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Abstract

Post-translational modification (PTM) involves covalent modification after the biosynthesis

process and plays an essential role in the study of cell biology. Lysine phosphoglycerylation,

a newly discovered reversible type of PTM that affects glycolytic enzyme activities, and is

responsible for a wide variety of diseases, such as heart failure, arthritis, and degeneration

of the nervous system. Our goal is to computationally characterize potential phosphoglycer-

ylation sites to understand the functionality and causality more accurately. In this study, a

novel computational tool, referred to as predPhogly-Site, has been developed to predict

phosphoglycerylation sites in the protein. It has effectively utilized the probabilistic

sequence-coupling information among the nearby amino acid residues of phosphoglyceryla-

tion sites along with a variable cost adjustment for the skewed training dataset to enhance

the prediction characteristics. It has achieved around 99% accuracy with more than 0.96

MCC and 0.97 AUC in both 10-fold cross-validation and independent test. Even, the stan-

dard deviation in 10-fold cross-validation is almost negligible. This performance indicates

that predPhogly-Site remarkably outperformed the existing prediction tools and can be used

as a promising predictor, preferably with its web interface at http://103.99.176.239/

predPhogly-Site.

Introduction

Post-translational modifications (PTM) refer to specific events after the translation stage,

where the covalent inclusion of specific functional groups occurs in a protein [1]. These modi-

fications have enormous impacts on biological processes and proteomic analysis, such as cellu-

lar signal transduction, subcellular localization, protein folding, protein degradation, and are

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0249396 April 1, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ahmed S, Rahman A, Hasan MAM, Islam

MKB, Rahman J, Ahmad S (2021) predPhogly-Site:

Predicting phosphoglycerylation sites by

incorporating probabilistic sequence-coupling

information into PseAAC and addressing data

imbalance. PLoS ONE 16(3): e0249396. https://doi.

org/10.1371/journal.pone.0249396

Editor: Ozlem Keskin, Koç University, TURKEY
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also responsible for various kinds of diseases [2]. Therefore, accurate identification and effec-

tive comprehension of PTM sites are significant for basic research in disease detection, preven-

tion, and various drug developments [3]. Among the 20 standard constituent amino acid

residues of cellular proteins, modifications at lysine residue (K) are commonly known as lysine

PTM or K-PTM. According to the literature, several K-PTMs such as acetylation, crotonyla-

tion, ubiquitination, phosphoglycerylation, glycation, methylation, butyrylation, succinylation,

biotinylation can be aided by these covalent modifications [4–8].

Lysine phosphoglycerylation is one of the reversible post-translational modifications, newly

discovered in mouse liver and human cells [8, 9]. The formation of 3-phosphoglyceryl-lysine

(pgK) takes place when primary glycolytic intermediate (1,3-BPG) interacts with particular

lysine residues [8, 10]. A wide variety of diseases, including heart failure, arthritis, and various

types of neurodegenerative disorders can be caused by this phosphoglycerylation. Metabolic

labeling with substantial glucose indicates that it can be derived from glucose metabolism [9].

It has significant effects on glycolytic enzyme activities and can build up on cells with high glu-

cose exposure [11]. Potential feedback mechanism that contributes to the creation and redirec-

tion of glycolytic intermediates to specific biosynthetic pathways is also established [8–11].

Concerning the crucial role of phosphoglycerylation in such biological processes, the effective

way to characterize its functional aspects is to identify phosphoglycerylation sites with higher

efficacy. Although high throughput experimental procedures to characterize phosphoglycery-

lation sites are known to achieve higher accuracy, computational methods are getting popular-

ity as an effective alternative because of their laborsaving, time and cost-efficient

characteristics.

Recent studies on identifying phosphoglycerylation sites have introduced several computa-

tional tools such as, Phogly-PseAAC [9], CKSAAP_PhoglySite [8], iPGK-PseAAC [12] and

Bigram-PGK [11]. The first one has applied a KNN-based predictor with the pseudo amino

acid feature source [9], where the second one has implemented a fuzzy SVM based predictor

with the formation of k-spaced amino acid pairs feature set [8]. iPGK-PseAAC has utilized the

pairwise coupling technique with an SVM classifier [11, 12]. The most recently developed pre-

dictor, Bigram-PGK has employed SVM with evolutionary information of the sequences for

performance improvement [11]. Among these four predictors, only Bigram-PGK can predict

phosphoglycerylation sites with an AUC higher than 0.90. However, the overall performance

of this predictor needs further improvement in terms of other measurement metrics to be used

as a complementary phosphoglycerylation site identification technique.

