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Much progress in AI over the last decade has been driven by advances in

natural language processing technology, in turn facilitated by large datasets

and increased computation power used to train large neural language models.

These systems demonstrate apparently sophisticated linguistic understanding

or generation capabilities, but often fail to transfer their skills to situations

they have not encountered before. We argue that computational situated

grounding of linguistic information to real or simulated scenarios provide

a solution to some of these learning challenges by creating situational

representations that both serve as a formal model of the salient phenomena,

and contain rich amounts of exploitable, task-appropriate data for training new,

flexible computational models. We approach this problem from a neurosymbolic

perspective, using multimodal contextual modeling of interactive situations,

events, and object properties, particularly afforded behaviors, and habitats,

the situations that condition them. These properties are tightly coupled to

processes of situated grounding, and herein we discuss we combine neural

and symbolic methods with multimodal simulations to create a platform,

VoxWorld, for modeling communication in context, and we demonstrate

how neural embedding vectors of symbolically-encoded object a�ordances

facilitate transferring knowledge of objects and situations to novel entities, and

learning how to recognize and generate linguistic and gestural denotations.

KEYWORDS

situated grounding, multimodal dialogue, neurosymbolic intelligence, a�ordance

learning, embodiment, interactive agents, VoxML

1. Introduction

Over the past 15–20 years, AI has seen remarkable growth. Once beset by unmet

expectations, it is now a central focus of modern computer science, with a maturing

set of technologies to match (Menzies, 2003; McCarthy, 2007; Liu et al., 2018).

A significant proportion of this growth has been driven by advances in natural

language processing (NLP), previously a difficult problem with brittle solutions, and

now a mainstay of technologies in everyday use. Developers without substantial prior

knowledge of AI or linguistics can now use robust pipelines for natural language

tasks such as tokenization, parsing, or speech recognition, just to name a few.

Within the previous decade, the 2010s, NLP progress was kicked into overdrive,

largely due to developments in deep learning and the concurrent emergence of
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large datasets and affordable GPUs for processing them. Deep

learning has been applied to tasks such as question answering

(Sultana and Badugu, 2020), dialogue systems (Zaib et al., 2020),

and text generation (Iqbal and Qureshi, 2020), etc.

Many of the biggest recent successes in NLP have been

driven by large, pre-trained language models, beginning with

ELMo (Peters et al., 2018), and now usually based on the

transformer architecture, including BERT (Devlin et al., 2018),

and the GPT family (Radford et al., 2019). These language

models lend themselves well to transfer learning with task-

specific fine tuning, and facilitate the generation of text that is

grammatical, largely coherent, and usually on-topic given an

initial prompt. They are also simple to deploy and well-pipelined

for general use in larger applications or just as a demonstration

of the capabilities of modern NLP.

Nonetheless, despite the apparent success of language

models in NLP tasks, there are a number of ways in which

they fail to demonstrate “intelligence” or “understanding” as

commonly defined, in particular on “tasks” that would typically

be trivial for a human (Bender and Koller, 2020). In previous

work (Krishnaswamy and Pustejovsky, 2019c; McNeely-White

et al., 2019), we have given the example of asking a computer

or smartphone the simple (for a human) question “What am

I pointing at?” Put simply, current NLP systems lack the

machinery to answer the question, being unable to see you or

the surrounding context, and so tend to dodge the question1.

Large predictive language models (such as multimodal BART-

Large Lewis et al., 2019) appear to perform better, at least in

benchmarked competitions, such as the SIMMC track at DSTC9

(Moon et al., 2020; Kottur et al., 2021). The apparent success

of these models, however, is tempered when considering the

nature of the task: i.e., simulated virtual multimodal shopping

cart decision making. While benchmarking and evaluation are

important, this is far from the fluent situated grounding we

perform as humans interacting in the world every day2.

This is not surprising, given the nature of how such

models are trained. Although trained on a enormous amount

of text, these models lack knowledge of the current situational

context, because that context is supplied using non-textual

modalities, and so the main advertised advantage of a pre-

trained language model—the ability to transfer knowledge

learned from observed text to previously unencountered text—

disappears. As in the SIMMC challenge, visual and multimodal

transformers (e.g., Tsai et al., 2019; Dosovitskiy et al., 2020) have

been trained to perform cross-modal inference on multiple tasks

(Hu and Singh, 2021), but require the same or larger data sizes

1 Most common systems avoid a nonsensical response with an openly

preprogrammed one, e.g., “Interesting question” (Siri) or “You’re a great

person to chat with!” (Google Mini).

2 In fact, in extended dialogue exchanges, the model performance

drops significantly (Crook et al., 2021).

as unimodal transformers, and evidence suggests that accurate

visual processing in a live context requires additional fine-tuning

of the visual models to filter out the background (Trabelsi et al.,

2021).

