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Abstract

The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and
prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional
antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens.
Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP)
technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical

and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by
conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad
spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular
pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will
revolutionize clinical medicine and play a significant role in alleviating disease burden.

Introduction

In recent past, microbial infections have become a global
health burden due to emerging and resistant strains of
viruses [1], bacteria [2], pathogenic fungi [3] and proto-
zoa [4] defying clinical treatment. Consequently, this has
culminated into prolonged treatment, higher health ex-
penditure, mortality risk, and low life expectancy [2]. In
view of ineffective antimicrobial agents, there is need to
seek new alternative and safer antimicrobial agents
against these “super bugs” of viruses, bacteria, fungi and
protozoa. With the development of biomedical nanoma-
terials, new antimicrobial agents have begun to emerge
either as novel and/or augmenting the activities of the
current conventional antimicrobials. This is motivated
by the vast physiochemical and functionalization (ligand
attachment) properties of nanoparticles (NPs) [5-7].
The NPs physiochemical properties are highly diverse in
nature and are highly applicable in biomedical field in-
cluding antimicrobial and drug delivery [6, 8, 9]. Some
examples of these biomedical NPs include silver nano-
particles (AgNPs) [10], carbon nanotubes (CNTs) [11],
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gold NPs (AuNPs) [12], zinc oxide NPs (ZnO-NPs)
[13], and iron oxide NPs (FeO-NPs) [14].

The antimicrobial actions of NPs include cidal de-
struction of cell membranes, blockage of enzyme path-
ways, alterations of microbial cell wall, and nucleic
materials pathway [1]. However, the antimicrobial
mechanisms of the actions are yet to be fully elucidated
since some of the NPs drugs are still at their infancy. The
high potency of NPs antiviral, antibacterial, antifungal and
antiprotozoal activities may revolutionize and bring
another turning point in pharmacological therapy. In
that regard, this review looks at the status quo of
nanomaterials as alternative antimicrobial agents in
terms of their broad spectrum ability, the crossing of
difficult membrane barriers, delivery and sustained
inhibition of intracellular pathogens and sterilization
abilities as shown in Fig. 1. This perspective status
quo of NP antimicrobial agents with multiple func-
tions will play a significant impact on the treatment
of diseases.

Broad spectrum nanoparticle-antimicrobial agents
The global emergence of multidrug-resistant microor-
ganisms (viruses, bacteria, fungi and protozoa) has made
conventional treatment of infectious diseases difficult.
Therefore, the discovery of alternative new classes of
antiviral [15], antibiotics [16], antifungal [17], and
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antiprotozoal [18] agents that can treat resistant strains
is paramount. Research has shown that these emerging
broad-spectrum antimicrobial nanomaterial can knock-
out diverse pathogenic organisms of different phyla,
across diverse and/or within species of viruses, bacteria
and fungi [19-22]. For example, Fig. 2 shows the broad
spectrum NP-antimicrobial effect of AgNPs. The AgNP

antimicrobial agent has multi-functionality of antibacter-
ial [22], antifungal [22], antiviral [23], anti-parasitic [4],
and anti-inflammatory properties [14, 24].

One of the mechanisms of NP-antimicrobial actions is
cell wall lysis. For example, a study by Addae et al. [12]
in an attempt to produce a transducer agent for photo-
thermal therapy (PTT) found the destruction of Bacillus
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Fig. 2 Broad spectrum NP-antimicrobial activities of silver nanoparticles. The Figure describes the antimicrobial spectrum of silver bio-conjugate
nanoparticles against diverse genera of microorganisms. HIV = Human immunodeficiency virus, HSV = Herpes Simplex Virus 1, HPV = Human
papillomavirus, HBV = Hepatitis B virus, P. falciparum = Plasmodium falciparum, G. lamblia = Gardia lamblia, S. aureus = Staphylococcus aureus,
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species cell membranes when treated with Au/CuS NPs.
The destruction of Bacillus species in this study proved
that Au/CuS NPs are potent NP-antimicrobial agents.

The NPs are potential broad spectrum antibiotics be-
cause they can inhibit wide range of multidrug-resistant
strains of bacteria that have defied most antibiotic treat-
ment. For example, in the study by Adeli et al. [10] it was
found that AgNPs were able to inhibit pan-multidrug re-
sistant strains of S. aureus, K. pneumoniae, E. coli, and P.
aeruginosa that were resistant to all the antibiotic drugs
including imipenem. Another similar study by Kathiravan
et al. [22] showed that AgNPs can inhibit both bacteria (S.
aureus, E coli, B subtilis) and fungi species (A niger, Mucor
sp and Tricoderma sp). In addition, earlier findings by
Fayaz et al. [25] showed that the AgNPs-coated con-
dom have antiviral (against HIV-1 and HSV-1/2),
antibacterial (against E. coli, S. aureus, M. luteus, K.
pneumonia) and anti-fungi (against Candida spp.)
properties. This suggests that AgNPs can be used to
treat all multi-drug resistant pathogens from diverse
phyla from all clinical sources.

The broad spectrum antimicrobial activities have
also been demonstrated by CNTs. For example, a
study by Tank et al. [26] showed that silica coated sili-
con nanotubes (SCSNTs) exhibit enhanced antimicrobial
activities when compared to other non-silica coated sili-
con nano-particles. Other studies also found that CNTs
containing lysine such as multiwalled CNT (MWCNT)-
epilsonpolylysine [27], and SWCNT-poly(L-lysine) (PLL),
and poly(L-glutamic acid) [28] exhibit very strong broad
antimicrobial activities against a wide range of bacteria. A
study by Amiri et al. [29] showed MW CNT-lysine exhibit-
ing very strong broad antimicrobial activity against S. aur-
eus, S. agalactiae, S. dysgalactiae, E.coli, K. pneumonia
and Salmonella typhimurium.

