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Abstract

Background: Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) remains a serious burden of disease,
especially in developing countries of Asia and Africa. It is estimated that it causes 200,000 deaths per year, mainly in
children. S. Typhi is an obligate pathogen of humans and although it has a relatively complex life cycle with a long lived
carrier state, the absence of non-human hosts suggests that well targeted control methods should have a major impact on
disease. Newer control methods including new generations of vaccines offer hope but their implementation would benefit
from quantitative models to guide the most cost effective strategies. This paper presents a quantitative model of Typhoid
disease, immunity and transmission as a first step in that process.

Methodology/Principal Findings: A stochastic agent-based model has been developed that incorporates known features of
the biology of typhoid including probability of infection, the consequences of infection, treatment options, acquisition and
loss of immunity as a result of infection and vaccination, the development of the carrier state and the impact of
environmental or behavioral factors on transmission. The model has been parameterized with values derived where
possible from the literature and where this was not possible, feasible parameters space has been determined by sensitivity
analyses, fitting the simulations to age distribution of field data. The model is able to adequately predict the age distribution
of typhoid in two settings.

Conclusions/Significance: The modeling highlights the importance of variations in the exposure/resistance of infants and
young children to infection in different settings, especially as this impacts on design of control programs; it predicts that
naturally induced clinical and sterile immunity to typhoid is long lived and highlights the importance of the carrier state
especially in areas of low transmission.
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Introduction

Salmonella enterica serovar Typhi (Typhi), the causal agent of

typhoid, is a bacterial pathogen transmitted between humans, by

ingestion of contaminated faces and urine. In many low-income

settings S. Typhi is endemic, but elsewhere sporadic epidemics

occur. It was a major cause of death in the industrialized world

until the early 20th century, when disease rates fell considerably

due to improved sanitation. Nevertheless, despite further substan-

tial advances partly as a result of effective antibiotic therapy, the

global burden remains substantial.

Immunity to Typhi is poorly understood. Both natural exposure

and live attenuated vaccines provide some protection, but

volunteer infection studies [1] and naturally occurring epidemics

[2] have both demonstrated repeated infection with symptomatic

typhoid. A specific element of the biology is the existence of long-

term carrier states involving colonization of the gall bladder and of

other sites. The ways in which all these factors interact to

determine level of transmission in particular environments is

complex. In particular in endemic areas, the reservoir of carriers,

the continuing supply of susceptibles (new born or migrants) and

the impact of immunity may all play a role in determining the

incidence of disease and the transition between epidemic and

stable endemic typhoid disease.

Live attenuated vaccines and polysaccharide vaccines targeting

the Vi capsular antigen have limited efficacy and duration of

protection. While vaccination is recommended by WHO for

campaign vaccination of school age children [3], uptake has been

limited. The clinical development of a conjugate vaccine [4–6],

expected to have higher efficacy and to protect for longer and to
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be effective in infants, highlights the need for quantitative

understanding of the dynamics of transmission and immunity.

Computer models of typhoid transmission provide a means of

exploring the importance of different parameters, to test our

understanding of the biology and to plan intervention strategies.

Two models of typhoid transmission have been published [7,8].

Both of these are deterministic models. This paper describes an

agent based stochastic simulation model of the population

dynamics of Typhi. This approach was used since an agent based

model allows a direct translation of the qualitative description of

the biology and their assumptions into the model; allows for

simpler procedures for encoding events occurring at discrete

intervals or for fixed times (e.g. an infectious period of 30 days

rather than a population whose infectiousness decays exponen-

tially with a half live of 30 days); allows for simpler encoding of

treatment procedures by specifying which individuals are treated

(e.g. 80% of children are vaccinated on their second birthday and

of those previously vaccinated, 50% will be re-vaccinated 3 years

later). This approach also allows simpler encoding of stochastic

processes (e.g. what is the likely range of incidence rates following

a certain vaccination program; what is the probability that the

typhoid will be eliminated from a community of defined size). On

the other hand this procedure generates large datasets that require

more complex post model analysis, may require more computing

power and has added complexity in fitting the model to data to

estimate model parameters.

This model is calibrated using available field data. In this paper,

it is used to explore the impact of altering transmission levels, of

the acquisition and loss of clinical and sterile immunity and the

importance of the carrier state on the observed age specific

incidence of typhoid and on the stability of typhoid transmission in

the community. The basic model has been designed to allow

extension for modeling interventions such as vaccines, changed

environmental or health delivery practices and modeling of

epidemics but these applications will be described elsewhere.

Model

The model is a discrete time stochastic simulation of a human

population exposed to Typhi. Implementation of this creates an in

silico population with age, gender, immune status (natural and

vaccine), time since infection or vaccination and carrier status

tracked individually. It comprises distinct modules simulating the

demography, infection status, and immune status of the host

population, as described below:

Human Demography
The population model requires the following parameters which

remain fixed throughout the simulation.

1. Crude birth rate. This is expressed as the number of births per

1000 total population per annum.

2. The starting population size.

3. The age specific mortality rates in the absence of typhoid

infections. These define a life-table which is used to specify the

age structure of the population

The population is initialized by assigning individuals randomly

to age and gender to achieve a starting population with the desired

age structure and with individuals having an equal probability of

being male or female. Individuals may be assigned into distinct risk

groups varying in behaviors and environmental factors related to

typhoid.

In-migration rates may be specified, with immigrants charac-

terized by age, gender, infection and immune status, with rates

specified relative to the size of the existing population. The actual

number of migrants and their status (age, gender, immunity) are

assigned each month using random number generators. The start

and end date of migrations can be specified. The migration

module can be used to simulate a number of situations, e.g. to

introduce a continuing source of naive individuals into a highly

endemic area or to introduce a source of infection into a naive

community to start an outbreak.

Births and non-typhoid deaths are simulated from Poisson

processes with the predetermined birth, death and migration rates.

The model has been extensively run using birth rates and age

specific mortality from a DSS study in Matlab Bangladesh

covering the period 1999 to 2002 [9] (assuming zero migration

and no typhoid). The birth rates have been falling in Bangladesh

over the period 1950 to 2002 and the death rates declining

however the population growth rate has been steady over this

period at approximately 2%. The initial age distribution derived

from the life table approximates that independently observed in

this Bangladesh population [10] This generates a demographically

stable state in the virtual population, with an annual growth rate of

2%, defines the standard population used to initialize the

simulations reported here. Typhoid mortality is additional to the

mortality input to the simulation and leads to changes in the age

structure over time. This model implicitly assumes that the target

population is growing, but has a stable age structure. For 2000,

model predicts an age distribution that approximates the UN

population division estimates in Bangladesh for the percentage of

both sexes by age group (Table 1) for most ages, except for the

oldest age groups, presumably because the age specific mortality

estimated from 1999–2002 underestimates the historical age

specific mortalities for these age groups. As detailed below, the

age distribution of typhoid fever in the community suggests that

duration of immunity is very long lived. Hence the time taken to

obtain stable level endemic typhoid fever will also be long, of the

order of a human lifetime. In populations with high incidence of

typhoid fever in places such as Dhaka and Kolkata, the age

structure of the population may not be stable over these time

periods. This is a potential limitation of the model. Modeling

situations with a fluctuating age distribution is beyond the scope of

this study.

