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Purpose: To present the technical details of the runner-up model in the open knowledge-based plan-
ning (OpenKBP) challenge for the dose–volume histogram (DVH) stream. The model was designed
to ensure simple and reproducible training, without the necessity of costly advanced generative adver-
sarial network (GAN) techniques.
Methods: The model was developed based on the OpenKBP challenge dataset, consisting of 200
and 40 head-and-neck patients for training and validation, respectively. The final model is a U-Net
with additional ResNet blocks between up- and down convolutions. The results were obtained by
training the model with AdamW with the One Cycle scheduler. The loss function is a combination of
the L1 loss with a feature loss, which uses a pretrained video classifier as a feature extractor. The per-
formance was evaluated on another 100 patients in the OpenKBP test dataset. The DVH metrics of
the test data were evaluated, where D0:1cc, and Dmean were calculated for the organs at risk (OARs)
and D1%, D95%, and D99% were computed for the target structures. DVH metric differences between
predicted and true dose are reported in percentage.
Results: The model achieved 2nd and 4th place in the DVH and dose stream of the OpenKBP chal-
lenge, respectively. The dose and DVH score were 2.62 � 1.10 and 1.52 � 1.06, respectively. Mean
dose differences for the different structures and DVH parameters were within �1%.
Conclusion: This straightforward approach produced excellent results. It incorporated One Cycle
Learning, ResNet, and feature-based losses, which are common computer vision techniques. © 2021
The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Associa-
tion of Physicists in Medicine. [https://doi.org/10.1002/mp.14774]
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1. INTRODUCTION

Treatment techniques in radiation therapy have become more
complex and time consuming. As a result, there is demand
for automating the planning process to provide fast and reli-
able treatment plans with consistent plan quality. A promis-
ing method to help creating these plans is deep learning,
which has been used to predict dose distributions for various
body sites.1–3 Unfortunately, most models are developed and
tested on private datasets, which makes it difficult to compare
the methods. The open knowledge-based planning
(OpenKBP) challenge provided a platform with a dataset of
intensity modulated radiation therapy treatment plans to make
a quantitative comparison of these models possible.4 This
technical note provides detailed information on the first run-
ner-up model in the dose–volume histogram (DVH) stream of
the OpenKBP challenge. Recent dose prediction models have
utilized generative adversarial networks (GANs) to improve
conversion performance.1,3 However, despite the fact that
GANs resulted in great success for many different applica-
tions, the technique still suffers from shortcomings like

vanishing gradients and mode collapse. This makes GANs
difficult to train and requires an extensive hyperparameter
search for optimal performance. Because of this we focused
our work on alternative techniques which include learning
rate scheduling,5 advanced nonlinear activation functions,6

and neural network based feature cost functions7 to make pre-
dictions more accurate and reproducible during testing.

The baseline U-Net model has been used for dose predic-
tion within a GAN architecture that was based on pix2pix.1,8

Even though various GAN techniques (e.g., conditional
GANs,1,8 spectral normalization,9 attention-gated convolu-
tions10) help to improve performance, the hyperparameter
search is difficult as there are many hyperparameters. Multi-
ple research groups demonstrated that a simple model like
the U-Net or pretrained ResNet classifiers can be trained
without the requirement of GAN training and still perform
well in the head and neck region.2,11–15 Most of the studies
utilized the mean squared error loss function for optimiza-
tion, which does not capture geometric representations of the
volume. DVH parameters for these studies ranged from 3 to
5% of the mean or median value relative to the prescribed
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dose, which is similar to values reported for commercially
available systems.16,17 However, the results of published stud-
ies are difficult to compare due to different datasets and non-
standardized evaluation procedures.

In this study, the focus was to use robust training tech-
niques which do not rely on GAN methods. For example, fas-
t.ai is a library that uses One Cycle Learning Scheduling
which is a method that overcomes warm-up problems of the
Adam optimizer, to efficiently train models without GAN
techniques.5,18

Additionally, optimizers have been studied extensively in
the past years which has resulted in a large variety of methods.
AdamW, for example, combines the Adam optimizer with
decoupled weight decay regularization to prevent overfitting.19

Another important factor for neural networks is the choice
of the activation function. Many new activation functions
have been developed in an effort to replace the popular ReLU
activation function, which is non-differentiable at zero and
results in no gradient flow if the input value is below zero.
One of these new activation functions is Mish, which does
not saturate and is everywhere differentiable and demon-
strated improved accuracy by 1–2% for image classification
and object detection.6

Lastly, many new loss functions have been developed that
incorporate feature loss metrics, which are extracted via pre-
trained models.7 Feature losses were already successfully
applied for denoising images like low- dose CT, tomography,
and optical coherence tomography.20–23 A previous study of
Ngyuen et al. demonstrated good results when a DVH based
loss was included for dose prediction in the pelvic region
which highlights the necessity of domain specific loss func-
tions.24

2. MATERIALS AND METHODS

2.A. Datasets

The OpenKBP provided a preprocessed dataset with 200,
40, and 100 patients for training, validation, and testing,
respectively. All patients included a CT, structure sets for
organs at risk (OAR) and target volumes (with up to three
dose levels), as well as corresponding dose distributions. All
volumes are represented as 128 × 128 × 128 matrix with a
variable voxel resolution of about 3:5 � 3:5 � 2mm3.