In addition to antimicrobial activities, hybrids of nano-
materials such as cholesterol-containing liposomes phy-
tonanosilver and CNTs have been found to exhibit high
antioxidant activity as well as antimicrobial activities
against E. coli, Staphylococcus aureus and Enterococcus
faecalis [30]. This shows that when two or more NPs are
combined, they tend to enhance the broad spectrum ac-
tivity of the nano-antimicrobial agents. The hydrid be-
haviour was equally found when CNTs and AgNP-based
nanomaterials were combined and the resulting hybrid
biocomposite was found to exhibit stronger and excel-
lent antimicrobial properties [27]. Similarly, chitosan-
CNT hybrid showed excellent antimicrobial activities
against bacteria and fungi [9]. Other CNTs antimicrobial
hybrids include ZnO coated MWCNTs (ZnO/MWCNTs)
[13], Triad CNT-NPs/Polymer nanocomposites [11], func-
tionalized MWCNTs-CdS and functionalized-MWCNTs-
Ag2S [31], and CdTe QDs/single-walled aluminosili-
cate nanotubes [32]. Furthermore, Cefalexin-immobilized
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multi-walled CNTs have been found to broadly enhance
the antimicrobial activities against a wide range of patho-
gens including E. coli, P. aeruginosa, S. aureus and Bacillus
subtilis [8] as shown in Table 1. The combination of
AgNPs and CNTs including MWCNT-AgNPs [33] on fiber
membrane has also been found to enhance the filtration
and antimicrobial potentials against all types of bacteria. In
addition, Poly(N-vinylcarbazole) (PVK)-SWCNT nano-
composite coated membrane for water purification were
found to destroy all bacterial species including spore form-
ing organisms such as Bacillus subtilis [34]. Apart from fil-
tration and demonstration of antimicrobial activities the
MWCNT-AgNPs hybrid composite membrane has been
found to significantly reduce biofilm formation which can
easily be extended to other types of support membranes
[33]. Table 1 summaries the types of NPs and their suscep-
tibility to various organisms.

Nanoparticle anti-parasitic effect

Despite the efforts made in the treatment of parasitic
infections, infections by parasites particularly those of
giardiasis, schistosomiasis, trypanosomiasis, malaria,
leishmaniasis, dengue fevers, Japanese encephalitis,
and filariasis continue to increase particularly in trop-
ical and low income countries [24, 35, 36]. The prob-
lems associated with parasitic infections include drug
toxicity, ineffectiveness, and developments of resist-
ance to conventional anti-parasitic drugs. Further-
more, treatment costs are high, thus limiting supply
of drugs in low income countries [37]. As a results of
the limitation in anti-parasitic drugs, newer ap-
proaches such as nano-biotechnology have shown sig-
nificant improvement in the treatment of parasitic
infections [24]. This is based on the unique properties
of NPs including those of AgNPs, AuNPs, chitosan,
selenium oxide, and other metallic oxide based NPs
that have shown excellent inhibitory effects against
parasitic infections including insect larvae [24, 35-38].

Parasites such as Leishmania can reside and survive
inside macrophages without being exposed to cell
damage by reactive oxygen species (ROS) and anti-
parasitic drugs [37]. However, AgNPs, because of their
trans-membrane mechanisms and sustained anti-parasitic
delivery, can inhibit intracellular Leishmania and enhance
their destruction via ROS [37].

Other NPs including the combination of silver, chito-
san, and curcumin nanoparticles have been used in the
treatment of Giardia lamblia as demonstrated in experi-
mental animals [36]. The findings also showed that
Giardia lamblia can be successfully eradicated from
stool and intestine [36]. The potential of NPs if fully
optimized may lead to the development of newer synergic
antimicrobials where two or more nano-antimicrobials
are combined to generate an effective efficacy in the