Infection
Simulated infections are introduced into the population once

the demography is in a stable state. With a single introduction an

Table 1. Estimated and modelled population distributions for
the Bangladesh population for 2000.

Age group
UN Population
estimate Model prediction

0–4 12.6 13.3

5–9 12.4 11.6

10–14 12.0 10.6

15–19 11.1 9.3

20–39 31.7 28.0

40–59 14 17.2

60+ 6.2 9.9

doi:10.1371/journal.pone.0074097.t001

Typhoid Model

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e74097



epidemic occurs that may or may not become endemic. As

detailed below, to force a stable endemic state, multiple

introductions can be made over a period of time.

Fig. 1 lists the allowed infection states within the model and the

possible transitions between them, while Table 2 lists the functions

determining the duration of infections and infectiousness. Each

period of infection (indexed by k) is assigned a single value for its

infectiousness sampled from a distribution that depends on the age

of the host at the time of acquisition of the infection, ai,t0
, and the

risk group of the host, ri. Some of the sojourn times within these

states are fixed quantities, while others are stochastic (Table 2).

Any proper distributions can be used for the infectiousness

values, FsðÞ,FaðÞ,FtðÞ,FcðÞ, and for the durations of the pre-patent

periodDpðÞ, providing these are all constrained to be positive. In

general, acute clinical infections are less infective than pre-patent

or subclinical infections, i.e. baðÞvbpðÞ&bsðÞ&btðÞ&bcðÞ. The

quantity r ai,t0
,rið Þ, is a scale factor dependent on the age group at

the start of the infection, ai,t0
, and risk group, ri, of simulated

individual i. r ai,t0
,rið Þ,multiplies the infectiousness for any

infection state and quantifies environmental influences on the

contribution to the infectious reservoir. The exposure of individual

i is also dependent on age and risk-group specific factors, which

may vary over time (in particular by season) and are quantified by

scale factor f ai,ri,tð Þ. The expected value of the exposure is thus

the product:

e i,tð Þ~ f ai,ri,tð Þ
N

XN

j~1

Ip j,tð ÞbpðÞzIs j,tð ÞbsðÞ
�

zIa j,tð ÞbaðÞzIt j,tð ÞbtðÞzIc j,tð ÞbcðÞ�,

where infectiousness terms refer to the infections present in the N

members of the community at time t.

The force of infection at any one time, t, for individual i,l i,tð Þ is

then the product of the exposure and the susceptibility, which in

the absence of refractoriness or immunity is Iu i,tð Þ, i.e.:

l0 i,tð Þ~Iu i,tð Þe i,tð Þ

This model uses a discrete time implementation with time stepd.

New infections are introduced via a Bernoulli process with

probability of infection at any one time step:

P0 i,tð Þ~1{ exp {l i,tð Þdð Þ:

After infection, simulated individuals progress through the

decision tree shown in Fig. 1, remaining in each state for the

sojourn times defined in Table 2, and transitioning to new states

with probabilities P1,P2,P3,P4,P5 as shown in Fig. 1.

The initial period of all infections is assigned to a pre-patent

state of short duration, after which the host becomes a clinical case

with probabilityP1. Infections that do not result in clinical disease

continue with a further period of sub-clinical infection. The

probability that person is infected each time step depends on the

force of infection and the immune status. A person with sterile

infection or vaccine induced immunity has a zero probability of

becoming infected. This model uses the same probability of

infection for both a fully susceptible person (leading to either a

clinical or sub-clinical infection) or for a person with natural or

vaccine induced clinical immunity (leading only to a sub-clinical

infection). Sub-clinical infections are assigned a duration, ts,

beyond the initial pre-patent period. The duration of clinical

infections, tsðÞ depends on how they are treated. Details of the

case management model are given below. At the end of the acute

phase there are three outcomes (Fig. 1): (1) The infection is cured

(either naturally or following drug treatment); (2) the person

becomes a chronically infected carrier and it is assumed that

without treatment that this carrier state lasts a lifetime; or (3) the

person becomes a temporarily infected carrier undergoing a series

of relapses and that without further treatment, will resolve.

This model does not allow for superinfection: a person cannot

be simultaneously infected with more than one strain. Temporary

or chronic carriers are also assumed to be refractory to further

infection. In this paper, only simulations with a single strain of

Typhi are shown. The current version of the model allows for two

strains that differ in their transmissibility, drug sensitivity and

infection transition probabilities.

Refractoriness and Immunity
Five different types of refractoriness and immunity may modify

the susceptibility of a simulated individual and the outcome of

infection (Table 3).

Both infections and vaccines can lead to sterile immunity or

clinical immunity. On exposure to Typhi, A person with sterile

immunity is unable to be infected at all and this exposure has no

effect on immunity. By contrast, on exposure to Typhi, a person

Figure 1. Infection states. The infection states and their transitions
for the simplest model case (single homogeneous population with a
single strain of S. Typhi). Uninfected individuals have a P0 probability of
becoming infected during each time step and thus time spent in this
state depends on the force of infection and their immune status. For all
other states, the time spent is sampled from a defined distribution.
Where there are multiple possible transitions out of a state, conditional
probabilities determine which path an individual follows. The order in
which the probabilities are applied is specified in the text. Probabilities
for each individual may depend on a: age; x: previous exposure/
immune status; or d: treatment options and to a single time step.
doi:10.1371/journal.pone.0074097.g001

Typhoid Model
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with clinical immunity may become sub-clinically infected, this

may change the person’s level of infection induced immunity and

the subclinical infection will result in Typhi being released into the

environment. Although a clinically immune person may be sub-

clinically infected, this person will not develop a clinical infection.

Although sub-clinical infections are common in experimental

challenge [11] and the clinically immune state has been widely

postulated (e.g. as discussed in Hornick et al., [11]) there is little

direct evidence of immune states leading to ‘‘clinical immunity’’

and in many field situations e.g. vaccine trials it would be difficult

to distinguish the two states. In this model, since the probability

and duration of both clinical and sterile immunity are defined

independently, the model can be run under conditions of no

clinical or no sterile or a mixture of clinical and sterile immunity.