For constructing an efficient predictor, appropriate informative patterns connected with

phosphoglycerylation need to be extracted. In this study, we are introducing a novel computa-

tional tool predPhogly-Site for predicting phosphoglycerylation sites by blending vectorized

sequence coupling information with PseAAC [3, 13–16]. After generating necessary features

from the protein sequences adopted from Bigram-PGK [11], a cost-sensitive SVM [14, 17–19]

classifier has been used to predict phosphoglycerylation sites by minimizing class-level imbal-

ance in benchmark dataset. The workflow of our proposed predictor is shown in Fig 1. For val-

idating the statistical significance of the results, 10-fold cross-validation has been repeated ten

times, and the average performances of each evaluation metric have been reported in the

Results section. It can be observed that our proposed predictor, predPhogly-Site has achieved

superior prediction performance than all the existing predictors. The attained performance of

predPhogly-Site in terms of specificity, sensitivity, precision, accuracy, MCC, and AUC are

99.97%, 100%, 99.20%, 99.97%, 99.58%, and 99.99%, respectively. The promising results

obtained by predPhogly-Site indicates that it can be used as a high-throughput supporting tool

for phosphoglycerylation site prediction.

PLOS ONE predPhogly-Site

PLOS ONE | https://doi.org/10.1371/journal.pone.0249396 April 1, 2021 2 / 17

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0249396


Highlighted in a series of recently published predictors [3, 6, 14, 19–23], to develop an effi-

cient predictor with regards to computational biology, one should go through Chou’s five-step

[14, 24, 25] guidelines: i) generating an acceptable benchmark dataset for training and testing

the system, ii) formulating the sequences using proper mathematical representations, iii)

developing a prediction approach or introducing a robust prediction algorithm, iv) conducting

rigorous cross-validation tests to evaluate predictive accuracy, and v) providing an accessible

and easy-to-use web-server. Following these steps, details of materials, methods, results, and

analysis will be discussed in the following sections.

Materials and methods

Dataset

In this study, verified annotations of phosphoglycerylation sites were obtained from the CPLM

version 2.0 [26], one of the reliable repositories of post-translational modification in lysine res-

idue, and corresponding protein sequences were retrieved from UniProt knowledge-base [27]

for developing the prediction model. Subsequently, redundant sequences were discarded with

40% similarity cutoff using CD-HIT [28] for avoiding bias in performance evaluation as this

level of redundancy removal was widely accepted [11, 24, 29, 30]. As a result, a total of 91 non-

redundant proteins were held out for constructing a benchmark dataset. There were 111

experimentally annotated phosphoglycerylated sites and 3249 non-phosphoglycerylated sites,

which was identical to the most recent predictor, Bigram-PGK’s [11] dataset (see Table 1). The

benchmark dataset containing protein sequences and site positions are given in S1 File. An

overview of the dataset preparation as part of the prediction model development is presented

Fig 1. An overview of predPhogly-Site for phosphoglycerylation site prediction.

https://doi.org/10.1371/journal.pone.0249396.g001

Table 1. Summary of the non-redundant phosphoglycerylation dataset.

Similarity threshold No. of non-redundant proteins Phosphoglycerylated sites Non-phosphoglycerylated sites

40% 91 111 3249

https://doi.org/10.1371/journal.pone.0249396.t001
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in Fig 1. For verifying the statistically significant difference among the positive and negative

sites in the obtained dataset, the distribution of amino acid residues in the phosphoglycery-

lated sites and non-phosphoglycerylated sites are visually analyzed with the help of WebLogo

[31] (see Fig 2A and 2B).

To demonstrate the viability of the proposed predictor predPhogly-Site for new proteins,

an independent test set was constructed with recent phosphoglycerylation sites, utterly

unknown to the benchmark dataset used for prediction model development. Protein

sequences with recent phosphoglycerylation sites were collected from the PLMD database [32]

(version 3.0), which is an upgraded version of the CPLM database [26], released nearly 03

years later with many newly discovered PTM sites. For ensuring the non-existence of training

proteins in the independent test set, we considered only those proteins which were newly

added to the PLMD repository much after the creation of the benchmark dataset with verified

phosphoglycerylation sites. Therefore, we obtained 33 proteins with 41 phosphoglycerylated

sites and 1334 non-phosphoglycerylated sites for the independent test (available as S2 File).