Table 1 Summary of the types of nanoparticles susceptibility to organisms

Type of NP Method of NPs Size of NP Types organisms inhibited Outcome Toxicity Author
characterization
Fe-Oxide NP & AgNP UV-vis spectroscopy, Fe-oxide NP Bacillus, E. coli and Staphylococcus Fe-Oxide NPs were sensitive against ~ The very smaller size [14]
Fourier Transform 20-40 nm, AgNP species Bacillus, E. coli and Staphylococcus AgNP were toxic
Infrared Spectroscopy 10-20 nm species. against the pathogens
(FTIR), Transmission
Electron Microscopy (TEM)
Ag NPs. TEM, Field Emission Average 18-20 nm Escherichia coli, Pseudomonas spp. Inhibited the growth and ND [98]
Transmission Electron Bacillus species, Staphylococcus multiplication of E. coli, Pseudomonas
Microscopy (FESEM), FTIR, species, Aspergillus niger, Aspergillus species, Bacillus spp. and
UV-Vis spectra, Raman flavus, Penicillium Staphylococcus species, A. niger, A.
spectroscopy, X-ray flavus, Penicillium spp
Difraction (XRD)
Silver, chitosan, NA - Giardia lamblia The highest effect was achieved by ~ None of the [36]
and curcumin combining the three nanoforms. The nanoparticle exhibited
nanoparticles parasite was found to be eradicated  toxic effect
from stool and intestine.
AgNPs UV spectra, TEM 2-30 nm; averagely  S. aureus, Klebsiella pneumoniae, The AgNPs produced had strong ND [10]
20 nm Escherichia coli, and Pseudomonas antibacterial effect against all the
aeruginosa pathogenic bacteria
polyvinylpyrrolidone - 1-10 nm HIV-1 PVP-coated AgNP exhibit potent ND [99]
(PVP)-coated silver cyto-protective and post-infected
nanoparticles anti-HIV-1 activities toward
Hut/CCR5 cells.
PVP-coated silver - 30-50 nm HIV-1 PVP-coated AgNPs Inhibited cell- PVP-coated AgNPs were [100]
nanoparticles associated HIV-1 and cell-free HIV-1  non toxic to cells
transmission. explant
mercaptoethane sulfonate - 4 nm Herpes simplex virus type 1 (HSV-1) The MES-coated silver and gold The MES-coated silver [101]
(MES)-coated silver and nanoparticles inhibited HSV-1 infec and gold were non
gold nanoparticles tion in cell culture toxic to host cells
PVP-coated silver nanoparticles - 69 nm +/— 3 nm Respiratory syncytial virus (RSV) Inhibited RSV infection showed low toxicity to  [102]
cells
AgNP and - 10-80 nm Monkey pox virus (MPV) The AgNPs of approximately 10 nm  Non of te GgNPs were  [103]
polysaccharide- inhibit MPV infection in vitro, as an cytotoxic (Vero cell
coated AgNP anti-viral monolayer sloughing)
AgNPs - 10-50 nm Hepatitis B virus (HBV) AgNPs inhibited in vitro HBV RNA ND [104]
and extracellular virions
AgNPs and - 10 nm Tacaribe virus (TCRV) AgNPs inhibited the TCRV infection ~ ND [105]
polysaccharide- in vitro
coated AgNP
Ag-NPs-coated PUC High resolution Scanning  30-60 nm E. coli, S. aureus, M. luteus, K. pneumoniae, Ag-NPs-coated PUC with HIV-1 and ~ ND [25]

Electron Microscopy
(HrSEM), UV Spectra

and Candida tropicalis, Candida krusei,
Candida glabrata, and Candida albicans
and HIV-1

HSV-1/2 was able to inactivate their
infectiousness as well as bacterial
and fungal species
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Table 1 Summary of the types of nanoparticles susceptibility to organisms (Continued)

Mycosynthesized silver
nanoparticles

AgNPs

AgNPs

AgNPs

AgNPs

Polyvinyl-N-carbazole (PVK) and
single-walled carbon nanotubes

(SWNTs) (PVK:SWNT)

MWCNT-lysine functionalized

MWCNT-AgNPs

Silicon nanotubes (SNTs),
silicon nanoparticles (SNPs)

Ag-Fe/SWCNTs

SWCNTs combine with H,0, or

NaOCl

SWNT/PLL/PGA

Zirconia (ZrO2) nanoparticles

UV spectra, TEM,
Nanosight-LM 20;

UV-vis spectroscopy, SEM,
TEM, FTIR and XRD.

UV-vis spectroscopy, SEM,
FTIR and XRD.

Atomic force microscopy
(AFM), UV-vis
spectroscopy, FTIR

UV-vis spectroscopy, SEM,
energy-dispersive X-ray
(EDX) spectroscopy.

UV vis spectra, FTIR, SEM

FTIR, Thermal gravimetric
analysis (TGA), Raman
spectra and TEM

Inductively coupled
plasma atomic emission
spectroscopy (ICP-AES),
XRD, FTIR

SEM-EDX, TEM, Brunauer-
Emmett-Teller (BET), STM,
Raman spectroscopy.

TEM, SEM, XRD, Raman
spectra

TEM, SEM-EDX

Uv spectra, TEM, SEM,
Quartz crystal
microgravimetry

SEM, EDX, AFM, U vis
spectra, FTIR

4—46 nm

18 to 45 nm with an
average size of
32 nm

41-60 nm.

60-95 nm

43.52 to 142.97 nm

NA

N/A

3to0 30 nm

average diameter of
14

1-10 nm Ag-Fe NP
dispersed and tightly
attached to the outer
surfaces of SWCNTs

SWCNTs 1-1.5 nm

SWNT is 0.8-12 nm

50e100 nm, average
size 50 nm

HSV 1 and 2 and with human
parainfluenza virus type 3.

Anopheles stephensi, Aedes
aegypti, and Culex quinquefasciatus

Anopheles stephensi, Aedes aegypti,
and Culex quinquefasciatus

3 instar larvae of Culex
quinquefasciatus

Aedes aegypti

E. coli MG 1655 and B. subtilis-102

S. aureus, Streptococcus agalactiae, S.
dysgalactiae, E. coli, K. pneumonia, S.
typhimurium

Escherichia coli

Multidrug-resistant Staphylococcus
aureus

Escherichia coli.

Bacillus anthracis Spores

E. coli and S. epidermidis

Staphylococcus aureus, Escherichia colj,
Candida albicans, Aspergillus niger

Smaller-sized AgNPs were able to
inhibit the infectivity of the viruses

AgNPs showed biolarvicidal effect to
A. stephensi, A. aegypti, and C.
quinquefasciatus.

