two proteins re- 
quired to target NLS-containing proteins to the nuclear 
pore (Adam and Adam, 1994). A heterodimer composed 
of p97 and the NLS receptor is believed to form a cyto- 
plasmic receptor complex that docks karyophiles onto the 
nuclear pore as an early step in import (Adam and Adam, 
1994; G6rlich et al., 1995a; Enenkel et al., 1995; Imamoto 
et al., 1995). Since p97 alone can bind to the nuclear pore 
complex, specifically the peptide repeat region of nucle- 
oporins (G~rlich et al., 1995b; Iovine et al., 1995; Mor- 
oianu et al., 1995), it is likely that the docking event is me- 
diated by p97 through binding to a nucleoporin. Nup358, a 
peptide-repeat containing nucleoporin, also known as 
RanBP2, localizes to the cytoplasmic filaments of the nu- 
clear pore complex and forms strong interactions with p97 
and Ran/TC4 (Melchior et al., 1995a; Moroianu et al., 
1995b; Wu et al., 1995; Yokoyama et al., 1995). RanBP2 
has been suggested to be the site of Ran-GTP binding and 
GTP hydrolysis at the pore during protein import. Binding 
of the receptor complex and Ran-GTP to RanBP2 may be 
the initial and critical point for regulating nuclear protein 
import (Melchior et al., 1995a). In our experiments, 
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Figure 7. Localization of Ran in permeabilized cells. Ran was lo- 
calized in HeLa cells with anti-Ran antibodies. (a) Cells were 
fixed with formaldehyde before extraction with Triton X-100. (b) 
Cells were permeabilized with digitonin before fixation and ex- 
traction as in a. 
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Figure 8. Quantitative analysis of nuclear protein import stimula- 
tion by RanBP1. (A) Ran was titrated against fixed amounts of 
NLS receptor and p97 at various levels of RanBP1 as indicated. 
(B) RanBP1 was titrated against fixed amounts of NLS receptor 
and p97 at three concentrations of Ran as indicated. (A, 0 mM 
Ran; 0, 1 I~M Ran; II, 2 I.~M Ran; A, 0/xM RanBP1; O, 1 ~M 
RanBP1; I7, 2 p,M RanBP1.) 

RanBP2 is the only peptide repeat containing nucleoporin 
that forms a stable complex with p97 in RIPA buffer. 
The RIPA soluble complex of p97-RanBP2-Ran may 
represent a portion of the initial docking complex ex- 
tracted from the pore, with the NLS receptor having been 
removed by the detergent. The high affinity of the p97- 
RanBP2 binding may reflect the importance of this inter- 
action as the first point of association of the receptor com- 
plex with the pore. As the first site of interaction with the 
pore, RanBP2 could serve to facilitate the assembly of 
transport complexes by concentrating Ran and receptor 
complexes at the cytoplasmic side of the pore. It is inter- 
esting to note that p97 associates with RanBP1 and 
RanBP2 independently. Substituting Ran-GDP-RanBP1 
for RanBP2 on p97 after the initial docking event may dis- 
rupt the association of the receptor complex with RanBP2. 

Ran/TC4 Binding to p97 

Conflicting results on the binding of Ran-GTP to p97 have 
been reported recently. In solution binding assays, Ran- 
GTP exhibited high affinity binding to p97, but Ran-GDP 

did not bind (Rexach and Blobel, 1995; Floer and Blobel, 
1996). However, on overlay blots of p97 in cell lysates, 
Ran-GTP had a low affinity for p97 that was enhanced 
by the Ran-binding domain of RanBP1 or RanBP2 (Louns- 
bury et al., 1996). In our hands, Ran-GTP binds p97 with 
high affinity, and the affinity is enhanced by the binding of 
RanBP1. In addition, RanBP1 and Ran-GDP bind p97 co- 
operatively since the binding for either protein to each 
other or to p97 cannot be detected in the solution binding 
assay. The affinity of p97 for Ran-GTP or Ran-GDP when 
bound to RanBP1 is similar and is higher than the affinity 
of p97 for Ran-GTP alone. 