Corresponding to each of these types a state indicator takes a

value of 1 when the individual is refractory or immune, and 0

when this is not the case. Each type of immunity or refractoriness

is characterized by an effect on new infections, and also by a

stochastically determined duration, which is sampled from a

Normal distribution (Table 3). All immune effects including

vaccine-induced immunity are treated as all-or-none phenomenon

for the immune individual. I.e. there is no allowance for ‘‘leaky’’

immunity. For example, a vaccine that induces 70% immunity

completely protects 70% of the population and offers no

protection to the other 30%. While this is almost certainly a

simplification, it is consistent with the wide range of immune

responses seen in vaccination trials [5], and the association

between antibody levels and protection from typhoid both suggest

that within a population there will be ‘‘protected’’ and ‘‘non-

protected’’ individuals [12]. Therefore, it follows that at any given

time, individuals are either completely susceptible, and hence

experience force of infection l0 i,tð Þ or are refractory. Allowing for

immunity, the force of infection for individual i at time t is thus:

l i,tð Þ~Iu i,tð Þ 1{Ir i,tð Þð Þ 1{Iz i,tð Þð Þ 1{Iw i,tð Þð Þe i,tð Þ

Transitions between Immune States
Each simulated individual can transition between immune states

with probabilities indicated in Fig. 2.

All new born children are initially assigned to an uninfectible

class. This reflects the observation from highly endemic areas that

there is usually a markedly lower incidence of typhoid fever in very

young infants (e.g. ,12 months) in hospital [13] and community

based studies [14]. This has not been an invariant finding [15] and

vertical transmission to neonates from carrier mothers have been

reported [16,17] so in principle, neonates in at least some

populations are susceptible. The period of this lower incidence

appears highly variable between different sites. For example, the

peak incidence of typhoid recorded in a hospital study in Dhaka

was in 1 to 2 year old [13] but in Kolkata, the peak age was in the

10 to 20 year group with no infections recorded in ,1 year old

[18]. There are three broad possibilities for this low incidence in

very young children.

1) Lack of exposure to infection. Young children, especially

breast fed babies, may not come in contact with infected

water, food or environmental contamination and their parents

may take extra precautions to prevent infection.

2) Innate or induced immunity including maternal immunity.

Decay of maternal immunity would be consistent with the age

distribution of typhoid seen in Dhaka but not Kolkata.

3) A normal susceptibility to infection, but symptoms so mild

that they are not readily detected as has been hypothesized

from a study in Chile [19]. However in other studies, in

infants, symptoms have been severe [20] and case fatality rates

high in younger infants [21].

This model provides ways of modeling each of these hypotheses

by specifying.

a) a refractory period without age specific exposure

b) by specifying age specific exposure

c) by specifying age specific morbidity.

In practice, a) and b) cannot be distinguished using age specific

incidence (data not shown) and for simplicity in this paper only

modeling outcomes using a refractory period are presented. Since

adequate fits to the data are obtained with a), and c) would require

a complex theory to explain differences in age specific morbidity in

different communities, the most parsimonious approach has been

followed by assuming c) is not generally operative. Thus in the

modeling presented in this paper, over time a neonate becomes

more likely to become infected (e.g. by increased exposure or loss

of maternal immunity) then remains susceptible until an infection

induces either clinical or sterile immunity.

Following a clinical infection, sterile immunity, which does not

allow any subsequent infection, is induced with probabilityP6. If

the individual does not gain sterile immunity then the person may

gain clinical immunity, which allows sub-clinical infections with

probability P7. Similarly, following a subclinical infection in a non-

immune person, sterile immunity is induced with probabilityP9

and clinical immunity, P10. Exposure without becoming infected

does not change immune status (i.e. exposure has no boosting

effect on the immune status who has sterile immunity).

Table 2. Infection states.

State State indicator
Duration of state
(in the absence of death)

Infectiousness
(infections per unit time)

Uninfected Iu(i,t) – 0

Prepatent Ip(i,t) tp(k)*DpðÞ bp kð Þ*Fp r ai,t0
,rið Þ,ð Þ

Subclinical Is(i,t) ts bs kð Þ*Fs r ai,t0
,rið Þ,ð Þ

Acute clinical Ic(i,t) tc dð Þ bc kð Þ*Fc r ai,t0
,rið Þ,ð Þ

Temporary carrier It1(i,t) tt1 kð Þ*Exponential �ttt1ð Þ bt1 kð Þ*Ft1 r ai,t0
,rið Þ,ð Þ

Chronic carrier It2(i,t) ‘ bt2 kð Þ*Ft2 r ai,t0
,rið Þ,ð Þ

doi:10.1371/journal.pone.0074097.t002

Typhoid Model

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e74097



Infection induced sterile immunity always decays to clinical

immunity (although this can be of zero duration) before it in turn

decays to no immunity. A sub-clinical infection occurring while a

person has naturally induced clinical immunity may boost

immunity to the sterile category with probability P8 or increase

the duration of clinical immunity by a duration sampled from user

defined distribution, which may differ from the initial distribution

of duration.

Although in this publication we do not present data on

vaccination, for completeness of the description of the model,

the immune transitions induced by vaccination, and subsequent

loss of immunity are shown in Fig. 2B. For vaccination, only the

final vaccination in the series is explicitly simulated if more than

one injection is used so incomplete courses of vaccination have no

effect. All simulated immunity starts in the time-step following

infection/vaccination.

As for infection induced immunity, vaccines can induce either

sterile immunity or clinical immunity. Sterile immunity decays to

clinical immunity and then to no immunity. Again, similar to

infection induced immunity, vaccination of a person previously

vaccinated may boost immunity (from clinical to sterile immunity)

and will extend the duration of immunity if there is pre-existing

vaccine specific immunity, by a duration sampled from a different

distribution to the original one. Vaccine induced immunity can be

boosted in this way even in hosts with vaccine induced sterile

immunity. In this model there is no direct interaction between

clinical and vaccine induced immunity. For instance vaccination of

a person who is already clinically immune from natural infections

is just as likely to result in vaccine induced sterile immunity as

vaccinating someone who is naive. Importantly, people who have

vaccine induced clinical immunity, may be sub-clinically infected

and thus acquire infection induced immunity.

Case Management and Outcomes
A simulated acute clinical infection results one of four possible

case management regimens, indexed by variable d. These are:

N untreated (d = 0);

N inadequate community treatment (d = 1);

N adequate community treatment (d = 2);

N treatment by a professional health care clinic or hospital

(d = 3).

Each of these is associated with a different probability of dying

from typhoid P5 a,dð Þ which may be age dependent. These

simulated typhoid deaths are additional to those generated by the

initial demographic model.

In addition to effects on survival, the different case management

regimens modify infectiousness, sampled from distribution

Fc r a,rð Þ,d,ð Þ (Table 2). Relative to the distribution of

Fc r a,rð Þ,0,ð Þ the infectiousness of adequately treated community

cases sampled from Fc r a,rð Þ,2,ð Þ is generally reduced. Inadequate

treatment, assumed to be using available antibiotics from informal

sources, leads to substantial infectiousness (sampled from

Fc r a,rð Þ,1,ð Þ. A hospital treatment is assumed to involve

treatment with 2nd and 3rd line drugs if necessary. Patients

become ‘‘quarantined’’ on admission so infectiousness, sampled

from distribution Fc r a,rð Þ,3,ð Þ is generally lower than in the other

case management categories, and subjects are unlikely to become

temporary chronic carriers, so infectiousness it is limited to pre-

admission time. All these infectiousness values can be age-specific

but only age independent situations are modeled in this paper.

