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ABSTRACT 

Obstructive sleep apnea (OSA) is a multifactorial sleep disorder characterized by a strong genetic 

basis. Excessive daytime sleepiness (EDS) is a symptom that is reported by a subset of OSA 

patients, persisting even after treatment with continuous positive airway pressure (CPAP). It is 

recognized as a clinical subtype underlying OSA carrying alarming heightened cardiovascular risk. 

Thus, conceptualizing EDS as an exposure variable, we sought to investigate EDS’s influence on 

genetic variation linked to apnea-hypopnea index (AHI), a diagnostic measure of OSA severity. 

This study serves as the first large-scale genome-wide gene x environment interaction analysis 

for AHI, investigating the interplay between its genetic markers and EDS across and within 

specific sex. Our work pools together whole genome sequencing data from seven cohorts, 

enabling a diverse dataset (four population backgrounds) of over 11,500 samples. Among the 

total 16 discovered genetic targets with interaction evidence with EDS, eight are previously 

unreported for OSA, including CCDC3, MARCHF1, and MED31 identified in all sexes; TMEM26, 

CPSF4L, and PI4K2B identified in males; and RAP1GAP and YY1 identified in females. We discuss 

connections to insulin resistance, thiamine deficiency, and resveratrol use that may be worthy of 

therapeutic consideration for excessively sleepy OSA patients. 
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INTRODUCTION 

Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse and 

obstruction, resulting in arousal and oxygen desaturation events that induce variable degrees of 

sympathetic activation, inflammation, endothelial dysfunction, and metabolic perturbations 1. 

The clinical presentation of this disorder can vary and includes both disturbed sleep (insomnia) 

and excessive daytime sleepiness (EDS) 1. A strong genetic basis has been established for OSA 

with heritability estimates between 69% to 83% in twin studies, 25% to 40% in family studies, 

and up to 21% from population-based genome-wide association studies (GWAS) 2,3. Adequately 

characterizing the genetic architecture of OSA can provide insight into disease mechanisms and 

better therapeutic regimens, ultimately improving patient outcomes. 

In OSA, EDS is found in over 30% of patients 4. Although often exhibiting improvement 

with OSA treatment, EDS persists in 9% to 22% of CPAP-adherent individuals 4,5. Patients with 

EDS (excessive sleepy OSA subtype) are reported to experience higher risk of incident 

cardiovascular disease, potentially reflecting elevated inflammation and a more severe 

endophenotype (high airway collapsibility, low arousal threshold) 1,6,7. EDS can reflect behavioral 

factors associated with OSA risk such as insufficient sleep duration, poor diet quality, and 

reduced physical activity 8-12. As a marker of underlying physiological conditions and 

environmental exposures, EDS may moderate genetic effects that influence severity of OSA and 

its cardiovascular risk, with possible pathways linked to the microbiome, systemic inflammation, 

and adipose tissue function 1,13. 

We thus sought to investigate whether there is evidence of interaction between EDS and 

genetic variant effects for apnea-hypopnea index (AHI). We conducted genome-wide interaction 
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analyses with single common variant effects, and rare variant gene set-based effects, in over 

11,500 individuals using National Heart, Lung and Blood Institute Trans-Omics for Precision 

Medicine (TOPMed) data 14. A dataset comprising of multiple race/ethnicities (African 

American/Black [AFR], Asian [ASN], Caucasian/White/European [EUR], Hispanic/Latino [HIS]) was 

consolidated for this analysis with stratification according to sex (males, females, all sex). 

Preliminary results have been previously reported in the form of an abstract 15. 