Furthermore, the non-existence of recent test sites was verified manually for avoiding acciden-

tal bias in performance benchmarking.

Feature construction

To formulate the phosphoglycerylation site sequences more meticulously and comprehen-

sively, Chou’s scheme [9, 13, 33] was adopted. According to this scheme, a potential phospho-

glycerylation site containing sequence fragment could be expressed as:

YzðKÞ ¼ Q1Q2 . . .Qz� 1QzKQzþ1Qzþ2 . . .Q2z� 1Q2z ð1Þ

Where Q1 to Qz denote the leftward and Qz+1 to Q2z+1 denote the rightward amino acid resi-

dues, respectively, while z being an integer and centered ‘K’ indicating “lysine” [14]. Further-

more, the peptide sequences Θz(K) can be categorized into two types: Y
þ

z
ðKÞ and Y

�

z
ðKÞ,

where the first one denotes phosphoglycerylated peptide and the later one denotes non-phos-

phoglycerylated peptide with a lysine residue at its center [9, 14]. The sliding window method

[9] was adopted to segment the phosphoglycerylation protein sequences with different window

size where z = 1, 2, 3, . . .32. Based on the MCC value, window size was selected as (2z + 1) = 29

where z = 14 (i.e. 14 rightstream and 14 leftstream amino acid residues). It should be men-

tioned that, only the window sizes less than 65 were taken under consideration due to the com-

pelling protein sequence length [11]. With a sequence fragment of window size 29, Eq (1)

could be expressed as:

YðKÞ ¼ Q1Q2 . . .Q13Q14KQ15Q16 . . .Q27Q28 ð2Þ

At the time of segmentation, for making site sequences’ of equal length, the lacking amino

acids were filled with ‘X’ residue [9, 34]. As a result, the phosphoglycerylation dataset had

Fig 2. Amino acid frequencies around the K-PTM and non-K-PTM sites.

https://doi.org/10.1371/journal.pone.0249396.g002
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taken the following form:

SzðKÞ ¼ Sþ
z
ðKÞ [ S�

z
ðKÞ ð3Þ

where the positive subset Sþ
z
ðKÞ could contain only Y

þ

z
ðKÞ samples, while the negative subset

S�
z
ðKÞ could contain onlyY

�

z
ðKÞ samples with their center residue K. All the segmented

sequences with the expression of Eqs (2) and (3) are provided in S1 File.

For extracting pertinent features hidden in amino acid sequences, different sequence

encoding methods such as amino acid composition, pseudo amino acid composition were

used initially. However, in the proposed predictor predPhogly-Site, the vectorized sequence-

coupled model [3, 14–16, 35] has been incorporated into general PseAAC [3, 14, 33, 35–39] to

extract features from the phosphoglycerylation sites conserving the sequence pattern informa-

tion. According to this conception, the peptide sample in Eq (2) can be expressed as:

YðKÞ ¼ Y
þ
ðKÞ � Y� ðKÞ ð4Þ

where,

Y
þ
ðKÞ ¼

Y
þ
ðQ1jQ2Þ

Y
þ
ðQ2jQ3Þ

..

.

Y
þ
ðQ13jQ14Þ

Y
þ
ðQ14Þ

Y
þ
ðQ15Þ

Y
þ
ðQ16jQ15Þ

..

.

Y
þ
ðQ27jQ26Þ

Y
þ
ðQ28jQ27Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Y
�
ðKÞ ¼

Y
�
ðQ1jQ2Þ

Y
�
ðQ2jQ3Þ

..

.

Y
�
ðQ13jQ14Þ

Y
�
ðQ14Þ

Y
�
ðQ15Þ

Y
�
ðQ16jQ15Þ

..

.

Y
�
ðQ27jQ26Þ

Y
�
ðQ28jQ27Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð5Þ

where, Θ+(Q1|Q2) denotes the conditional probability of amino acid Q1 at the leftmost position

given that its adjacent right member is Q2 and the same applies for remaining indices of left-

ward residues [24]. Similarly, Θ+(Q28|Q27) denotes the conditional probability of amino acid

Q28 at the rightmost position given that its adjacent left member is Q27 and so forth. In con-

trast, only Θ+(Q14) and Θ+(Q15) are of non-conditional probability as K is the adjoining mem-

ber of both amino acids Q14 and Q15 [3, 6, 14, 15, 24]. In order to calculate the probability

values of Θ+(Q14) and Θ+(Q15), firstly, we have to find the frequency of a given amino acid Q14

and Q15 from the set of phosphoglycerylated peptides [15]. Then the obtained values should be

divided by the frequency of all amino acids occurring at position 14 and 15 respectively.