Interventions
At any stage in the progression of the typhoid infection in the

community (e.g. before any infection, during an epidemic, after

achieving ‘‘stable’’ endemicity) an intervention can be introduced

(e.g., vaccination, environmental controls, changed case detection

and treatment). During these times, the population module

continues to ‘‘grow’’ the population. The impact of an intervention

program is assessed by computing the difference from a

comparator population without the intervention.

A variety of different vaccination strategies can be modeled.

These are any combination of:

1. Vaccination at a specific age (e.g. part of an EPI campaign or

at school entry).

2. A mass vaccination campaign of all ages or of a specified age

range.

3. Subsequent mass vaccination campaigns that can cover a the

same or different age range as #2.

Table 3. Immunity and refractoriness.

State
State
indicator

Duration
(in absence of death)

Duration
modulated by

Stimulating
event

Probability

induced
$

Effect on new
infections

Infant Refractory/
non-exposure

Ir(i,t) tr(i) ~NNormal � �ttr,s
2
r

� �
No modulation Birth 1 Completely

prevented

Non-immune Ip(i,t) Until next infection Next infection Any type of
infection

1 No effect

Infection-induced
sterile immunity

Ix(i,t) tx(i) ~NNormal � �ttx,s2
x

� �
No modulation Any type of

infection
P6, (P9)&, (P8)#& Completely

prevented

Infection-induced
clinical immunity

Iz(i,t) tz(i) ~NNormal � �ttz,s2
z

� �
No modulation Any type of

infection
P7, (P10)& New infections

are sub-clinical

Infected See Table 2 Dependent on type of
infection (Table 2)

See Table 2 Infection 1 No
superinfection
possible

$
This is the probability that an eligible host exposed to the stimulus acquires this state (Figure 2).

*These durations are independently sampled from normal distributions. If the sampled duration is negative then the duration implemented is zero.
&These probabilities of acquisition apply to sub-clinical infections (Figure 2).
#These probabilities of acquisition apply to clinically-immune hosts (Figure 2).
doi:10.1371/journal.pone.0074097.t003

Typhoid Model
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4. Booster vaccinations at a defined time intervals.

Coverage for initial vaccination and for boosters can be

specified separately. Coverage in booster campaigns can vary

from boosters for only those previously vaccinated to random

coverage that includes those previously vaccinate and those

unvaccinated.

Environmental interventions could include community based

measures such as improved water supply or changes in individual

behavior such as hand washing. Such measures are assumed to

impact infectiousness, via the factor r ai,t,rið Þ or the exposure of

individuals in the distinct risk groups quantified by f ai,ri,tð Þ.
Temporal variation (in particular seasonal variation) in exposure is

captured by f ai,ri,tð Þ.

Reproduction Number from an Untreated Clinical
Infection Rc

In many transmission models, the critical transmission param-

eter is the Basic Reproduction number, R0. In this model, each of

the infection states can have a different infectiousness, making R0

dependent on the type of infectious host. To encompass different

types of infectious people, Rc is defined as the number of new

infections (subclinical and clinical) that would result in a

completely naive population from a single acute untreated clinical

patient of average age infected with a strain 1 Salmonella Typhi

where both the infected and susceptible individuals are in a

homogeneously mixed population. This reproduction number

corresponds to the average infectiousness of acute clinical cases,

bc, and relates to average levels of exposure and susceptibility (in

the case of temporally invariant environments) via:

Rc~N 1{ exp {
bc

�ff �ttcIu

N

� �� �

where �ff is the mean over the whole population of f ai,ri,tð Þ, the

scale factor measuring contamination of the environment, and �ttc is

the mean duration of infectiousness of the clinical cases.

Infectiousness of other types of infection is expressed as a ratio

of infectiousness per unit time to the reference infectiousness per

unit time. In practice in this model, Rc can be modulated in several

ways:

1. This model allows two strains of Typhi to be simultaneously

present. These can differ in infectiousness and clinical

outcomes (e.g. as a result of different drug resistance). Both

are tracked independently. The number of people infectious,

their relatively infectivity and Rc are then used to calculate the

force of infection for the two types of Typhi present in the

community in any month.

2. For each class of infection, the infectiousness can be specified as

age dependent, if required.

3. For each class of infection, the exposure to infection can be age

dependent, if required

4. The population does not have to be homogeneous with respect

to exposure or infectiousness. A minimum of one homoge-

nously mixed population class is required but the population

can be divided in up to 10 classes each with their own exposure

to and own contribution to the force of infection.

5. Rc can vary with season.

This model assumes that there is a single common source of

contamination accessible to all members of the community (with

potentially different probabilities of contact) and that persistence of

Typhi in the environment is short compared to the period of

infection in individual. The model does not distinguish between

modes of transmission (e.g. water born or direct contact).

The modeling presented in this paper uses a single strain of

Typhi, and with the exception of an infant refractory/non-

exposure period, a single homogeneous mixed population and

unless specified, no variation of Rc with season.

Model Implementation
The model is implemented in Delphi 2005 (Borland Software

Corporation, www.borland.com) and compiled to run on

Windows and Linux based machines. Details of the input data

requirements etc., in the File S2. Complied program and detailed

instructions on running the program are available from the

authors.

In this publication, the aim is to use the model to examine basic

questions of typhoid biology and infection induced human

immunity. Therefore only the simplest situation is modeled: one

strain of Typhi; other than the neonatal ‘‘resistance to infection’’,

no age dependence of exposure or infectivity; a single class of

population, no interventions. Unless otherwise specified, there is

no seasonal variation in Rc.

For the simulations of endemic typhoid reported here, the input

parameters were assigned values by reference to the literature cited

in the Table S1 in File S1. The model outputs were evaluated for.

Figure 2. Immune states. The immune states and their transitions for
infection and vaccine induced immunity. For individuals in the non-
immune categories the time in this category depends on the infection
rates and vaccination strategies. For other immune states, time in the
state before losing immunity is sampled from a defined distribution,
modulated by exposure/vaccination history. Where there are multiple
possible transitions out of a state, conditional probabilities determine
which path an individual follows. The order in which the probabilities
are applied is specified in the text. P6, P7, P8 refer to subclinical
infections, P9, P10 to clinical infections. P11, P12 probabilities of inducing
immunity in non-vaccinated individuals, P13, P14, P15 in previously
vaccinated individuals.
doi:10.1371/journal.pone.0074097.g002
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N The incidence of typhoid reported from multiple sites (Table

S2 in File S1).