2.B. Baseline model

The baseline model was the U-Net implementation of the
pix2pix model.8 However, three major changes were made to
that baseline model: (a) three-dimensional (3D) convolutions
were used instead of two-dimensional convolutions, (b)
instance normalization with affine transformations instead of
batch normalization, and (c) a sigmoid output function
instead of a tanh.

The model input consisted of the challenge data as a con-
catenated 4D volume. CT and dose distribution values were

clipped and divided by 4000 and 100, respectively, to bring
the voxel values into the interval between [0, 1]. An illustra-
tion of the final model can be found in Fig. 1 and the code for
the model is available at https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix.

2.C. Hyperparameter search

All different configurations of the parameters were tracked
using the weights and biases service (Weights&Biases Soft-
ware wandb.com, CA, USA) to allow for fast and easy evalu-
ation. Starting from the baseline model, the following
hyperparameters were adapted:

• Activation function: Set to Mish for all convolutions,
except for the output of the network.

• ResNet blocks: Between the up- and down-sampling
blocks a ResNet block was included with a bottleneck.
Feature size was reduced to 64 with a 1 × 1 convolu-
tion, followed by a 3 × 3 convolution with 64 features,
and a last 1 × 1 convolution increasing the feature size
to the initial one. The convolution blocks follow the
form of convolution, normalization, and activation
where the activation is skipped for the final convolu-
tion.

• Masking: To increase the information density, the error
calculation was limited to the external contour.

• Loss function: For training, the L1 metric was used as
a baseline. Furthermore, a feature based loss was imple-
mented which extracted high higher-order information
with a pre-trained model. Since the data is three dimen-
sional, the pre-trained ResNet3D for video classifica-
tion was utilized for feature extraction.25 This pre-
trained model was taken from torchvision.26 To fit the
input criteria of the classifier, the predicted dose output
and the ground truth dose were repeated three times to
fill the red-green-blue (RGB) channels. Features were
extracted from different depths of the model, where the
single block outputs were used which are called, for
example, stem, layer1, layer2 as can be seen in Table I.
For more information, please see the original paper25 or
the torchvision implementation.26 The model outputs
can be seen as dimensionality reduction of the input
dose matrix into a lower dimension matrix. By passing
the ground truth and the prediction through the model
the output features can be compared by a distance mea-
sure (see Fig. 1). The overall loss function is then given
as:

L¼ λ
1
m
kx� yk1þ∑

n

i¼1

1
m
λF,ikF½i�ðxÞ�F½i�ðyÞk1 (1)

where F(�) is the pre-trained model, m is the number of voxels
considered in the comparison, [i] denotes the last layer posi-
tions of the the different blocks specified above, and x,y are
the ground truth and predicted dose distributions, respec-
tively. λ and λF,i are weighting factors where λ was set to 100
for all experiments and λF,i to 1.
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2.D. Model training

The maximum learning rate was defined with the learning
rate finder which resulted in 10�3 for all different configura-
tions. The models were trained using AdamW with a weight
decay of 10�4 and β1 and β2 values of 0.5 and 0.999, respec-
tively. The One Cycle Learning rate schedule was applied
over a training time of 200 epochs. Additionally, data aug-
mentation was performed including transversal flips with ori-
entation consistency, and random translations of the image
volume along all three coordinate axes. The algorithm was
implemented using Pytorch Lightning with Pytorch.

2.E. Evaluation

The model performance was tracked with the dose score
which is the mean absolute error of the predicted dose distri-
bution inside of the external contour as well as the DVH
score which is the mean absolute error of five predefined
DVH metrics (D0:1cc, Dmean, D1%, D95%, and D99%). The

mean and standard deviation of the dose and DVH score over
all patients are reported. Improvements are given via the dif-
ference to the means of the baseline model for the dose and
DVH score. The best performing model was chosen by the
lowest dose and DVH score of the validation dataset.

The dose and DVH score were computed and reported for
the test dataset for the best performing model. All relative
DVH metric differences are additionally reported for the test
dataset, where D0:1cc and Dmean are computed for the OARs
and D1%, D95% and D99% are computed for the target struc-
tures. The dose differences for the single structures are given
as:

ΔD¼Dpred�Dtrue

70Gy
�100 (2)

where Dpred and Dtrue are the predicted and ground truth dose
metric, respectively.

3. RESULTS

The baseline model yielded relatively good starting scores
for both dose and DVH, which were further improved by the
proposed methods (see Table II). The final model that per-
formed best used ResNet blocks, Mish activation functions,
mask guided loss metrics, and the first convolution block
(stem) of the feature loss.