Accordingly, Θ−(K) in Eq (5), with its probabilistic components could also be deduced from

the set of non-phosphoglycerylated peptides. A few literature on vectorized sequence-coupling

model [3, 13, 15, 16] could provide a better understanding of the procedure of probability cal-

culation out of any dataset. Finally, a 28-dimensional feature vector was obtained by using Eqs

4 and 5 for each potential phosphoglycerylated and non-phosphoglycerylated sample.

For better visualization and insights on the sequence-coupling effects at different positions

of any sample, we have stored all possible combinations of conditional probability values

extracted from the positive subset i.e. Θ+(Q1|Q2) to Θ+(Q13|Q14) and Θ+(Q16|Q15) to Θ+(Q28|

Q27) in one data frame (available in S3 File) and non-conditional probability values for each
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amino acid residue extracted from the positive subset i.e. Θ+(Q14) and Θ+(Q15) in another data

frame (available in S4 File) using Pandas library [40], where the columns represent the formu-

lated sample positions and the rows represent the amino acid residues. It should be mentioned

that there could be 21 × 21 = 441 (including the dummy amino acid residue 0X0) possible com-

binations of conditional probability values and 21 non-conditional probability values [15] for

each position at any formulated sample. Similarly, the conditional and non-conditional proba-

bility values extracted from the negative subset are stored in two separate data frames and pro-

vided in S3 and S4 Files, respectively. Fig 3A depicts the conditional probability values of

amino acid residue 0A0 which have been calculated from the positive subset, given that its right

member is any of the 21 amino acid residues at sample positions 1 to 13 and the conditional

probability values of any of the 21 amino acid residue given that the left member is 0A0 at sam-

ple positions 16 to 28. Similarly, Fig 3B depicts the conditional probability values of amino

acid residue 0A0 which have been calculated from the negative subset, given that its right mem-

ber is any of the 21 amino acid residues at sample positions 1 to 13 and the conditional proba-

bility values of any of the 21 amino acid residue given that the left member is 0A0 at sample

positions 16 to 28. The non-conditional probability values of 21 amino acid residues derived

from the positive subset at sample positions 14 and 15 are illustrated in Fig 4A and The non-

conditional probability values of 21 amino acid residues derived from the negative subset at

sample position 14 and 15 are shown in Fig 4B.

Prediction method and addressing data imbalance

Phosphoglycerylation site prediction problem defined in the previous section is a classification

problem. Statistical learning algorithms such as k-nearest neighbor [41], random forest [42]

which are widely used in different bioinformatic prediction model development, support vec-

tor machine (SVM) [43, 44] is one of the dominant and successful among these algorithms

[24, 45]. Apart from that, the structural risk minimization involves a biasing problem where

the majority class [24, 46] influences the classification weight. As the set of phosphoglyceryla-

tion peptides was highly skewed (i.e. the ratio between positive and negative peptides was

approximately 1:29), it could affect the classification model training directly. Inspired by the

success of biasing internal decision function during training, as highlighted in recent research

[8, 14, 17, 19], different penalty costs C+, and C− were assigned for phosphoglycerylated sites

and non-phosphoglycerylated sites, respectively for addressing imbalance issue. Therefore,

SVM with cost-sensitivity was applied as a core learning algorithm for prediction model

Fig 3. The conditional probability of amino acids at sample positions 1 to 13 and 15 to 28.

https://doi.org/10.1371/journal.pone.0249396.g003
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development which can be formulated as:

min
1
2

w;xkwk
2
þ Cþ

Xq

k¼1

xk þ C�
Xn

k¼qþ1

xk ð6Þ

(Subject to: Yk(w.φ(Xk) + a)� 1 − ξk for all, k = 1, 2, ‥, n)

where the training set is denoted by {(Xk, Yk), k = 1, 2, . . ., n} and first q samples (i.e. Yk = 1,

k = 1, 2, . . ., q) are assumed as the positive samples while the rest are assumed as the negative

samples (i.e. Yk = −1, k = q + 1, q + 2, . . ., n). The non-linear feature mapping and slack vari-

ables are denoted by φ(X) and ξk(k = 1, 2, . . ., n), respectively [45, 47]. In our experiments with

SVM, as the kernel function, Gaussian RBF was adopted which can be described as: Υ(Xk,

Xj) = φ(Xk)
T φ(Xj) = exp(−γkxi − xjk2), where γ> 0. However, for effective separation of posi-

tive and negative samples, addressing the class imbalance problem, misclassification costs

Cþ ¼ C�n
2�q and C� ¼ C�n

2�ðn� qÞ were assigned for phosphoglycerylated sites and non-phosphogly-

cerylated sites, respectively.