RESULTS 

Common Variant Analysis 

Common variant analysis with whole genome sequencing (WGS) data in combined sex 

samples revealed two intronic variants with strong interaction with EDS - rs281851 (PGxE: 6.59e-

09, PG,GxE: 2.2e-08) mapped to CCDC3, and rs13118183 (PGxE: 2.92e-08, PG,GxE: 4.7e-08) mapped to 

MARCHF1 (Table 1, Figure 2A). Variant to gene mapping by FUMA SNP2GENE (using position, 

expression quantitative trait loci, chromatin interaction methods) additionally identified UPF2, 

DHTKD1, SEC61A2, NUDT5, CDC123, CAMK1D, OPTN, and PHYH mapped to rs281851 and NAF1, 

NPY1R, NPY5R, TKTL2, FAM218A, and TRIM60 mapped to rs13118183 (Table 1, Supplementary 

Table 2).  

Rare Variant Set-Based Analysis 

Rare variant set-based analysis with WGS data identified SCUBE2 in combined sex, and 

TMEM26 and CPSF4L in male sex (PG,GxE<3e-06, PGxE<PG) (Table 2). Meta-analysis of WGS and 

imputed genotype data identified UBLCP1 and MED31 in combined sex; YY1, CPNE5, MYMX, 

ZNF773, YBEY, and RAP1GAP in female sex; and PI4K2B, IQCB1, and CORO1A in male sex (Table 
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3) (PG,GxE<3e-06, PGxE<PG). Among these, YY1 additionally showed significance in the GxE 

interaction effect (PGxE<3e-06) (Table 3). 

Validation of Results  

For WGS common variant results (rs281851, rs13118183) imputed genotype samples did 

not contain either variant. For rare variant WGS gene-set analysis results (SCUBE2, TMEM26, 

CPSF4L) imputed genotype samples did not replicate findings, showing different variant sets 

available for each gene compared to WGS data (Supplementary Table 3).  

Secondary Findings 

Genetic associations with AHI identified by the main genetic effect BG (not considering 

role of EDS interaction) in the WGS discovery dataset are reported in Supplementary Tables 4-6.  

Unreported Gene Targets for OSA 

The variants from common variant analysis and genes from rare variant set-based 

analysis were assessed with prior OSA trait-related GWAS and three catalogs: GWAS Catalog, 

PheWeb, Sleep Disorders Knowledge Portal 3,16-18 (Supplementary Table 7). SCUBE2, UBLCP1, 

CPNE5, MYMX, ZNF773, YBEY, IQCB1, and CORO1A are identified in a prior gene-based analysis 

for sleep-disordered breathing traits with samples overlapping this GxE work16. SCUBE2 is 

additionally reported in the Sleep Disorders Knowledge Portal for sleep apnea syndrome (P: 

3.7e-04; common variants). rs281851 (intronic variant of CCDC3), rs13118183 (intronic variant of 

MARCHF1), TMEM26, CPSF4L, MED31, YY1, RAP1GAP, and PI4K2B are previously unreported for 

OSA (Supplementary Table 7). Four of these have been reported for cardiometabolic traits 

including TMEM26 for PR interval, hypertension, systolic blood pressure, and diastolic blood 
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pressure; MED31 for systolic blood pressure; RAP1GAP for abdominal aortic calcification levels; 

and YY1 for aortic atherosclerosis, and pulse pressure.  

Effects in EDS vs non-EDS groups 

 We performed EDS-stratified analysis for the significant interaction loci (rs281851, 

rs13118183) to compare how the effect estimate (BG) changes dependent on whether an 

individual experiences excessive daytime sleepiness. Figure 2B and C and Supplementary Table 8 

show that for individuals who have the allele A for rs281851 or allele A for rs13118183, the 

presence of EDS increases AHI. For rare variant set-based analysis differences in the variants 

mapped to each gene in each EDS group was observed (Supplementary Table 9). 

Bioinformatics Analysis 

MAGMA analysis run on FUMA’s SNP2GENE platform with WGS common variant GxE 

interaction summary statistics revealed tissue enrichment in breast mammary tissue and tibial 

nerve for females (Supplementary Table 10). MAGMA gene-based analysis identified NOP53, 

EYA2, and ZNF563 in combined sex and WDR19 in females (Supplementary Table 11). 