The AgNPs were effective in
destroying the vectors of mosquito
vector blood born parasites

AgNPs exhibited high mortality
against larvae of Culex
quinquefasciatus

The Bt-AgNPs showed larvicide ef
fect against mosquito larva A.

aegypti

The nano-composite showed anti
microbial activity against both
Gram-positive and negative
bacterial isolates.

The functionalized MWCNT with
lysine expressed high antimicrobial
effect against all bacterial cells

MWCNT-AgNPs exhibited strong
antimicrobial activities and reduce
biofilm formation.

SCSNTs were effective in limiting
the growth of multidrug-resistant
S aureus

Purified Ag-Fe/SWCNT hybrid
nanoparticles were effective
against E. coli.

The combined effect of SWCNTs
and H,0, or NaOC! exhibited
sporicidal effect on B. anthracis
spores

SWNT/PLL/PGA highly inactivated
E. coli and S. epidermidis

Zirconia (ZrO2) nanoparticles
exhibited antifungal and
antibacterial against the test
organisms.

ND

ND

ND

ND

ND

The PVK-SWNT were
non toxic to fibroblast
cells

ND

ND

ND

ND

ND

ND

ND

[106]

(34]
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Table 1 Summary of the types of nanoparticles susceptibility to organisms (Continued)

Au/CuS core/shell nanoparticles  HRTEM, SEM, energy 2-5nm. B. anthracis spores and cells The Au/CuS NPs were highly ND [12]
(NPs) dispersive X-ray efficient in inactivating B. anthracis
spectroscopy (EDS) cells, but not effective to the spores.
Sialic-acid functionalized gold TEM 2 nm and 14 nm Influenza virus The NPs inhibition influenza virus The functionalized [107]
nanoparticles infection AuNPs were nontoxic
to the cells
Titanium dioxide nanoparticles  XRD, FTIR, SEM, EDX, AFM.  Average size of Pediculus humanus capitis De Geer The TiO, NPs showed significant ND
(TiO2 NPs) 70 nm. (Phthiraptera: Pediculidae); larvae of mortality against the vectors borne
cattle tick Hyalomma anatolicum (a.) organisms

anatolicum Koch (Acari: Ixodidae), and
fourth instar larvae of malaria vector
Anopheles subpictus Grassi (Diptera:

Culicidae).
Chrysosporium tropicum Microscan reader, XRD, AuNPs: 2-15 nm and  Aedes aegypti larvae. The AuNPs used as an efficacy ND [41]
mediated silver and gold TEM, SEM AgNP: 20-50 nm enhancer shown mortality 3 times
nanoparticles higher Aedes aegypti larvae.
Zinc oxide nanoparticles UV-visible spectroscopy, ~ 60-120 nm. larvae of cattle tick Rhipicephalus The ZnO NPs had significant ND [110]
(ZnO NPs) XRD, FTIR, SEM (Boophilus) microplus, Canestrini inhibitory effect on the parasites

(Acari: Ixodidae); head louse Pediculus
humanus capitis, De Geer (Phthiraptera:
Pediculidae); larvae of malaria vector,
Anopheles subpictus, Grassi; and filariasis
vector, Culex quinquefasciatus, Say
(Diptera: Culicidae). R. microplus larvae

Cobalt nanoparticles (CoNPs) XRD, FTIR FESEM with average size of malaria vector Anopheles subpictus and  The larvicidal effect was observed ND [108]
energy dispersive X-ray 84.81 nm. dengue vector Aedes aegypti (Diptera: in the cobalt acetate solution
spectroscopy, and TEM Culicidae). and against the A. subpictus
and A. aegypti
Copper(ll) nanohybrid solids, TEM, dynamic light 5-10 and 60-70 nm  Plasmodium falciparum (MRC 2). The two compounds showed The copper(ll) [109]
LCu(CH5COO0), and LCuCl, scattering, and IR of LCu(CH3CO0), significant antimalarial activities nanohybrid solids
spectroscopy and LCuCl, against the parasites were nontoxic to

human hepatocellular
carcinoma cells

€V'€T (SL0T) S2IUBIDS [DAINIDULIDY JO [DUINOL NYYT DVCWIS PU Yex

71 JO 9 abed



Yah and Simate DARU Journal of Pharmaceutical Sciences (2015) 23:43

eradication and probably the elimination of parasitic
infections. Some studies have shown that modified
Plasmodium berghei sporozoite (Tg-Pb/PfCSP) and
self-assembling protein NP (SAPN) vaccine presenting
Plasmodium falciparum circumsporozoite protein epitopes
(PfCSP-SAPN) can stimulate humoral and cellular
responses against Plasmodium falciparum using the com-
plement classical pathway cascade [4]. The results indicates
the potential application of the circumsporozoite protein
epitopes (PfCSP-SAPN) in the development of protective
effector memory CD8+ T-cells [4] capable of generating
strong long-lived IgG.

Nanoparticle anti-vector borne diseases

As a result of the increase in the prevalence of vector
borne diseases, the production of environmentally friendly
and safe NP insecticides synthesized from plants are cur-
rently available. These include those of AgNPs synthesized
from the leaf extracts of Heliotropium indicum [39], and
Azadirachta indica [40]. These insecticides have shown
maximum efficacy against blood feeding mosquitoes of
Anopheles stephensi, Aedes aegypti, and Culex quinquefas-
ciatus [39, 40]. This shows that eco-friendly NPs have the
potential of controlling vector transmitted infections that
have significantly contributed to disease burden, social de-
bility, poverty and death in mostly low income countries
[39, 40]. However, due to NPs non-specific actions to en-
vironmental organisms, this may deter their usefulness as
vector control agents [40—-42].