Formulation of evaluation metrics

To objectively assess the prediction performance of predPhogly-Site, we have utilized five

widely used statistical metrics, such as accuracy (ACC),sensitivity (Sn), specificity (Sp), preci-

sion (pre) and Matthew’s Correlation Coefficient (MCC) [20, 24, 30, 45, 47–52]. These matri-

ces can be defined in terms of true positive (TP), false positive (FP), true negative (TN) and

false negative (FN) prediction made by the predictor as following:

Sn ¼
TP

TP þ FN

Sp ¼
TN

TN þ FP

Precision ¼
TP

TPþ FP

ACC ¼
TP þ TN

TPþ TN þ FPþ FN

MCC ¼
ðTP� TNÞ � ðFP � FNÞ

p
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð7Þ

Fig 4. Probabilistic information of 21 amino acids at sample positions 14 and 15.

https://doi.org/10.1371/journal.pone.0249396.g004
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To the best of our knowledge, state-of-the-art phosphoglycerylation site predictors [8, 9, 11,

12] have also estimated their performance based on these metrics. Thus, performance assess-

ment using these metrics was essential to establish a fair comparative benchmarking. Eventu-

ally, we have considered the area under the ROC curve (AUC) [24, 53] in addition to MCC for

illustrating the stability and robustness of the prediction model.

Validation of the proposed model

To evaluate the statistical significance of a novel predictor’s anticipated performance, three val-

idation schemes, such as k-fold cross-validation, jackknife test, and independent test are widely

used [14, 24]. Although the jackknife test can always draw out a unique result for a given data-

set and highly desirable, to reduce the computational complexity of model development,

researchers prefer k-fold cross-validation over the jackknife test for validating their PTM pre-

diction models [8, 45]. Moreover, existing phosphoglycerylation site predictors validated their

anticipated accuracy using k-fold cross validation except Phogly-PseAAC [9]. Even, the most

recent predictor, Bigram-PGK [11] validated their model using 10-fold cross-validation and

compared with existing predictors. Therefore, to develop and validate our proposed predictor

predPhogly-Site, 10-fold cross-validation was adopted. However, as the 10-fold cross-valida-

tion involved some arbitrariness, highlighted in [9, 24], to validate the stability, it was repeat-

edly executed for 10 times. For finding the best performing predictor, a set of prediction

models were generated for the hyperparameters C and γ within the grid of C = {20, 21, 22, . . .,

28} and γ = {2−1, 2−2, 2−3, . . ., 2−8}. Using 10-fold cross-validation with 10 repeats, the best

model with optimal hyperparameters C and γ were selected (see Table 2) depending on the

demonstrated AUC.

The 10-iterations of 10-fold cross-validation were performed according to the following

steps:

Step 1: Extract the sequence-coupled features from the segmented sequences provided in S1

File using Eqs (4) and (5).

Step 2: Divide the extracted dataset randomly into 10 disjoint sets.

Step 3: Select 1 set as test set and utilize the remaining 9 sets as training set.

Step 4: Train the RBF kernel based SVM predictor with the training set using the optimal

hyperparameters (C, γ) of the respective iteration (see Table 2).

Step 5: Perform prediction on the test set.

Step 6: Repeat steps 2 to 5 until all 10 sets had been used for testing.

Step 7: Merge the prediction outputs and measure the performance with Eq 7.

Step 8: Repeat steps 1 to 7 for 10 times.

Table 2. Selected parameters of 10-fold cross validation (10 iterations).

Iteration 1st 2nd 3rd 4th 5th

C 20 20 20 20 20

γ 2−1 2−2 2−2 2−2 2−2

Iteration 6th 7th 8th 9th 10th

C 21 22 22 20 20

γ 2−1 2−2 2−2 2−2 2−2

https://doi.org/10.1371/journal.pone.0249396.t002
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Step 9: Measure the average performance of 10 repetitions with corresponding standard

deviations.