N The average age of typhoid cases, and the age distribution of

typhoid as reported by Saha et al for 2074 successive cases of

typhoid collected from Dhaka from 1998 to 2004 (unpub-

lished). The distribution is similar to an earlier set of 391

published cases [13].

For the incidence and age distribution and especially the

former, the case definition of typhoid and the surveillance method

impacts on the estimates. For most of the studies reported in File

S2, the case definition was illness and a positive bacterial culture.

There are a few reports from the same population where different

case definitions were used. Siddique et al [14] measured an

incidence of 170 per 100,000 per year in children ,16 in Pakistan

when using symptoms+blood culture and 700 per 100,000 per

year when using symptoms+serology. Lin et al [22] compared

incidence of cases of all ages with positive blood cultures (198 per

100,000 per year) in Vietnam and those diagnosed on the basis of

symptoms (2323 per 100,000 per year).

Over a range of sites listed in Supplementary Table S3 in File

S1, the highest incidence measured by culture positive cases over

most of the population was 980 per 100,000 for people ,40 in

Kalkaji, New Delhi, India, an area with many migrants [20]. In

areas where there was no reports of migrants, the highest culture

positive incidence rates (per 100,000 per year) were 495: Ward 29

& 30 Kolkata [23], India; 405: Hijrat Colony, Sultanabad & Bilal

Colony, Karachi, Pakistan [24]; and 370: Narkeldanga, Kolkata,

India [18]. Since blood cultures are likely to underestimate

typhoid cases, for a highly endemic area the incidence of clinical

Figure 3. Sensitivity analysis: average age. Change in average age as a function of probability of acquiring immunity, duration of sterile and
clinical immunity and Rc. Within each graph the probability of acquiring immunity of 0.1, 0.134, 0.184, 0.283, 0.422 for the purple, blue, green, orange
and red plots, respectively with an equal probability of acquiring sterile or clinical immunity (conditional on not acquiring sterile immunity) from
either a subclinical or clinical infection. These probabilities correspond to an average of 10, 5, 4, 3, 2 and 1.5 infections required to acquire immunity,
respectively. Graphs in each column used the same duration of sterile immunity; graphs in each row used the same duration of clinical immunity.
Horizontal black line is an average age of 76 months and black vertical line an Rc of 3.3, the initial estimate of these values for Dhaka.
doi:10.1371/journal.pone.0074097.g003
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typhoid is at least 400 per 100,000 per year. A diagnosis on the

basis of symptoms, or symptoms with serology may give an upper

limit of the estimate of typhoid cases, the upper limit is likely to be

about 2000 cases per 100,000 per year.

The case definition impacts on the parameterization of the

model: the more stringent case definition requires a higher

proportion of the infections to give rise to ‘‘subclinical’’ infections

(i.e. those not recognized as Typhoid) and conversely the less

stringent definitions of any symptoms requires a higher proportion

of the infections to be recognized as cases. If it is assumed that

every typhoid infection in a naı̈ve person gives rise to an

observable case as judged by symptoms (and that such a diagnosis

has a high specificity), then the maximum proportion of naı̈ve

people with clinical cases as judged by blood culture could not be

higher than 170/700 = 0.24 in the Siddique et al study or 0.09 in

the Lin et al study and maybe lower if the sensitivity of detection of

typhoid based on symptoms is substantially less than 100%. In the

modeling presented below, we use a probability of detecting an

infection of 0.1 assuming a case detection based on culture and

therefore use an incidence range of 300 to 600 cases per 100,000

per year as a constraint on the feasible parameter space.

The reported average age of cases varies from study to study

(Table S2 in File S1). In determining a feasible parameter space we

first use the average age of the Dhaka data set (76 months), then

the age distribution of typhoid from this data set to determine a

feasible parameter space for Dhaka, then extend this to encompass

a data set from Kolkata [18].

Maximum likelihood estimation (MLE) was used to determine

the best fit for Rc, the Infant refractory/non-exposure period and

its standard deviation for the Dhaka and Kolkata data and for the

Kolkata data the phase and amplitude of seasonal variation in Rc

assuming that the cases observed in each age bracket or each

month followed a Poisson distribution. Confidence intervals for the

estimated parameters were derived from the second derivative of a

Figure 4. Sensitivity analysis: Incidence. Change in incidence as a function of probability of acquiring immunity, duration of sterile and clinical
immunity and Rc. Incidence is clinical cases per month per 1000 population. Parameters used for and the organizations of the graphs are the same as
for Fig. 3.
doi:10.1371/journal.pone.0074097.g004
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second order polynomial fit to the log likelihood values as a

function of the parameter being estimated.

Results

Plausible Parameter Space for Stable Endemicity based
on Dhaka Data Set

A series of simulations were performed to systematically vary Rc,

the duration of ‘‘infant resistance/non-exposure’’, the duration of

clinical and sterile immunity and the probability of acquiring

clinical and sterile immunity for clinical and subclinical infections.

For the results reported here for modelling stable endemic

typhoid in Dhaka and in Kolkata the force of infection was

incremented by the amount equivalent to that resulting from a

single acute infection each year for 40 years then the population

followed for a further 40 years without further introduction.

The outcome of the simulations were then examined for their

ability to predict.

1. The average age of infection observed in the Dhaka data set,

2. The distribution of the age of infection in Dhaka.

3. The incidence observed in the studies reference in ‘‘Model

calibration’’.

One set of slices through the resulting hypercube is shown in

Fig. 3 to examine the average clinical age as a function of Rc,

duration of clinical and sterile immunity and assumptions about

the probability of acquisition of clinical and sterile immunity. As

shown in this diagram, all combinations tested of Rc, with an

assumption about acquisition of immunity with a very short

duration of clinical immunity (0 months) gave a predicted average

age of infection greater than the observed average age of 75

months. Similarly, all combination tested with long durations of

clinical immunity but a relatively short duration of sterile

immunity (200 months or less) gave an average age of less than

the observed 75 months. For simulations with a long duration of

sterile immunity (800 months or longer) there was relatively little

impact on assumptions about the number of clinical or sub-clinical

episodes prior to gaining immunity on the average age of infection.

In all these simulations, the average age of infection is highly

dependent on Rc, as has been reported by Crump et al [23].

By contrast (Fig. 4), Rc had little impact on the estimation of the

incidence of clinical typhoid and provided there was at least some

duration clinical immunity (40 months or greater), the duration of

immunity also had little impact on the estimates of incidence.