Wound healing and nanoparticles
Wound dressing and wound healing are very important
components of reducing morbidity and mortality of
wound related burden. A wound is a debilitated tissue
that results from a breakdown in the skin giving rise to a
physiological condition for microbial manifestation
including opportunistic pathogens [43, 44] affecting
wound healing [45]. Depending on the degree of wound,
whether acute or chronic, wound care is necessary to
reduce infection or abnormal bacterial presence that may
cause stress and other health consequences [44, 46]. Over
the years, wound dressing and healing have been prob-
lematic to clinicians [46]. Because there is no single
appropriate wound dressing material that can act as a
potent sterile antimicrobial agent capable of absorbing
excess exudate, preserving the wound from external
sources of infection, preventing excess heat at the wound,
impermeable to gases, and a dressing that is easy to
remove without further trauma to the wound [47] has
complicated wound healing. Wound dressing materials
such as gauze are associated with painful removal and
may cause trauma and associated stress [48].
Nevertheless, the research on NPs in wound dressing
materials has come at an opportune time. The NP
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wound dressing materials provide biocompatible anti-
microbial agents that are inexpensive, soft, and flexible,
and conform to the contours of the body [49, 50]. For
example, AgNPs wound dressing antimicrobial nanoma-
terials have been introduced to supplement traditional
wound dressing because the slow release of the AgNPs
allow the dressing to be changed less frequently, but is
highly effective and efficient in wound healing with less
antimicrobial resistance [49]. Furthermore, a study by
Guidelli et al. [51] showed that natural latex rubber
blended with AgNPs gradually released the AgNPs, but
was useful in promoting and facilitating wound healing
as well as the reduction in scar formation [49]. The
AgNPs may also mediate wound healing via reduced
mitochondria activity that does not affect the host cell
viability with rapid re-establishment of the body integrity
[52]. According to a study by Tian et al. [53] AgNPs
exert positive broad spectrum antimicrobial properties
by reducing wound inflammation, and modulation of
fibrogenic cytokines.

Similarly, other findings by John and Moro [54]
showed that NPs hydrogel wound dressing consist of
methacrylate backbone and terminal hydroxyl group
capable of providing versatile and excellent wound heal-
ing. This is because the NPs hydrogel dressing powders
have thermal insulators capable of absorbing some of
the blood or wound exudate, thus providing an imper-
meable potent antimicrobial environment to wound
pathogens as well as protecting the wound from external
contamination [50, 54]. The NPs hydrogel are cost effective,
user friendly, easy to apply, do not adhere to the wound
and have minimal need for secondary dressing [54].

Apart from AgNPs, other NPs equally used in
wound healings include those of gold [55], curcumin-
encapsulated NPs [56], chitin/nanosilver composite
with good blood clotting ability [57], conjugated iron
oxide NPs [58], and nitric oxide releasing NPs [59].
However, the significant acceleration of wound healing by
nanomaterials still remains a mystery and the mechanisms
of action are still to be fully elucidated and unfold.

Nanoparticles microbicides activities

With the increase in sexually transmitted infections
(STI) fuelling the HIV burden and other health prob-
lems, microbicides may be considered as alternative pre-
ventive methods of STI and HIV [60, 61]. Microbicides
are antimicrobial agents that are self-applied on the
vagina or rectum to protect against STIs [19, 62, 63].
Hence they act as chemical, biological and/or physical
barriers that prevent transmission of pathogens during
sexual intercourse [62, 64, 65]. They may be in gel,
creams, rings, or films form and can be used with con-
doms, thus offering additional protection or used alone
especially by those who do not appreciate the use of
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condoms [19]. The microbicides may be used by both
HIV positive and heathy individuals to prevent transmis-
sion of the virus. Studies have shown that microbicides
may provide prevention against HIV and STI infections
for those practicing receptive anal and/or vaginal
intercourse [63]. In addition, microbicides can provide
individuals with protection especially those who are
unaware of their partner HIV status including those
on antiretroviral therapies (ART) and undetectable
HIV viral load [63].

Research studies have shown that NPs-microbicides
including those of dendrimer-nanoscale-microbicides
hold potential safety efficacy against viruses [19, 66—68].
For example, the VivaGel™ (SPL7013Gel) dendrimer is
carefully formulated against HIV and HSV and does not
interfere with vaginal or rectal physiological pH [19, 69].
The dendrimer VivaGel™ microbicide is meant to disrupt
and block viral attachment and/or prevent the viral ad-
sorption from targeting cells of the rectum or vagina. In
the case of HIV the gp120 of the virus are blocked from
attaching to the CD4 receptors of human white blood
cells [19]. In a study by Chonco et al. [60], it was found
that carbosilane dendrimer microbicide are capable of
exhibiting HIV thus blocking potential in epithelial
monolayer in vitro model cells. Other dendrimers such
as heparan sulfate-binding peptide were found to inhibit
human papillomaviruses [68] thus, acting as promising
antiviral microbicides.