Open Targets Platform mouse model data identified functional roles in immune system 

response (MARCHF1, EYA2, RAP1GAP, CPNE5, CORO1A), adipose tissue (CCDC3, IQCB1), 

metabolism (CCDC3, RAP1GAP, CPSF4L), nervous system or behavior (UBLCP1, MED31, EYA2, 

CPNE5, YY1, IQCB1, CORO1A, WDR19), respiratory system (MYMX, YY1), cardiovascular system 

(IQCB1), and craniofacial measures (WDR19, MED31) (Supplementary Table 12). Open Targets 

Genetics revealed associations to medication use for lung disease (atrovent-YY1, ventolin-

WDR19), hypertension or cardiovascular disease (bendroflumethiazide-CORO1A, atenolol-
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TMEM26, atenolol-MARCHF1, bumetanide-MYMX, dipyridamole-TMEM26), and cholesterol 

(statin-NOP53, statin-MYMX) (Supplementary Data).  

STRINGdb identified enriched terms (FDR<0.05) from the resultant protein-protein 

interaction network built by the rs281851 and rs13118183 gene loci (Supplementary Table 13). 

Enriched gene ontology (GO) Molecular Function terms related to the highly conserved 

pancreatic polypeptide hormone family NPY-PYY-PP (NPY1R, NPY5R) and thiamine 

pyrophosphate-transketolase activity (DHTKD1, TKTL2) (Supplementary Table 13).  

DGIdb revealed the following drug-gene interactions: velneperit (prior Phase II clinical 

trial for obesity) for NPY5R and losartan (FDA-approved for hypertension) for CAMK1D 

(Supplementary Table 14). 

 Qiagen’s Ingenuity Pathway Analysis software constructed a fully-connected interactome 

with the primary 16 genes from Tables 1-3 provided as input (Supplementary Fig. 1). The 

identified connections included neuroinflammation and nerve-function (TRIM67, HTT), 

inflammation (TNF, INFG), tumor suppressor (TP53), DNA damage response (RNF4, FANCD2), and 

transcription processing (SIX1, MEPCE, FIP1L1). Canonical pathway enrichment analysis revealed 

over-representation of eight pathways (p<0.05) (Supplementary Table 15). 

DISCUSSION 

 This is the first large-scale GxE analysis for AHI, with the goal of uncovering gene targets 

for a deeper understanding of the pathophysiology of obstructive sleep apnea. This study 

examines the effect of EDS on AHI-associated genetic variants in order to elucidate any 

important biological targets or pathways for the excessively sleepy clinical OSA subtype. We 

identified significant interactions at 16 genes, of which the following are previously unreported 
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for OSA pathophysiology: CCDC3, MARCHF1, TMEM26, CPSF4L, MED31, YY1, RAP1GAP, and 

PI4K2B. This study’s findings suggest the potential of thiamine and resveratrol supplementation 

for use in OSA patients experiencing excessive daytime sleepiness. Bioinformatics analysis 

identified cross-trait associations with cardiometabolic traits and medication use, suggesting 

pathways that may be pertinent to investigate for clinical utility in sleepy OSA patients, given 

their elevated cardiovascular risk.   

Thiamine (vitamin B1) metabolism is highlighted by genes mapped to the MARCHF1 and 

CCDC3 genetic loci from the enrichment of thiamine pyrophosphate and transketolase terms in 

STRINGdb. Thiamine deficiency can result from high calorie malnutrition, increased age, and 

gastrointestinal tract factors 19. Thiamine deficiency is promoted by fluid loss or antacids use – 

which can occur in OSA patients due to nighttime sweating or treatment of comorbid 

gastroesophageal reflux disorder (GERD) 20. Thiamine deficiency is also linked to long sleep 

duration (which is associated with EDS or high sleep propensity), connected to alterations in 

adenosine triphosphate production21,22. Thiamine-containing supplements demonstrate 

improvement in sleep disturbance and insomnia symptoms 22. Thiamine is notably a potent 

inhibitor of human carbonic anhydrase II with activity comparable to acetazolamide – a 

medication shown to both lower blood pressure and vascular stiffness, as well as improve AHI 

and ventilatory instability, in central and obstructive sleep apnea 23-25.  