A conserved acidic COOH-terminal domain (-DED- 
DDL) of Ran is required for the high affinity binding of 
Ran-GTP to RanBP1 (Lounsbury et al., 1994; Ren et al., 
1995; Richards et al., 1995). The acidic sequence in Ran af- 
fects the role of RanBP1 as a costimulator of RanGAP 
(Richards et al., 1995). It has been suggested that GTP 
binding to Ran causes a conformational change in the pro- 
tein exposing the acidic domain for protein-protein inter- 
actions. In Ran-GDP, this domain may be folded into the 
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guanine nucleotide binding pocket, stabilizing GDP bind- 
ing and preventing the acidic domain from interacting with 
RanBP1 (Richards et al., 1995). p97 contains a conserved 
acidic sequence (334DENDDDDDWN343) similar to that 
found in Ran. This acidic domain is located in the portion 
of p97 that binds Ran (Chi, N., and S. Adam, manuscript 
in preparation) and may interact with Ran-GDP exposing 
the acidic domain of Ran to RanBP1 leading to the coop- 
erative formation of a trimeric Ran-GDP-RanBPl-p97 
complex. 

RanBP1 Stabilizes the Receptor Complex 
on the Nuclear Pore 

The results presented here suggest a role for Ran in the 
association of the receptor complex with the nuclear pore. 
This conclusion is supported by the observation that non- 
hydrolyzable analogues of GTP inhibit docking as well 
as translocation in permeabilized cells (Melchior et al., 
1993; Moore and Blobel, 1993), The stabilization of dock- 
ing by RanBP1 in our assays and the localization of Ran to 
the nuclear envelope suggests that Ran is associated 
with the docking site in permeabilized cells. At least two 
nucleoporins, RanBP2 and Nup2p, contain Ran-binding 
domains (Dingwall et al., 1995) and several additional 
Ran-binding proteins have been identified in the high salt/ 
detergent fraction of nuclei (Lounsbury et al., 1994). 
RanBP1 may promote docking by stabilizing the binding 
of the receptor complex at the docking site when Ran is in 
the GDP form. An alternative possibility is that the p97- 
NLS receptor-Ran-GDP-RanBP1 complex characterized 
here is the actual translocation complex that moves 
through the pore. This assembly may form after the re- 
lease of the receptor complex and Ran-GDP from 
RanBP2 upon GTP hydrolysis. A RanBP1 stabilized re- 
ceptor complex would be able to undergo repeated bind- 
ing and dissociation events from downstream docking sites 
without disassembling. At some point after docking, an ex- 
change reaction to replace the GDP with GTP on Ran 
must occur, catalyzed by a yet to be identified factor. Ran- 
GTP would release the receptor complex from the dock- 
ing site, but to prevent disassembly of the receptor com- 
plex, the Ran-GTP would have to be hydrolyzed rapidly. 
RanBP1 functions as a coactivator of RanGAP1 and 
would be useful in increasing the rate of GTP hydrolysis 
upon release of the receptor complex from the docking 
site (Bischoff et al., 1995). 

pI0/NTF2 has been proposed to associate Ran-GDP 
with docked karyopherin ~13 (receptor complex) to form a 
short-lived pentameric docking complex containing a nu- 
cleoporin, p97, NLS receptor, pl0, and Ran-GDP (Nehr- 
bass and Blobel, 1996). From that study, it is not clear if 
pl0 aids in the association of Ran-GDP with p97 (karyo- 
pherin 13), the nucleoporin or both, since pl0 binds to both 
proteins and to Ran-GDP. RanBP1 has a similar effect to 
pl0 in the solution binding assay as it promotes the bind- 
ing of Ran-GDP to p97 without dissociating the p97-re- 
ceptor heterodimer. In contrast to pl0, RanBP1 binds 
Ran-GTP with high affinity (Coutavas et al., 1993; Louns- 
bury et al., 1994). The addition of GTP to the pl0-docked 
complex led to a gradual partial dissociation of the karyo- 
pherin heterodimer, an effect not seen with RanBP1 corn- 