Nanoparticles inhibition of intra-macrophage
pathogens

Pathogenic organisms that traverse cell membranes or
reside in nerve cells cause persistence infections and,
thus are difficult to treat [70]. Bacteria such as Brucella,
Mycobacterium, Listeria species and viruses including
HIV, and herpes simplex are intracellular pathogens that
invade treatment and persistently exhibit latent infec-
tions [70-72]. Therefore, some drugs find it difficult to
reach such cells, thus complicating the elimination and
eradication of such microbial pathogens [73]. Some of
the pathogens may invade cells and exist as intra-
macrophage pathogens and central nervous infections
escaping drugs action as well as immunological re-
sponses [71, 73]. Health care workers (HCWs) find it
very difficult and frustrating when providing treatment
to such intravascular disease causing pathogens due to
failure of conventional antimicrobial drugs to destroy
such organisms. Drugs for treating such diseases includ-
ing HIV, encephalopathy and cerebrovascular infections
may not lack potency, but due to shortcomings of poor
or inefficient intracellular penetration and sustained
drugs concentration, may limit treatment efficiency and
efficacy [73]. The problems associated with such drugs
may include lack of solubility and bio-distribution to
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reach target areas, thus do not have sufficient drug deliv-
ery profile.

Nano-drugs such as polymeric NPs, dendrimers, poly-
mer micelles, and solid lipid NPs have been shown to
exhibit excellent antimicrobial profiles and have potent
ligand conjugates that improve the pharmacological and
therapeutic profile of such drugs to cross such cell mem-
branes, internalize and render efficient antimicrobial
potentials [70, 71, 73]. The delivery process provide NP-
drugs with multiple functions of carrier, delivery, and anti-
microbial capabilities [71, 73, 74]. These attributes are due
to the small size (1-100 nm), vast NPs-functionalization
ability, and the robust physiochemical properties, even if
biodegradability and the toxicological challenges may be
hindering beneficial health outcomes [75, 76].

As mentioned earlier, organisms such Brucella species,
Mycobacterium tuberculosis exist as intra-macrophage
pathogen rendering standard treatment very difficult [71,
72]. For example, Brucella species usually invade, reside
and survive within phagocytic, dendritic and trophoblast
cells, thus making treatment potential very difficult to
clinicians [71]. Similarly, Mycobacterium tuberculosis
bacteria responsible for tuberculosis reside inside macro-
phage resulting into persistent tuberculosis [77]. The
same effect has been demonstrated by herpes simplex
virus that hides and resides in nerve cells causing latent
herpes zosters infections [78]. The use of NPs could be
beneficial for such treatments because of the NPs anti-
microbials potentials, ease membrane crossing ability
and delivery potentials of materials into such cells. They
play the role of carrier, delivery and sustain antimicro-
bials effect in such cells. For example, AgNPs have huge
biocidal effect and have been shown to cross the
macrophage cell wall and inhibit intra-macrophage
Bacillus abortus; a maternal bacterium that tend to
resist treatment and causes perinatal morbidity during
pregnancy [79].

Furthermore, some pathogens are highly resistant to
extreme temperatures and difficult to be eliminated by
antibiotics or other chemicals. Nanomaterials and other
emerging materials have been reported to be potent
antimicrobial agents capable of destroying such patho-
gens that are tolerant to extreme temperatures and re-
sistant to treat with conventional antibiotics [80]. For
example, SWCNTs coupled within 20 minutes near in-
frared (NIR) treatment significantly increases the poten-
tial effect of antimicrobials against Bacillus anthracis
spores when compared to non NIR treated SWCNTs
[67]. In addition, a study by Martinez-Gutierrez et al.
[81] found that 24 nm AgNPs were not only potent anti-
bacterial agents against resistant strains of bacteria, but
also had anti-coagulation activities as well as inflamma-
tory response in macrophages. This indicates that nano-
materials can easily be modified as efficient intravascular
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agent for the destruction of intravascular pathogens as
well as delivery agents since they are capable of crossing
membrane cell walls without any cell damage or harm
[82]. However, the mechanisms of cell membrane or
pathways used by the NPs antimicrobial agents in cross-
ing/cell uptake are still to be fully explained [82].

Nanoparticles penetration of the brain barriers
and difficult to reach tissues or cells

Infections of the brain are often very difficult to treat be-
cause of the difficulty of most antimicrobial agents to
cross the blood brain barrier and inhibit microbial agents
[84]. This is due to the fact that the brain is made up of
complex cell networks that filter foreign materials, protect
and prevent the brain from injuries and diseases [83].
However, some small microbes such as viruses as well as
some bacteria are still capable of bypassing and crossing
the blood brain barrier [83, 84]. Substances entering the
brain are mediated through a tight regulated systematic
process of membrane transporters [82-84]. This tight
regulatory system prevents most pharmacological anti-
microbial agents from crossing the blood brain barrier
and exercising their pharmacological activities [82—84]. In
this regard nanotechnological antimicrobial agents could
bring a novel dimensional approach that is capable of
overcoming and bypassing the complex brain cell net-
work, and inhibiting the brain pathogens, thus reducing
the burden of microbial brain infections [85]. The NPs
can potentially carry and potentially deliver antimicrobial
across the blood brain barrier. In fact, it is known that NPs
have very small nanosizes that exhibit vast physiochemical
multifunctional properties that play a significant role of
crossing the blood brain barrier with ease. These features
of being able to transiting difficult biological system
with ease without disrupting or damaging the cell
membranes and sustaining the antimicrobials have
made NPs and/or nanomaterials (nano-functionalized-
ligands) very attractive for biomedical applications [5,
86]. For example, a single oral administration of poly-
lactide-co-glycolide ~NP-encapsulated antituberculosis
drugs consisting of rifampicin + isoniazid + pyrazinamide +
ethambutol conjugate in murine mice was found to cross
the blood brain barrier and sustained for 9 days in the brain
[86]. Furthermore, based on colony forming unit enumera-
tions and pathological examinations, the study showed that
5 oral doses administered every 10th day improved the
pharmacologic activities of the polymer NP-antituberculosis
drugs resulting in an undetectable level of Mycobacterium
tuberculosis in the mice meninges [86].