NPY5R antagonism, resveratrol mechanism, and insulin sensitivity mechanisms may also 

be important to investigate. MARCHF1, the primary mapped gene of the rs13118183 locus is a 

regulator of insulin sensitivity, controlling cell surface insulin receptor degradation as a ubiquitin 

ligase 26. This is important as insulin resistance has been identified as an antecedent risk factor 
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for OSA and associated with ventilatory control abnormalities, increased upper airway fat, and 

increased upper airway collapsibility (an endotype associated with both EDS and inflammation) 

7,27,28. MARCHF1 gene expression has been noted to decrease in response to resveratrol, a 

polyphenol supplement that has anti-inflammatory, antioxidant, and estrogen modulator effects 

29,30. In the context of OSA, resveratrol has been prior suggested for consideration of clinical use 

in treating both OSA and cancer 29,30. Resveratrol is able to induce SIRT1 activity (downregulated 

in OSA), alter insulin sensitivity in visceral white adipose tissue that can occur from sleep 

fragmentation, and reduce myocardial injury that can occur from chronic intermittent hypoxia 31-

33. In vitro studies report resveratrol’s inhibitory activity against type II phosphatidylinositol 4-

kinases, which supports the previously unreported gene for OSA this study identified for male 

sex in rare variant gene-set analysis - PI4K2B 34. In addition to MARCHF1, NPY1R and NPY5R 

genes mapped to the rs13118183 locus which revealed through PPI enriched terms a closely 

connected family: neuropeptide Y (NPY) - peptide YY (PYY) - and pancreatic polypeptide (PP). 

Notably NPY is a vasoconstrictive neuropeptide linked to sleep-wake behavior and may be 

connected to OSA through its roles in insulin resistance, inflammation, and vascular remodeling 

35,36. PYY is sensitive to sleep duration and energy intake and postulated to be involved in obesity 

development through circadian disruption 37. Drug-gene interaction reported in DGIdb supports 

this as NPY5R is the pharmacological target of velneperit, an investigational obesity drug with 

anorectic effects.  

 The strength of this study is in it being the first to assess on a genome-wide scale the 

interaction role of EDS using two approaches – common variant association analysis, and rare 

variant gene-based analysis. This work included multi-ethnic source data, sex-specific analyses, 
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and results from multiple bioinformatics tools. One limitation of this work is utilization of 

race/ethnicity opposed to genetic ancestry for population group definitions. In addition 

polysomnography based on a single night may result in some misclassification and self-reported 

EDS can vary over time. Classification of EDS based on self-report data is subjective although the 

most widely utilized questionnaire for EDS that discriminates sleep disorders groups was used. 

Unfortunately we were unable to replicate the significant variant and genes identified in WGS 

discovery results in imputed data. Intra-variability in EDS prevalence was observed within specific 

ancestries (elevated in HIS, relatively stable in EUR). Thus future ancestry-specific WGS analyses 

with a large enough sample size for adequate statistical power to enable ancestry-specific 

analyses would be invaluable. It is difficult to disentangle the role of EDS with respect to OSA – as 

a symptom, or separate entity. The results here suggest potential gene targets of exploration for 

the excessively sleepy clinical subtype of OSA – but cannot definitively identify evidence of exact 

pathways without future validation. 

In conclusion, incorporating EDS interactions enabled discovery of genes for OSA that 

were not revealed by traditional GWAS. This GxE modeling approach assists with precision sleep 

medicine, as therapeutic designs could differ by exposures or disorder subtypes.  Our findings 

suggest resveratrol and thiamine as supplements for the excessive sleepy subtype of OSA given 

their modulating pathways. This study’s identified gene targets may help address the complexity 

inherent to obstructive sleep apnea pathophysiology. 

METHODS 
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Figure 1 displays the analysis design workflow with cohort description details available in the 

Supplementary Note. Each contributing study had its protocol approved by the respective 

Institutional Review Board and participants provided written informed consent.  