However, assumptions on the number of clinical or subclinical

episodes required to induce immunity had a major impact. On the

basis of these data, two of the sets of assumptions about acquisition

of immunity seem implausible. The assumption that a low

proportion (,33% ) of clinical or sub clinical episodes of typhoid

give rise to either clinical or sterile immunity leads to a predicted

incidence rate substantially greater than that observed. Similarly,

the assumption that every episode gives rise to either sterile or

clinical immunity leads to incidence rates for feasible durations of

sterile or clinical immunity that are too low. This is consistent with

biological data showing that most people in clinical trials or in

recurrent epidemics can be infected more than once (see Table S1

in File S1for details).

Further refinement of these data by examining the predicted

incidence and average age for simulations where a range of

combinations of 3 subclinical or clinical infections, were required

on average to give immunity were examined (Fig. 5) with medium

length clinical immunity (160 months) and long lived sterile

immunity (800 months). In this case, all simulations gave similar

incidence regardless of Rc, but the average age of infection was

now dependent not only on Rc but also on the balance between the

extremes of infections only giving rise to clinical or only to sterile

immunity. Consistent with the results shown in Fig 3, infections

that only gave rise to clinical immunity, or a low probability of

sterile immunity gave average ages of infection that were

unrealistically low. Infections that only gave sterile immunity gave

average infection ages higher than expected, while infections that

had a similar probability of giving rise to either sterile or clinical

immunity gave average ages that included the observed average

age in Dhaka.

Using average age and incidence only uses part of the data

available from Dhaka. More information is available in the age

distribution of typhoid. In particular the whole age distribution

allows estimates of the ‘‘infant refractory/non-exposure period’’ as

well as better estimates of the likely Rc. Fig. 6 illustrates a set of

simulations in which the age specific relative incidence is

compared to the observed relative incidence (since the denomi-

nator is not known for the Dhaka data, only relative incidence is

available). These simulations rely on an estimated duration of the

infant refractory/non exposure period of 866 months obtained

from earlier fitting (data not shown). In these graphs, the black

diamonds are the observed data and the incidence is plotted as a

function of age for different assumptions about Rc, and duration of

sterile and clinical immunity.

Figure 5. Impact of type of immunity induced by infection as a
function of Rc. Impact on incidence (upper panel) and average age
(lower) panel. The standard parameters for Dhaka were used assuming
an average of three infections was required to induce immunity. For
each line, the first number is the probability of inducing sterile
immunity and the second the probability of inducing clinical immunity,
conditional on not inducing sterile immunity. In these simulations, the
probability of inducing immunity by a subclinical infection or clinical
infection was assumed to be similar. Thus 0.333, 0.000 is a simulation
that only induces sterile immunity; 0.000, 0.333 only induces clinical
immunity. The horizontal black line in the lower panel is the average
age of infection (76 months) observed in Dhaka.
doi:10.1371/journal.pone.0074097.g005

Typhoid Model

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e74097



Figure 6. Sensitivity analysis: Age distribution. Age distribution was calculated as a function of duration of sterile and clinical immunity and Rc.
Probabilities of acquiring immunity were 0.184 for sterile or clinical immunity and the duration of infant refractoriness/non-exposure was 866
months. Within each graph the observed distribution (black diamonds) and predicted distribution is plotted vs log age (years). Rc was 2, 3, 3.3, 4 and 5
for the purple, blue, green, orange and red plots, respectively.
doi:10.1371/journal.pone.0074097.g006

Table 4. Standard immunological parameters.

Standard Parameter value

Probability of acquiring sterile immunity from a clinical episode 0.184

Probability of acquiring clinical immunity from a clinical episode conditional on not acquiring sterile immunity 0.184

Probability of acquiring sterile immunity from a sub-clinical episode 0.184

Probability of acquiring clinical immunity from a sub-clinical episode conditional on not acquiring sterile immunity 0.184

Probability of acquiring sterile immunity from a sub-clinical episode in a person with clinical immunity 0.184

Duration of clinical immunity (months) 160

Duration of sterile immunity (months) 800

doi:10.1371/journal.pone.0074097.t004
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Conclusions from sensitivity analysis for fitting parameters to Dhaka data.

Once induced, sterile immunity is long lived (400 months or

longer). Clinical immunity is likely to be 40 months or greater.

People (usually children) will have 2 to 3 typhoid infections before

developing immunity. From this analysis of the parameter space,

we chose the standard set of immunological parameters in Table 4.

Since these parameters primarily relate to the human immune

response to infection with typhoid and not the environmental

parameters, these should be applicable to most populations.

However, the lack of detailed field data limits the precision with

which this parameter space can be defined. Note that with the

limited data it is possible to neither define the uncertainty in these

parameters nor estimate for example, the deviation in the duration

of immunity in the populations.

Using the parameters in Table 4, the best MLE estimates for

Rc, the infant refractor/non-exposed period were re-evaluated

and remained similar to the earlier estimates used for the

sensitivity analyses in Figs. 3 and 4 with an estimated infant

refectory/non exposed period of 8.6 (95% CI 61.2) months with a

standard deviation of the infant refractory/non-exposure period of

6.4 (95% CI 62.4) months. With these parameters the best

estimate of Rc is 3.4 (95% CI 60.14). Using these estimates, the

predicted age distribution compared to the measured distribution

is shown in the upper panel of Fig. 7.

Extension to other Situations
Kolkata. Age specific incidence was obtained from Kolkata

[18] prior to the instigation of a large cluster randomized trial

[25]. The 94 cases were collected over a period of one year and it

was apparent that there was a marked seasonality to the observed

incidence of cases. In this case, the model was used to estimate

infant refractory/non-exposure period, standard deviation of the

infant refractory/non-exposed period and Rc (76.5618.0 months,

37.167.5 months and 2.160.36, respectively). Using these

estimates, the predicted age distribution compared to the

measured distribution is shown in the lower panel of Fig. 7. The

Kolkata cases showed a marked seasonal variation and these data

were fitted to a seasonal model assuming a sine variation. In the

published data, the month in which 63 of the cases occurred are

specified. Multiple underlying models could be chosen but the sine

function was chosen since it is the most parsimonious, requiring

only two parameters : an amplitude and a phase parameter. As

shown in Fig. 8 the sine function gave a reasonable fit with peak Rc

of 30% (95% CI 614%) higher than the mean Rc of 2.1 and

occurring on August 12 (95% CI 628 days). The fitted model is

within the 95% confidence intervals for the estimated true cases

for each month except for September (Fig. 8). Importantly, the

peak Rc occurred approximately 2.5 months before the peak in

incidence and coincided with the period of peak rainfall. However,

this model predicts a substantial year round component for Rc,

even though rainfall drops to low levels from November to

February [26].