This configuration resulted in a dose score of 2.62 � 1.10
(4th place in dose stream) and a DVH score of 1.52 � 1.06.
(2nd place in DVH stream) on the test set of 100 patients. By
omitting one patient of the test dataset, which was identified
to include a wrong PTV label, the final dose score and the
DVH score could be improved to 2.58 � 1.04 and
1.43 � 0.53, respectively.
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FIG. 1. The final U-Net model with ResNet blocks (green), 4 × 4 convolutions (orange) and transposed convolutions (blue). Purple dots represent the feature
map concatenation. Note that the blocks represent the output of the respective operations given by the color. On the right side of the predicted dose, the pre-
trained ResNet model can be seen where the feature outputs are extracted from different depths for the predicted and the ground truth dose distribution. Please
note that the ResNet blocks of the U-Net and the pre-trained classifier differ in architecture. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Convolution operations in the ResNet3D. All layers use batch nor-
malization and ReLU. The encoder number for F gives the integer output
position of the formula.

Encoder
number F

Layer
name Output size Convolution layers

F0 stem 64 × 128 × 64 × 64 3 × 7 × 7, 64, stride
1 × 2 × 2

F1 layer1 64 × 128 × 64 × 64
3 � 3 � 3, 64

3 � 3 � 3, 64

� �
�2

F2 layer2 128 × 64 × 32 × 32
3 � 3 � 3, 128

3 � 3 � 3, 128

� �
�2
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Figure 2 shows the percentage dose difference between the
predicted and ground truth DVH metric. The medians of all
parameters were distributed between −1.2% and 0.9%. The
inter-quartile ranges were also within −4% and 3%. In total,
there were 61 outliers across all DVH metrics, however, only
16% outliers were observed that had a dose difference
> � 10%.

4. DISCUSSION AND CONCLUSION

The initial U-Net baseline model trained with AdamW and
One Cycle Learning resulted already in good results. We
observed that training the model for 100 epochs is efficient as
the validation loss improved only slightly by increasing the
epochs to 200. Two of the main effects of One Cycle Learn-
ing are the adaptive changing of the learning rate and the
momentum, which were recently shown to be a key compo-
nent for improving optimization.27 Additionally, instance nor-
malization with affine transformations was applied because
initial experiments with batch normalization showed worse

results during validation due to memory dependent small
batch size (n = 1).

The modifications to the baseline model affected the dose
and DVH score differently. The use of ResNet blocks and
masking resulted in much better dose score (improvement of
0.103 and 0.121, respectively). However, the feature loss
helped to improve the DVH score by 0.103 and consequently
the DVH metrics further, even though the dose score changed
only slightly. The model’s feature extraction network learned
from non-medical RGB video data, which are not representa-
tive for dose distributions. Still the model seems to provide
useful information to improve model performance. Using the
first layer of the pre-trained model resulted in the best perfor-
mance and including one additional layer output (layer1)
resulted in a similar dose score but a worse DVH score value.
Models trained with this feature loss technique would likely
benefit if the corresponding classifier was pre-trained on
medical images specific to the task at hand. This should be
further investigated as great success was achieved by using
feature- based losses not only in this study but also in other
fields of application.

There are many other promising techniques from the field
of computer vision that could be explored. For example,
transfer learning with 3D models was successfully used for
classification of medical data.28 Similarly, the model could
be adapted to be used as a pre-trained encoder part of a U-
Net, as it is performed by the fast.ai library.18 Unfortunately,
these kind of experiments were excluded due to memory and
time constrains.

Changing the activation function also slightly improved
the performance as can be seen in Table II. Since the Mish
implementation was done in native pytorch, memory

TABLE II. Dose and dose-volume histogram (DVH) scores for the different
hyperparameter settings and their mean differences to the baseline model (Δ)
for the validation dataset. The highest difference is shown in bold.

Dose score Δ DVH score Δ

Baseline 2.651 � 0.849 – 1.666 � 0.853 –
+ ResNet blocks 2.548 � 0.796 0.103 1.617 � 0.759 0.049

+Mish 2.534 � 0.796 0.117 1.611 � 0.777 0.055

+Masking 2.530 � 0.747 0.121 1.607 � 0.789 0.059

+ Feature loss 2.503 � 0.738 0.148 1.563 � 0.790 0.103

FIG. 2. The colored dose parameters for the test dataset for all organs at risks and target structures. The boxes indicate median and interquartile range (IQR) and
the whiskers extend to 1.5 times the IQR. Outliers are denoted by diamonds. [Color figure can be viewed at wileyonlinelibrary.com]
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requirements were sub-optimal and high compared to ReLU
based activation functions. The entire implementation used to
obtain the training results in wandb as well as the link to the
wandb report can be found at this github repository.

In conclusion, this straightforward approach resulted in
good results for dose predictions, with only common com-
puter vision techniques and without the necessity of compli-
cated training methods (e.g., GANs).

a)Author to whom correspondence should be addressed. Electronic Email:
gerd.heilemann@meduniwien.ac.at.
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