The predictive decision-making workflow of predPhogly-Site is available at https://github.

com/Sabit-Ahmed/predPhogly-Site as a git repository. For additional validation, an indepen-

dent test was performed on a set of recent phosphoglycerylation sites. It will be discussed thor-

oughly in the next section.

Results and discussions

Performance of predPhogly-Site

In this work, we employed SVM with variable cost adjustments [14, 19, 24] for suppressing the

imbalance between phosphoglycerylated and non-phosphoglycerylated sites. For separating

samples by transforming to higher dimensional feature space, radial basis kernel function [14,

22, 24] was utilized. The average results of the considered statistical performance measures

with their standard deviations in 10 repeats are presented in Table 3. As shown in Table 3, the

proposed prediction model could predict phosphoglycerylation sites with 99.97% accuracy. In

addition to that, its sensitivity, specificity, MCC and AUC measure crossed a benchmark of

99%. Moreover, standard deviations were almost negligible in the case of all the measures.

However, for constructing the proposed predictor predPhogly-Site to be deployed as a web

service, the benchmark dataset and the prediction model’s hyper-parameters with the highest

AUC in 10 repetitions (i.e. C = 20 and γ = 2−2) were used. An overview of establishing pre-

dPhogly-Site is depicted in Fig 1.

Comparative analysis of cross-validation performance

To evaluate the effectiveness of the proposed predictor, predPhogly-Site, we compared it with

four state-of-the-art phosphoglycerylation site predictors, such as Phogly-PseAAC [9],

CKSAAP_PhoglySite [8], iPGK-PseAAC [12] and Bigram-PGK [11]. Among these predictors,

the first three i.e. Phogly-PseAAC, CKSAAP_PhoglySite, and iPGK-PseAAC were bench-

marked on the same phosphoglycerylation site dataset which was prepared by Xu et al. [9].

Prediction from Phogly-PseAAC and iPGK-PseAAC could be accessed by their web interface.

Though CKSAAP_PhoglySite was also accessible by its Matlab interface, there was no such

accessibility option in the most recent predictor, Bigram-PGK. However, Bigram-PGK had

collected prediction results from these accessible predictors for its benchmark dataset and

reported comparative outcomes for all the considered performance metrics. Thus, for con-

ducting a fair comparison with all these predictors, our primary benchmark dataset, which

was not resampled as Bigram-PGK’s one, was submitted to the webserver of Phogly-PseAAC

and iPGK-PseAAC for getting prediction outcomes. However, CKSAAP_PhoglySite’s predic-

tions were obtained through its Matlab interface. After achieving the prediction outcomes

from the Phogly-PseAAC, CKSAAP_PhoglySite, and iPGK-PseAAC on the benchmark data-

set constructed for this study, the corresponding performance was measured on the same vali-

dation set utilized for evaluating our predictor predPhogly-Site (see Section “Validation of the

proposed model”). As we adopted different technique for handling the data imbalance issue

Table 3. Cross-validation performance of predPhogly-Site on the benchmark dataset.

Predictor Sp Sn Pre ACC MCC AUC

predPhogly-Site 0.9997 ± 0.0001 1.00±0.00 0.9920±0.0027 0.9997±0.0001 0.9958±0.0014 0.9999±0.00

https://doi.org/10.1371/journal.pone.0249396.t003

PLOS ONE predPhogly-Site

PLOS ONE | https://doi.org/10.1371/journal.pone.0249396 April 1, 2021 9 / 17

https://github.com/Sabit-Ahmed/predPhogly-Site
https://github.com/Sabit-Ahmed/predPhogly-Site
https://doi.org/10.1371/journal.pone.0249396.t003
https://doi.org/10.1371/journal.pone.0249396


and could not obtain the prediction outcomes from the Bigram-PGK predictor on our bench-

mark dataset, a comparative summary of all the measures was presented in Table 4 in line with

Bigram-PGK’s experimental findings [11]. As shown in Table 4 and Fig 5, predPhogly-Site

achieved a significant improvement over Phogly-PseAAC, CKSAAP_PhoglySite, and iPGK-P-

seAAC on the same benchmark dataset used in this study. It remarkably outperformed these

predictors in sensitivity, specificity, overall accuracy, and AUC. For instance, predPhogly-Site

crossed the milestone of 99% in case of sensitivity, specificity, precision, overall accuracy,

MCC and AUC.