Variation in Rc and the Probability of Developing a
Clinical Infection

The average age, the force of infection during the last year of

the simulation, the point prevalence of the chronic carrier states

and the incidence of both sub-clinical and clinical disease at the

end of the simulation, were calculated for a series of different Rc

values and for the P1 (Fig. 1), the probability of an infection in a

naı̈ve person becoming a clinical case using values of the other

parameters used for fitting the Dhaka data (Fig. 9). The average

age of infection decreased with increasing Rc. At the lowest Rc that

gave sustained transmission, the average age of infection was

approximately the average age of the population, consistent with a

lack of immunity in the population under very low transmission

Figure 7. Comparison of the simulated and observed age
distribution of typhoid cases in Dhakaand Kolkata. The
simulated distributions were calculated using the estimates obtained
by maximum likelihood estimations for Rc, infant protection/non-
exposure period and its standard deviation. Rc for Dhaka (upper panel)
was 3.4 and 2.1 for Kolkata (lower panel). Infant protection/non-
exposure period and their standard deviations were 866 months and
77637 months for Dhaka and Kolkata, respectively. We assume that
other parmeters (e.g. probability of acquiring immunity following an
infection) are common to both sites and are specified in the text. The
age-specific incidence is plotted relative to the overall incidence in the
population of 1.
doi:10.1371/journal.pone.0074097.g007

Figure 8. Comparison of the simulated with observed season-
ality of Typhoid in Kolkata. The simulations approximate the
seasonality of Rc with a sine function (green curve). The best fit (blue
plot) to the observed data (red plot) was obtained with an average Rc of
2.1 and a peak Rc of 2.73 (95% CI 60.30) on 12th August (95% CI: 624
days). Average monthly rainfall for Kolkata is shown with the grey bars.
Cases are plotted relative to the observed monthly average of 6.25 and
rainfall relative to the average monthly rainfall of 134.5 mm (www.
imdkolkata.gov.in).
doi:10.1371/journal.pone.0074097.g008
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conditions. Varying P1 over a 25 fold range from 2% to 50% had

little impact: At P1 of 0.5 there was a small decrease in the average

age at low Rc. This reflected a decrease in the average age of the

population due to the relatively high death rate specifically due to

typhoid compared to a P1 of 0.02 and 0.1.

The Force of Infection was linearly related to Rc in cases where

an endemic stable state was achieved, with a critical lower value of

R*c = 0.69 at P1 of 0.1. Further simulations (not shown)

demonstrated that the threshold was dependent on the assump-

tions about the probabilities of carriers. In simulations with no

carriers, further simulations (not shown) demonstrated that the

threshold proved insensitive to assumptions about the refractory

period but was dependent on the assumptions about the

probabilities of carriers. In the absence of carriers, R*c = 1.0. R*c

was not dependent on assumptions about the period of the infant

refractory/lack of exposure period. This is unsurprising since the

latter applies only to the youngest age groups, and at low levels of

transmission the disease occurs sporadically in all ages, and so

transmission does not depend on susceptibility of infants. The

relationship between Force of Infection and Rc did not show a

major change over the range of P1 considered. However, as

discussed below, the number of chronic carriers was sensitive to P1

and as a result, although there was a small shift at low Rc reflecting

the increased transmission from carriers with R*c = 0.76 at P1 of

0.02 and R*c = 0.29 at P1 of 0.5.

For P1 of 0.1, the prevalence of chronic carriers peaked at

around Rc = 1.5, with higher transmission levels associated with

lower carrier rates. Relatively few carriers were observed in

simulations of highly endemic areas. Since this model assumes that

the chronic carrier state can only arise from a clinical infection, it

is not surprising that the number of carriers in the community is

highly dependent on P1. Incidence of both sub-clinical and clinical

disease, initially increased with Rc but as seen in the sensitivity

analysis, plateaued and again, as expected, the incidence of clinical

cases is nearly proportional to P1 The incidence of sub-clinical

infections, while showing some decrease at a P1 of 0.5, is much less

dependent on P1 since many of these subclinical infections occur

in people with clinical immunity.

Although the average age of cases depends on Rc, Rc is not the

only determinant of this age distribution. Using the Dhaka set of

parameters, an Rc of 1.9 gives the average age cases of 15 years

observed in the Kolkata data [18]. However as shown in Fig. 10,

the distribution observed in Kolkata is poorly fitted using an Rc of

1.9 and the Dhaka estimates of the refractory/non-exposure

period. As this example illustrates at low values of Rc, and

particularly as Rc approaches Rc*, the incidence ceases to become a

function of age.

Figure 9. Effect of varying Rc and the proportion of infections
giving clinical cases. The simulations systematically Rc for probabil-
ities of 0.02 (short dash), 0.1 (standard conditions – thick continuous
line) and 0.5 (long dash) of an infection in a non-immune person with
the standard Dhaka parameter set for other parameters, showing the
average age of infection, the force of infection (infectious dose per
person per month), the number of chronic carriers per 100,000 and the
number of subclinical and clinical cases per 100,000 per year.
doi:10.1371/journal.pone.0074097.g009

Figure 10. Inability of variation in Rc to explain differences in
age distribution in different populations. Simulations based on
the Dhaka data set, including an infant refractory/lack of exposure
period of 866 months with Rc chosen to give the observed average age
of infection in Kolkata of 15 years. Note that this simulation compared
to the simulation shown in Fig 7, over-predicts the number of young
children with symptomatic typhoid.
doi:10.1371/journal.pone.0074097.g010
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The Role of the Carrier States
To investigate the role of the carrier states, the simulations

based on Dhaka were re-run, using fixed immunological

parameters, but this time varying the probability of becoming a

temporary or chronic carrier, the duration of temporary carriage,

Rc and the population size and a similar analysis conducted as

describe above (i.e. impact of varying parameters was examined on

average age, overall incidence and then for selected combinations.

When simulating the Dhaka data, we can find no significant

effect when the probability of becoming a temporary carrier is

varied from zero to one, consistent with the small contribution of

these carriers to the overall reservoir of infection. This does not

mean that they make no contribution in Dhaka, but the impact on

the force of infection cannot be distinguished from minor changes

in Rc. On the other hand, the role of chronic carriers was critical

for stability of the endemic state: in the absence of chronic carriers

especially for low values of Rc, stochastic fluctuations in the

number of people infected frequently led to elimination of the

infection in the community. At very low probabilities of an adult

becoming a chronic carrier, the models predicted major fluctua-

tions in the incidence of clinical typhoid and this depends on Rc.