plexes in solution binding assays (data not shown) or 
docking assays in permeabilized cells. In our hands, re- 
combinant mammalian pl0/NTF2 has no effect on trans- 
port or docking in permeabilized cells and does not bind 
p97 with high affinity in the solution binding assay (Chi, 
N., and S. Adam, unpublished results). 

On the Mechanism of Translocation Through the Pore 

A model to explain movement of karyophiles through the 
nuclear pore has been proposed, based on the results of 
solution binding experiments with recombinant transport 
factors (Rexach and Blobel, 1995). This model suggests 
that a series of docking, undocking, diffusion, and redock- 
ing events occur in a stochastic process leading to translo- 
cation through the pore. In this model, association of the 
receptor complex with the peptide repeats of the nude- 
oporins dissociates the karyophile from the receptor-p97 
heterodimer, while binding of Ran-GTP to p97 in the com- 
plex dissociates p97 from the receptor and the nucle- 
oporin. Thus, at each docking event, the model proposes 
that the entire receptor complex disassembles, only to re- 
assemble immediately at another docking site. This model 
is inconsistent with the observations that stable docking 
occurs in permeabilized cells (Adam and Adam, 1994; 
G6rlich et al., 1995a; Enenkel et al., 1995; Imamoto et al., 
1995) and the transport factor-mediated binding of karyo- 
philes to nucleoporins on overlay blots does not disrupt 
the receptor complex (Radu et al., 1995a; Iovine et al., 1996; 
Moroianu et al., 1995b). Such a dissociation reaction 
would be useful at the final step in transport when release 
of the karyophile into the nucleoplasm and recycling of 
the transport factors are required. 

Stabilization of a receptor complex by RanBP1 upon 
docking explains some of the apparent discrepancies be- 
tween this model and results in the literature. A stabilizing 
role for RanBP1 is also consistent with the observed in- 
crease in transport efficiency with RanBP1 in permeabi- 
lized cells. Without stabilization of the complex during 
each docking and release cycle, complete disassembly of 
the receptor complex (Rexach and Blobel, 1996) would 
decrease the efficiency of the transport process. By allow- 
ing Ran to remain associated with the receptor complex, 
RanBP1 would position Ran for efficient utilization by the 
transport machinery without a dependence on multiple 
dissociation-association events. A terminal binding event, 
similar to the binding of the receptor complex to RanBP2, 
may remove RanBP1 from the complex by competition 
for the same binding domain. This would be a useful 
mechanism for the final dissociation of the receptor com- 
plex and release of the karyophile at the nucleoplasmic 
basket of the pore (Rexach and Blobel, 1995). 

It should be considered that some components of the 
import pathway may not be required in permeabilized 
cells when an excess of another factor is present (G6rlich 
et al., 1994). This explains the stimulatory effects of nonre- 
quired factors such as pl0/NT2 and RanBP1 in permeabi- 
lized cells. These accessory factors lower the requirements 
for the three required transport factors and increase their 
efficiency at lower concentrations. In addition, docking in 
permeabilized cells may occur at multiple sites along the 
suggested array of docking sites in the pore. A primary 
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docking site may be by-passed if the concentration of 
transport factors is sufficiently high to overcome the lower 
affinity interactions of the factors with secondary docking 
sites. Such complications of the permeabilized cell assay 
must be considered when model building, until more of 
the biochemical interactions between the transport factors 
are understood. It will be important to characterize the ac- 
tivities of the transport factor-associated proteins that 
have been identified to understand the process of nuclear 
protein import in greater detail. 
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