Data Preparation  

For the discovery analysis, whole-genome sequencing (WGS) TOPMed Freeze 8 data from 11,619 

individuals (15% AFR, 2% ASN, 28% EUR, 55% HIS) from seven cohorts (Supplementary Table 1) 

was utilized. Apnea-hypopnea index (AHI) with >=3% oxygen desaturation was retrieved from 

each cohort. Excessive daytime sleepiness (EDS) was modeled as a binary term from the Epworth 

Sleepiness Scale (>10: 1, <=10: 0). Age, sex, and body mass index (BMI) were measures obtained 

at the time of sleep recording. Race/ethnicity measures were derived from dbGaP harmonized 

demographic data. Genotype data was restricted to minimum sequencing depth of 10, 

polymorphic PASS only variants, and missingness rate <=5%. A full description of TOPMed whole-

genome sequencing can be found at https://topmed.nhlbi.nih.gov/topmed-whole-genome-

sequencing-methods-freeze-8. For replication analysis, TOPMed-imputed genotype data was 

prepared using the TOPMed Imputation Server powered by Minimac4, with retention of variants 

with imputation quality >=0.4. 

Gene-Environment Interaction Analysis Model  

(1) Y ~ B0 + BGG + BEE + BGxEGxE + BCC 

The gene x environment interaction (GxE) model in equation (1) denotes Y as the continuous 

outcome, apnea-hypopnea index (AHI). The interacting environment term (E) is excessive 

daytime sleepiness (EDS), defined by the Epworth Sleepiness Scale (>10: 1, <=10: 0). C denotes 

random effects (PC-Relate estimated kinship matrix, household matrix for HCHS/SOL) and fixed 
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effects (age, sex, BMI, age x EDS, sex x EDS, BMI x EDS, 10 PC-AiR PCs for ancestral group 

population structure, and race/ethnicity-specific cohort) 38,39. With this model design, GENESIS 

(v2.22.2) was first used to retrieve residuals from the null model allowing for race/ethnicity- and 

cohort-specific variance, with fully-adjusted two-stage rank normalizawon of AHI with the 

norm=’ALL’ and rescale=’residSD’ parameters 40.  

Common Variant Analysis  

For common variant WGS discovery analysis, GEM (v.1.5.2) soxware was used to conduct 

common variant (minor allele frequency [MAF] ³0.1%) associawon analysis on the GENESIS 

output residuals with robust standard error estimation (--robust 1) and no outcome centering (--

center 0) 41. Summary statistics were retrieved from the following tests: 1 degree-of-freedom 

(df) genetic effect (BG), 1df GxE interaction effect (BGxE), and the 2df joint G,GxE effect (BG, BGxE). 

Significant variants were those passing genome-wide significance level (p < 5e-8). Summary 

stawswcs were processed using EasyQC2 to remove variants with missing and out of range 

values42. 

Rare Variant Set-Based Analysis  

For rare variant set-based analysis, first variants with MAF<1% were aggregated into genes based 

on GENCODEv28, restricting variants to those marked as high-confidence non-synonymous loss 

of function, damaging or deleterious missense (by SIFT4G, Polyphen2 HumDiv, Polyphen2 

HumVar, or LRT), or in-frame insertion-deletion with positive FATHMM-XF coding score 43-46. 

Following this, MAGEE (v1.2.0) was used to conduct rare variant gene-based analyses enforcing 

the double Fisher’s method (tests==‘JD’)47. P-value summary statistics output for the main 

genetic effect (“MF” test), interaction effect (“IF” test), and the joint effect (“JD” test) were 
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retrieved. Summary statistics were processed using EasyQC2 to remove variants with missing 

and out of range values and inflation corrected 42. 

Variant and Gene Prioritization 

For common variant analysis, FUMA SNP2GENE (v.1.5.2) was used to filter significant (P<5x10-8) 

signals found on the same chromosome to independent loci defined by lead SNPs using distance 

criteria (500 kilobases) and linkage disequilibrium (r2<0.1) from the 1000G Phase 3 ALL panel 48. 