However, the most recent predictor, Bigram-PGK’s [11] performance was relatively higher

in most of the metrics. It obtained a sensitivity of 96.42%, an accuracy of 91.93%, an MCC of

83.30%, and an AUC of 93.06% on the dataset utilized in Bigram-PGK [11]. As demonstrated

in Table 4, our proposed predictor predPhogly-Site also outperformed Bigram-PGK [11] by

3.58% in sensitivity, 8.04% in accuracy measure, 16.28% in MCC and 6.93% in AUC.

Table 4. Cross-validation performance of the existing prediction systems.

Predictor Sp Sn Pre ACC MCC AUC

iPGK-PseAAC 0.9846 0.4595 0.5050 0.9673 0.4648 0.7220

iPGK-PseAAC� 0.9864 0.4555 0.9548 0.8119 0.5692 0.7230

CKSAAP_PhoglySite 0.8941 0.8288 0.2110 0.8920 0.3845 0.8615

CKSAAP_PhoglySite� 0.9420 0.8285 0.8765 0.9043 0.7818 0.8854

Phogly-PseAAC 0.7064 0.6937 0.0747 0.7060 0.1550 0.7000

Phogly-PseAAC� 0.7193 0.6927 0.5518 0.7102 0.3951 0.7062

Bigram-PGK� 0.8973 0.9642 0.8253 0.9193 0.8330 0.9306

predPhogly-Site 0.9997 1.00 0.9920 0.9997 0.9958 0.9999

� Corresponds to the experimental findings reported by the Bigram-PGK study [11].

https://doi.org/10.1371/journal.pone.0249396.t004

Fig 5. Cross-validation performance of the available predictors.

https://doi.org/10.1371/journal.pone.0249396.g005
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Furthermore, the effectiveness of predPhogly-Site over the recent predictors including

Bigram-PGK [11] has been demonstrated in Fig 5.

It can be observed that a comparatively higher specificity and precision of 98.64% and

95.48%, respectively, were obtained by iPGK-PseAAC [12] on the Bigram-PGK’s [11] resam-

pled dataset. Our proposed predictor, predPhogly-Site, has obtained 1.33% and 3.72%

increased performance in both specificity and precision, respectively. Both the results repre-

sented in Table 4 and Fig 5 indicate that our proposed predictor predPhogly-Site can identify

phosphoglycerylation sites more effectively than any other existing predictors.

It is worth mentioning that among these predictors, Phogly-PseAAC [9] has employed

the position-specific amino acid propensity which reflects the position-wise occurrence fre-

quency of each amino acid and the K-Nearest Neighbor (KNN) algorithm for prediction,

CKSAAP_PhoglySite [8] has utilized the composition of k-spaced amino acid pairs with the

fuzzy SVM, iPGK-PseAAC [12] has applied the pairwise coupling technique with the posterior

probability-based SVM and Bigram-PGK [11] have considered the SVM engine with the

combination of position-specific scoring matrix and profile bigrams for performance

improvement.

It might be intuitive to find some insight into why our proposed predictor predPhogly-Site

achieved such superior performance. It was possible because of the effective representation of

phosphoglycerylation modification in terms of sequence coupling model among the amino

acid residues via the conditional probability (see Figs 3 and 4). Suppressing the imbalance

ratio of phosphoglycerylated and non-phosphoglycerylated sites using different error costs

based SVM also boosted up the performance improvement.

However, the precision calculation measures the believability of a system when it says a

peptide sample is phosphoglycerylated. According to Eq 7, the precision measure depends

highly on the false positive rate, and a lower false positive rate results in a higher precision rate.

In the Bigram-PGK [11] study, the dataset contained only 111 positive samples and 224 nega-

tive samples after applying the k-nearest neighbor cleaning treatment [11] and the experimen-

tal findings on the resampled dataset might not reflect the false positive rate properly.

Moreover, the existing predictors i.e. iPGK-PseAAC, CKSAAPPhoglySite, and Phogly-

PseAAC might not handle the real world imbalanced situation of the dataset appropriately.

Hence, when we have uploaded the benchmark dataset containing 111 positive instances and

3249 negative instances (see Table 1) to the web or Matlab interfaces of the existing predictors,

the false positive rates have come out higher and results in lower precision rates as compared

to the experimental findings reported by the Bigram-PGK study (see Table 4). On the other

hand, our proposed predictor has obtained a much lower false positive rate and got a higher

precision rate as well as higher sensitivity and specificity for having cost-sensitive SVM as an

imbalance management technique. By observing all the performance measurements in this

study, it can be concluded that our predictor predPhogly-Site could be a high throughput tool

for predicting phosphoglycerylation sites more precisely.