The mechanisms of action of how the polymer- antitu-
berculosis nanomaterials bypassed the complex cell net-
work of blood brain barriers are yet to be uncovered. It
is envisaged that the development of emerging novel
NP-antimicrobial agents will soon revolutionize clinical
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medicine [86]. It is anticipated that the crossing of the
blood brain barrier by NP-antimicrobial agents including
other classes of drugs would reduce the burden of infec-
tions including meningitis caused by vast majority of
pathogens.

Nanoparticles enhancement of antimicrobial
activities of other agents

The NPs play a significant role in enhancing the activ-
ities of other agents leading to effective and efficient
treatment action. For example, the combination of
SWCNTs and hydrogen peroxide (H,O,) or NaOCI in-
creases the sporicidal effect on the spores of organisms
such as Bacillus species when compared to treatment
with HyO, or NaOCI alone at the same concentrations
[87]. In such treatments, synergistic mechanisms of effi-
cacy are established due to contribution of multiple anti-
microbial effects. Further analysis shows that SWCNTs
do not only play the role of antimicrobial effect, but also
increases permeability/susceptibility of the Bacillus species
pathogen to HyO, or NaOC], thus significantly developing
high effective sporicidal effect [87]. Furthermore, findings
by Gilbertson et al. [6] found that oxygen functional
groups when functionalized on MWCNTs, enhances sev-
eral MWCNT properties such as redox activity, electro-
chemical and antimicrobial activities. The redox activities
include the ability to enhance the oxidation of glutathione,
and the reduction of surface carboxyl groups that promote
the functional performance of MWCNTs antimicrobial
activities for biomedical application [6]. This synergetic ef-
fect has equally been shown by AgNPs which enhanced
the angiogenic properties of natural latex rubber for cell
growth and wound healing [51].

Nanoparticles disinfectants

The inventive approach of nanomaterials as disinfectant
relate to their stability, homogeneity, high efficiency
and efficacy of broad biocide spectrum of virucidal,
bactericidal, fungicidal, antiparasitic and sporicidal as
well as mycobactericidal and mycoplasmicidal poten-
tials [88-90]. These excellent disinfectant properties as
well as the additional ability of NPs surface functionali-
zation and the dispersion on the NPs surfaces have
been exhibited by a wide range of NPs [5-7]. Such
functional groups provide very potent additional anti-
microbial properties and include ligands such as hydroxyl,
carboxyl, amine, and other chemical radicals [5]. The NPs
including those of silver, copper and gold [91] have
excellent cleaning and disinfecting properties. Some
of these NPs are now being used as cleaning disinfec-
tants in hospitals. In such instances, the surfaces may
be coated with potent nanomaterials against nosocomial
pathogens including the stubborn multi-drug resistant
pathogens of Methicillin-resistant Staphylococcus aureus



Yah and Simate DARU Journal of Pharmaceutical Sciences (2015) 23:43

(MRSA) that are responsible for most nosocomial infec-
tions [88, 92]. For example, silicone polymers of AuNPs
have shown to actively reduce the microbial load on
clinical surfaces, particularly, when the surfaces are
activated with white light [93].

To minimize the risk of microbial and other contamin-
ation of hospital HCW during various clinical procedures
and examination procedures, hospital protective equipment
are re-enforced with nanomaterials-antimicrobial agents
that have been developed. Some of the HCW antimicrobial
protective materials include surgical mask, gloves and many
other latex personal protective equipment (PPE). For ex-
ample, mixtures of silver nitrate and titanium dioxide NP
coated on hospital facemask used during very delicate clin-
ical procedures have shown to have significant protection
against infectious agents [91, 93, 94]. The use of NPs-
antiseptics has also led to an increase in surface area
to volume ratio, thus improving the lethal action of
NPs-antiseptics against pathogens [91, 93].

As a result of the biocidal action and non-toxic nature
of some NPs such as AgNPs, they are widely coated on
medical devices to reduce infections [95]. In addition,
nanomaterials of silver are being used in pet-animal
shampoos as disinfection, cleaning and softening agents
[96]. The AgNPs can also be coated on filters used for the
purification of water. In some studies, PVK and SWNTs
were found to destroy bacterial cell membranes [34].

Furthermore, NPs are currently being used as preser-
vatives in packages to prevent food spoilage. For ex-
ample, allyl isothiocyanate (AIT) and CNTs can be
incorporated into packaging materials so as to prevent
the contamination of food by Salmonella choleraesuis
[97]. The allyl isothiocyanate (AIT) and CNTs work by
providing an antimicrobial film that reduces the micro-
bial contamination, control oxidation and reduces the
colour changes for up to 40 days [97].