The Open Targets Genetics platform was then used to map each final lead variant to its primary 

mapped gene by prioritizing firstly direct gene overlap (e.g. intronic), followed by nearest 

transcription start site, or lastly highest V2G score49. For rare variant set-based analysis, 

significant genes were those with p<3e-6, accounting for the total number of tested genes.  

Replication and Meta-Analysis  

After WGS discovery analysis, variants in common variant analysis and genes from rare variant 

set analysis were checked for replication (P<0.05) by executing the same analyses in 8,904 

separate TOPMed-imputed samples from 7 cohorts (Supplementary Table 1) comprising of 3 

population groups (1% AFR, 52% EUR, 47% HIS). Common variant meta-analysis was conducted 

on the WGS and imputed summary statistics using METAL (v2010-02-08), utilizing SCHEME 

INTERACTION 

(https://genome.sph.umich.edu/wiki/Meta_Analysis_of_SNPxEnvironment_Interaction) for the 

2df joint G,GxE test and SCHEME STDERR for the 1df tests. Rare variant set-based meta-analysis 

was conducted using MAGEE software 47,50-52.  

Final Genes and Variants  
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The above steps were repeated for pooled sex, female sex, and male sex analysis. The final 

prioritized genomic loci were (a) significant by the 1df GxE interaction test or (b) significant by 

the G,GxE joint test with stronger GxE interaction signal (PG > PGxE).  

Bioinformatics Analysis 

Post-GxE analysis first included annotating whether final genes and variants for OSA have been 

previously reported, by querying PheWeb (https://pheweb.org/UKB-TOPMed/), GWAS Catalog 

(https://www.ebi.ac.uk/gwas/), Sleep Disorders Knowledge Portal (https://sleep.hugeamp.org) 

and four large-scale prior genomic analyses 3,16-18. Next, aforementioned FUMA SNP2GENE 

analysis output was processed to denote the extended gene loci for each lead variant identified 

in the common variant association analysis, and any enriched tissues defined by MAGMA. FUMA 

SNP2GENE specifically identifies extended gene loci for each lead variant identified in individual 

common variant association analysis, based on significant (FDR<0.05) cis-eQTL associations up to 

1Mb away and significant (false discovery rate (FDR) <1e-6) chromatin interactions with genes 

250bp upstream or 500bp downstream of the transcription start site (TSS). STRINGdb (v12.0) 

was used to investigate each of these corresponding gene loci by pathway/ontology enrichment 

analysis from the database’s identified protein-protein interactions. Third, the set of final 

primary genes from the rare variant and common variant analyses were queried in Open Target 

Genetics (v22.1) to identify any strong cross-trait associations (Locus-to-Gene score>=0.7, p<5e-

08) and medication-related traits (p<5e-08) for therapeutic context; queried in Open Targets 

Platform (v.24.03) to understand mouse model functional effect; queried in DGIdb (v.5.0) for 

noting druggable gene targets (interaction score >=1.0); and analyzed by QIAGEN Ingenuity 

Pathway Analysis 48,49,53-57.  
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Tables 

Table 1. Genetic Variants Interacting with EDS Identified in Common Variant Discovery Analysis 

*These significant variants (RSID) passed genome-wide significance criteria (p<5e-08) for the 1df GxE interaction test and 2df G,GxE joint 
test, and were identified in combined sex analysis. 