Independent test

Existing phosphoglycerylation site, particularly, the most recent predictor assessed their model

using 10-fold cross-validation. However, some researchers [54–57] highlighted the necessity of

independent test for assessing prediction model in addition to k-fold (e.g. k = 5,10) cross-vali-

dation. Thus, in our work, an independent test was conducted for further evaluation of our

proposed model predPhogly-Site on an independent set of phosphoglycerylation sites. The

same independent test set was uploaded to the web servers of the existing predictors i.e.

iPGK-PseAAC, Phogly-PseAAC and predPhogly-Site for obtaining the prediction results.
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However, the prediction results of CKSAAP_PhoglySite on the independent test set were

obtained from the Matlab interface. The predictive performance of predPhogly-Site as well as

other predictors were summarized in Table 5. However, as Bigram-PGK [11] had no estab-

lished web-server, so we could not report the performance of these predictors on the indepen-

dent test set.

As shown in Table 5, predPhogly-Site predicted independent phosphoglycerylation sites

with specificity, sensitivity, precision, accuracy, MCC and AUC of 99.93%, 95.12%, 97.50%,

99.78%, 96.19% and 97.52%, respectively, which were almost identical to the cross-validation

performance delineated in Table 4. According to the experimental results in Table 5 and the

ROC curve illustrated in Fig 6, it was apparent that the proposed predictor predPhogly-Site

achieved a significant improvement over their counterparts in terms of all the evaluation

metrics.

Table 5. Prediction performance in Independent test.

Predictor Sp Sn Pre ACC MCC AUC

iPGK-PseAAC 0.9738 0.2927 0.2553 0.9535 0.2494 0.6332

Phogly-PseAAC 0.6837 0.6829 0.0622 0.6836 0.1329 0.6833

CKSAAP_PhoglySite 0.8823 0.7561 0.1649 0.8785 0.3161 0.8192

predPhogly-Site 0.9993 0.9512 0.9750 0.9978 0.9619 0.9752

https://doi.org/10.1371/journal.pone.0249396.t005

Fig 6. Comparative ROC curves between different prediction methods based on the independent test.

https://doi.org/10.1371/journal.pone.0249396.g006
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Web-server

For intensifying user accessibility without the concern of experimental implementations, an

easy-to-use web-server for predPhogly-Site has been developed. It can be accessed at http://

103.99.176.239/predPhogly-Site. Users can submit one or more query protein sequence(s)

directly on the web-server as text input in Fasta format or may prefer to upload as a batch to

get their predictions. More detailed guidelines on how to use the web-server as well as the

working mechanism of this server can also be found there. After submitting a query protein or

as a batch, it may take a few moments to get the prediction result, depending on the availability

of server resources. Finally, predPhogly-Site will generate a result page based on the user’s sub-

mission, i.e., if protein sequences are submitted into the input box, the predictive data will be

shown on the result page. Otherwise, it will be sent to the corresponding user through email.

Conclusion

In this study, for identifying phosphoglycerylation sites in protein with higher accuracy, a

novel computational tool, predPhogly-Site, has been developed utilizing the coupling effects in

a sequence. It exploits probabilistic sequence pattern information with variable cost adjust-

ment in the classifier’s decision function for achieving higher predictive performance com-

pared to the existing phosphoglycerylation site predictors. It has achieved significant

performance improvement not only in the 10-fold cross-validation, which has been used as

the benchmarking technique in the existing predictors but also in an independent test. More-

over, it has also achieved almost identical performance in both 10-fold cross-validation and

independent test, which clearly demonstrates its stability. In the 10-fold cross-validation test, it

has achieved more than 0.99 in both AUC and MCC, and in case of the independent test, it

has achieved nearly 0.97 in the corresponding measures. These experimental outcomes dem-

onstrate that predPhogly-Site is highly promising compared to the existing state-of-the-art

phosphoglycerylation site predictors. It is expected to become a high throughput computa-

tional tool for PTM researcher for fast exploration of lysine modifications. Even the experi-

mental scientists would be benefited from this web-based tool without going through its

mathematical and implementation details. For further performance improvement and usabil-

ity of this prediction tool, multiple types of post-translational modification with heterogeneous

data would be incorporated simultaneously along with prediction interpretation support.
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