Fig. 11 shows monthly number of clinical cases for individual

simulations over a period of 20 years, starting with a population of

approximately 10,000 growing to a population of 16,000 at the

end of the simulation over a range of probabilities of a naı̈ve adult

becoming a carrier following a single infection. Individual

simulations are shown for Rc of 1.5, 3.3 and 10 for zero probability

of becoming a chronic carrier (Rc 3.3 and 10 only) and for 1/8 of

the standard probabilities. For Rc of 1.5, the infection failed to

Figure 11. Impact of carriers and Rc on the stability of time series of typhoid cases in an endemic community: individual
simulations. Individual simulations are shown of the number of cases per month for a 240 month (20 year) simulation period. Simulations used the
basic Dhaka parameters but varied Rc (1.5: top panel, 3.3: middle panel and 10 lower panel) assuming a zero probability of becoming a carrier (red
plot), 12.5% of standard probability of becoming a carrier (blue plot) and the standard probability (green plot). At low transmission (Rc 1.5) in the
absence of carriers, the infection becomes epidemic and does not persist, hence only low and standard probability traces are present in the top
panel. The 95% confidence limits on the maximum and minimum cases per month are shown by the thin red, blue or green lines for the
corresponding probabilities of becoming a carrier derived from 200 simulations. The lower 95% confidence is zero for zero probability of carriage at
an Rc of 3.3 and zero for 12.5% probability for and Rc of both 1.5 and 3.3 and are not shown on these graphs. In each simulation the starting
population was approximately 10,000 growing to 16,000 after 20 years.
doi:10.1371/journal.pone.0074097.g011
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persist in 0, 21, 27, 44 and 50 attempts out of 50 runs with

probabilities of 0, 1/32, 1/16, 1/8, 1/4, respectively, of the

‘‘standard’’ probability for developing chronic carriage used in the

simulations of 0.04 and 0.0128 per case for female and male adults

(see Table S1 in File S1, for derivation of the standard probability).

One measure of the fluctuations is the coefficient of variation in

the monthly incidence of clinical cases for infections that persisted

in the community over the full 40 year simulation period (Fig. 12).

At an Rc of 10, as judged by the CV of the incidence, the presence

or absence of chronic carriers had no effect on the stability of the

typhoid. At an Rc of 3.3, even low probabilities of becoming a

carrier removed most of the fluctuations with time and reduced

the CV. (e.g. the monthly incidence was relatively stable at the

lowest probability tested of 1/32 of the ‘‘standard’’ estimate).

Discussion

The agent based simulation model for Typhoid presented in this

publication illustrated both the complexity of typhoid transmission

and disease as currently understood, and also major gaps in our

knowledge. In particular, the model is able to potentially

accommodate the multiple classes of infection (incubating,

subclinical, acute, temporary carriers/relapsing infections and

long term chronic carriage), different levels of immunity (clinical

and sterile immunity), migration of naı̈ve or infected individual

into the community and different levels of infectiousness for

individuals and inhomogeneity in the community. Extensions of

the model are designed to model different intervention strategies.

As for many models, the use of this model is limited by the

available data against which it can be calibrated. However, it is

able to closely simulate the age distribution of typhoid cases seen in

different endemic settings (Dhaka and Kolkata). With the inclusion

of the infant refractory/non-exposure period, the model gave a

good fit to both the Kolkata and Dhaka data sets assuming

uniform exposure of the population Thus with the available data,

there is no justification for using more complicated versions of this

model that allow structuring of the population into subpopulations

nor for using different models that explicitly include preferential

clustering such as has been used for investigating the impact of

contacts on influenza transmission [27].

In studies beyond the scope of this paper, the structure of the

model could allow modeling of communities stratified according to

distance from a contaminated water supply, or by socio-economic

status or by age where data suggested that transmission was

primarily within a defined age group, e.g. school age children. For

example, it would be interesting to see if this model can predict the

spatial distribution observed in studies in Kathmandu where the

incidence of Typhi and Paratyphi A varied according to

environmental factors [28].

Since all transmission is assumed to take place via a common

source of infection, one limitation of the current implementation of

this model is that multiple discrete transmission cycles cannot take

place within a single community (i.e. there cannot be a school

cycle occurring largely independently from a contaminated water

cycle).

The basic model addresses three important aspects of the

biology and immunology of typhoid infections.

1. There is a marked difference in the number of cases of typhoid

seen in infants and young children in Dhaka and Kolkata. The

data from Dhaka show an average age of clinical cases at 76

months, a peak age in clinical incidence of approximately 24

months and 49% of cases in children ,48 months. Similar

young ages are seen in data from coastal areas near Karachi,

Pakistan [15], from New Delhi, India [29] and from Nigeria

[17]. This contrasts strongly with data from Kolkata where

infections are rare in young children (7.4% clinical cases in

children ,48 months). Few infant infections were also seen in a

dataset of 2762 cases in Kathmandu with only 7.0% of clinical

cases occurring in children ,48 months. Although it has been

well documented that the average age and more specifically the

age distribution of cases depends on the transmission rates [30],

the modelling presented here suggests that these differences in

the transmission rates between the Dhaka, and Kolkata cannot

be due to differences in transmission as encompassed by Rc.

Other explanations, e.g. different exposure of the young

children to typhoid, must be considered. This has major

implications for control strategies, especially for vaccine

deployment. Vaccination of children at age about 4 years in

Kolkata would cover the 93% of the population currently at

risk of typhoid. In Dhaka, vaccination of children at age 1 year

would be required to achieve the same results.

2. These studies highlight our lack of knowledge about the

acquisition and loss of infection induced immunity. The

modelling suggests that multiple (e.g. approximately 3)

infections are required to become functionally immune to

typhoid and this is consistent with field data [2] and limited

data from challenge experiments (and summarized in S1).

There are no direct measurements of the duration of immunity

from field data. However within the constraints of the

assumptions of the model, the simulation studies show that

both clinical and long lived sterile immunity is required in

order to generate the incidence and age distributions of cases

observed from endemic populations.

3. The modelling highlights the importance of chronic carriers to

the stability of typhoid in endemic situations. Without carriers,

typhoid infections resemble the pattern of infections seen by

diseases such as measles: characterized by local epidemics and

requiring a large effective population size for maintaining

infection. However even with low probabilities of becoming a

carrier, there is a marked stabilization of the endemicity.

Paradoxically, the model predicts that the frequency of carriers

will be inversely dependent on the transmission rates of typhoid

with the highest frequency found in low endemic areas with a

Figure 12. Impact of carriers and Rc on the stability of time
series of typhoid cases in an endemic community: variation in
the number of monthly cases. Analysis of simulations using similar
parameters to Fig. 11, showing the coefficient of variation in the
number of monthly cases and using a more detailed range of
probabilities of becoming a carrier. As for Fig. 11, endemic typhoid
was not possible at low values of Rc and at low probabilities of
becoming a carrier.
doi:10.1371/journal.pone.0074097.g012
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relatively high incidence in adults. This model prediction is

consistent with the apparent high frequency of carriers

observed in a relatively low endemic area of Chile [31], but

the inability to find any carriers in a highly endemic area of

Vietnam [32].

In addition to the insights from this model to the basic biology

of typhoid infections, this model is intended as the framework

for future studies on designing responses to control outbreaks

of typhoid fever and for controls for reducing the impact of

endemic typhoid. In particular, with the likely introduction of

new generations of typhoid vaccines in the near future, this

model may contribute to planning of both typhoid vaccine

trials and the development of cost effective implementation

strategies.
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