 

      MAIN EFFECT INTERACTION 
EFFECT 

JOINT 
EFFECT 

RSID* Chr:Position 
(b38) 

Effect 
Allele/ 
Alternative 
Allele 

Effect Allele 
Frequency 

Gene Locus N Beta 
(Standar
d Error) 

P-Value Beta 
(Standard 

Error) 

P-Value P-Value 

RS13118183 4:164200775 A/G 0.94 NAF1, 
NPY1R, 
NPY5R, 
TKTL2, 
MARCHF1, 
FAM218A, 
TRIM60 

11614 -0.0094 
(0.0025) 

 

1.50e-04 0.034 
(0.0062) 

 

2.92e-08 4.70e-08 

RS281851 
 

10:12924495 A/C 0.59 UPF2, 
DHTKD1, 
SEC61A2, 
NUDT5, 
CDC123, 
CAMK1D, 
CCDC3, 
OPTN, 
PHYH 

11615 -0.0010 
(0.0011) 

 

3.82e-01 0.0187 
(0.0032) 

6.59e-09 2.23e-08 
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 Table 2. Genes Interacting with EDS Identified in Rare Variant Set-Based Discovery Analysis 

*These genes passed Bonferroni-corrected significance criteria (p<3e-06) for the joint G,GxE test with stronger interaction signal relative 
to the main genetic effect (PG > PGxE). †Variant sets mapped to TMEM26 were not available in imputed genotype data.  
 

 

 

 

 

 

 

 

 

 

Gene* Position Sex Dataset Number of 
Variants  

Main Effect P-Value Interaction Effect 
P-Value 

Joint Effect P-
Value 

SCUBE2 11:9,019,476-9,138,114 Combined WGS 25 4.16e-02 2.02e-05 3.12e-06 
   Imputed 3 4.97e-01 7.91e-01 7.60e-01 
TMEM26† 10:61,406,642-61,453,381 Male WGS 1 9.63e-03 3.63e-05 2.54e-06 
CPSF4L 17:73,248,449-73,262,352 Male WGS 5 9.19e-05 1.69e-05 2.39e-08 
   Imputed 1 5.71e-01 9.66e-01 8.80e-01 
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Table 3. Genes Interacting with EDS Identified in Rare Variant Set-Based Meta-Analysis  

Gene* Position Sex Number of 
Variants  

Main Effect P-
Value 

Interaction Effect P-
Value 

Joint Effect P-Value 

UBLCP1 5:159,263,290-159,286,036 Combined 2 4.75e-04 2.29e-05 1.96e-07 
MED31 17:6,643,311-6,651,634 Combined 3 1.51e-02 4.49e-06 3.22e-07 
RAP1GAP 1:21,596,221-21,669,357 Female 2 1.73e-01 7.48e-06 2.37e-06 
CPNE5 6:36,740,775-36,839,444 Female 9 3.30e-04 2.07e-04 1.08e-06 
MYMX 6:44,216,926-44,218,234 Female 1 9.13e-04 4.15e-05 3.64e-07 
YY1 14:100,238,298-100,282,788 Female 1 2.36e-01 2.13e-06 7.08e-07 
ZNF773 19:57,499,915-57,518,404 Female 6 5.46e-04 2.51e-05 1.41e-07 
YBEY 21:46,286,342-46,297,751 Female 3 8.62e-02 1.16e-05 2.35e-06 
IQCB1 3:121,769,761-121,835,079 Male 9 7.69e-02 7.48e-06 2.60e-06 
PI4K2B 4:25,160,663-25,279,204 Male 4 3.50e-02 3.54e-06 6.28e-07 
CORO1A 16:30,182,827-30,189,076 Male 2 7.96e-03 1.02e-05 6.07e-07 

*These genes passed Bonferroni-corrected significance criteria (P<3e-06) for the GxE interaction test or for the joint G,GxE test with 
stronger interaction signal relative to the main genetic effect (PG > PGxE). 
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Figures 

Figure 1. Overall conceptual workflow of this study.  
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Figure 2. Common variant x EDS interaction effect on AHI. A. Manhattan plot of 1df GxE 

interaction effect. Two common genetic variants are significant at the genome-wide level (p<5e-

08) –rs13118183 (MARCHF1) and rs281851 (CCDC3) – for their interaction effect with EDS. B. 

Forest plot of rs13118183 (MARCHF1) association with AHI in EDS and non-EDS groups, stratified 

by sex. C. Forest plot of rs281851 (CCDC3) association with AHI in EDS and non-EDS groups, 

stratified by sex. 
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