Nanoparticles antimicrobial mechanisms of action
Traditionally, most antimicrobial agents inhibit micro-
bial growth through several mechanisms such as cell
wall inhibition and lysis, inhibition of protein synthesis,
alteration of cell membranes, inhibition of nucleic acid
(NA) synthesis and antimetabolite activity [113]. The
NP-antimicrobials, on the other hand, may encompass
and differ slightly due to their vast physiochemical
properties with respect to size, shape, surface area,
surface energy, charge, crystallinity, agglomeration,
aggregation and chemical composition [114-116].
Although most NP-antimicrobial mechanisms of action
are still unknown and are currently under investigations
[117], studies show that NPs can mediate bacterial cell
membranes degradation [118—120]. For example, Li et al.
[120] found the degradation of S. aureus by Catechin-Cu
NPs. The Catechin-Cu NPs was also found to exert
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different mechanisms of action during E. coli cell wall
degradation, which is an indication of different impacts on
the Gram negative and Gram positive bacteria [120].
The multiple effects have also been observed in
CuNP-antimicrobial actions which include the generation
of reactive oxygen species and lipid peroxidation [118].
Other CuNP-antibacterial actions include protein oxida-
tion and DNA degradation in E. coli cells [118]. Another
study by Xie et al. [121] showed that zinc oxide (ZnO) NPs
exerted bactericidal effect by disruption of the cell mem-
brane and oxidative stress in Campylobacter jejuni. The
NP-antimicrobials such as AgNP have also been shown to
bind to lippopolysaccharides, surface proteins or porin,
collapsing the microbial cell wall and limiting the mem-
brane potential [122]. Similarly, AgNP have been found
to induce efflux of phosphate, reduction of cellular
ATP level, interacting with sulphahydryl (or thiol)
group and altering cytoplasmic components as well as
inhibiting the respiratory enzymes and blocking of
DNA replication in both Gram negative and Gram
positive bacterial pathogens [122]. These studies show
that different NPs have very different physiochemical
properties and thus exhibit different antimicrobial
mechanisms of action.

Nanoparticles toxicity

The NPs antimicrobial agents have excellent potent
and low tendency of inducing resistance when com-
pared to non-NPs-antimicrobial agents [123]. However,
the NP-antimicrobial agents’ pharmacological properties
may be hampered by potential toxicity [123, 124]. As
stated in previous sections of this review paper, NPs
facilitate the penetration and delivery of antimicrobial
agents into biological membranes including microbial
cells, thereby enhancing and increasing biological
activities [76, 113]. This means that the toxicity of
different NP-antimicrobial polymers needs a time-
dependent understanding and characterization [125].
Generally, antimicrobial agents’ biocompatibility inhibition
cannot occur without producing some undesirable health
effects, either local or systemic. In fact, the most deterring
effect of most drugs is their potential toxicity to organisms
of which NPs-antimicrobials agents are not an exception.
Therefore, effective NP-antimicrobial agents’ dose-related
response is an important factor in relation to human expos-
ure and other organisms. Few studies have described the
toxicity of NP-antimicrobials (Table 1) with controver-
sies. For example, a study by Cooper and Spitzer [126]
shows that AgNPs antimicrobials at sub-lethal dose dis-
rupt cytoskeleton and neurite dynamics when cultured in
adult neural stem cells. For example, at sub-lethal dose of
1.0 pg/mL, AgNP cultured in neural stem cells induced
the formation of f-actin inclusions, indicating a disruption
of actin function [126]. Similar findings were reported by
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Baram-Pinto [101] that AgNPs capped with Mercap-
toethane Sulfonate showed some serious effects in mam-
malian cells. Some results showed that PVK-SWCNT-
antimicrobial agents were nontoxic to fibroblast cells as
opposed to pure SWCNTs [34]. Multivalent Sialic acid
functionalized AuNPs-antimicrobials agents have also
been shown to demonstrate no toxic effect on Madin-
Darby canine kidney cells [107]. Similarly, copper (II)
nanohybrid solids-antimicrobial have shown no toxic ef-
fect on human hepatocellular carcinoma cells [109]. In an-
other study, no cytotoxicity was reported when rats were
treated with antibacterial AgNP-loaded titanium nanotube
[127]. The rat cells expressed no toxicity thus demon-
strating the competence of NPs-antimicrobials as future
antimicrobial agents. However, despite several studies,
the current available information is insufficient to
ascertain the adverse effects of NP-antimicrobials on
human health. Therefore, it is imperative that further
research is carried out to mitigate any toxicological
problems that may arise.

Summary and future perspectives

Research has shown that the functionalization-
immobilization and/or hybridization of NPs can en-
hance and improve the antimicrobial activities of the
nanomaterials against a wide range of multi-resistant
strains of pathogenic microorganisms. For example, a
single type of NP-antimicrobial agent could show
multiple antimicrobial properties against many path-
ogens. However, these characteristics may also alter
the microbial flora of the body since their antimicrobial
action is non-specific. Most of the studies reviewed
showed that AgNPs were the widely used and have several
antibacterial, antiviral, antifungal, anti-parasite, anti-insect
and anti-vector borne properties. Generally, most NP-
antimicrobial drugs were able to target and transit
difficult membrane barriers, deliver and sustain the NP-
antimicrobial doses resulting in disease clearance which is
a difficult phenomenon for conventional antimicrobials.
However, more information on the toxicological effects of
NP-antimicrobial agents is needed so as to enhance and
broaden their biomedical application [76]. In some
instances, depending on the size of the NP, the particle
tended to be toxic rather than demonstrating antimicro-
bial effect of inhibiting pathogens. For example, very small
AgNPs were found to cover the pathogen, inhibiting oxy-
gen supply to the pathogen thus reducing respiration and
toxically killing the pathogen rather than inhibiting the
microbial growth [14]. However, very small NPs may
also be toxic to human pathogens. For example, AgNPs
ranging from 10-20 nm were found to be toxic to Bacillus
species, E. coli and Staphylococcus species. [14]. Therefore,
it is imperative that further research is carried out to
mitigate such problems.
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