In the real world, we now have many usable interactive

systems, such as smartphones and the entire internet-of-things,

but the large datasets and compute power that facilitate high-

performing NLP fail in many contexts in which we might wish

to use these devices, and might expect them to function as if

they truly understand us. Put simply, the current state of the

technology runs up against a wall because these systems exist

in a situated context (a home, an office, a car, a pocket, etc.),

but lack the ability to validate information across the different

modalities of description that might be implicated in all these

situations. They also lack background knowledge about other

entities present in the situation. Therefore, how can we expect

to interface with these devices when something so basic to a

human—like “What am I pointing at?”—fails?

However, the answer to this puzzle is not simply the

incorporation of the right sensors into the device. Simply

giving a smartphone’s AI access to the camera is not

enough; comparison of the literature on human object

recognition vs. object recognition using computational neural

networks suggests the two processes are rather different.

Typical computational object recognition pipelines are usually

constructed to assign a label or caption to an image. More

sophisticated ones may assign heatmaps showing the region

of the image being attended to in conjunction with the label

or a particular word in the caption (Xu et al., 2015). While

these kinds of computational vision pipelines have analogs in

low-level human visual processing, low-level visual features

do not fully explain how humans solve object recognition

and categorize object classes (Zhang, 2010). Core recognition

requires capturing properties of invariance (Riesenhuber and

Poggio, 1999; DiCarlo et al., 2012), and certain computational

recognition architectures have demonstrated success in using

visual semantics to ground invariant representations (e.g., Garg

et al., 2018). Since the 1990s, cognitive linguists have also

hypothesized that semantic invariance accounts for the transfer

of linguistic category labels between domains (Lakoff, 1993)

while maintaining basic semantic structure.

In this paper, we will:

• Discuss our situated grounding approach to multimodally

encoding structured context using the VoxML modeling

language;

• Introduce our platform, VoxWorld, which demonstrates

real-time modeling of context through multimodal

grounding of object and event properties in a simulation

environment, and the common ground that arises between

interlocutors in the course of an interaction;

• Demonstrate the affordance embeddings technique, that

leverages the benefits of both neural and symbolic models

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2022.774752
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishnaswamy and Pustejovsky 10.3389/frai.2022.774752

to address novel challenges in AI: learning the properties

and description of novel objects, and learning affordance-

denoting gestures.

2. Related work

The problem of grounding the meaning of symbols in a

cognitivist approach was famously focused by Harnad (1990),

who posited connectionism as a candidate mechanism for

learning invariant features. In the area of human-computer

interaction and dialogue, much of the foundational work in

situated language understanding has its origins in the diverse

areas of multimodal interface design, starting with work that

combines language and gesture (Bolt, 1980), which anticipated

some of the issues discussed here, including the use of deixis

to disambiguate references, and also inspired a community

surrounding multimodal integration (e.g., Dumas et al., 2009;

Kennington et al., 2013; Turk, 2014). The psychological

motivation for multimodal interfaces, as epitomized by Quek

et al. (2002), holds that speech and gesture are co-expressive and

processed partially independently, and therefore complement

each other. Using both modalities increases human working

memory and decreases cognitive load (Dumas et al., 2009),

allowing people to retain more information and learn faster.

Visual information has been shown to be particularly

useful in establishing common ground (Clark and Wilkes-

Gibbs, 1986; Clark and Brennan, 1991; Dillenbourg and Traum,

2006; Eisenstein et al., 2008a,b), or mutual understanding that

enables further communication. Many researchers in HCI have

emphasized the importance of shared visual workspaces in

computer-mediated communication (Fussell et al., 2000, 2004;

Kraut et al., 2003; Gergle et al., 2004), highlighting the usefulness

of non-verbal communication in coordination between humans

(Cassell, 2000; Cassell et al., 2000).

We take the view that a “meaningful” interaction with

a computer system should model certain aspects of similar

interactions between two humans (Kruijff et al., 2010). Namely,

it is one where each interlocutor has something “interesting"

to say, and one that enables them to work together to achieve

common goals and build off each other’s contributions, thereby

conveying the impression to the user that the computer system

is experiencing the same events. Hence, the foundation of

multimodal communication, be it human-human or human-

computer, is based on the following criteria (Kruijff et al., 2007;

Kozierok et al., 2021; Krishnaswamy and Pustejovsky, 2021).

1. Interaction has mechanisms to move the conversation

forward (Asher and Gillies, 2003; Johnston, 2009).

2. System makes appropriate use of multiple modalities (Arbib

and Rizzolatti, 1996; Arbib, 2008).

3. Each interlocutor can steer the course of the interaction

(Hobbs and Evans, 1980).

4. Both parties can clearly reference items in the interaction

based on their respective frames of reference (Ligozat, 1993;

Zimmermann and Freksa, 1996; Wooldridge and Lomuscio,

1999).

5. Both parties can demonstrate knowledge of the changing

situation (Ziemke and Sharkey, 2001).

It has long been clear that human reasoning is strongly

sensitive to context (Stenning and Van Lambalgen, 2012; Pereira

et al., 2014), and recently, earlier logical-symbolic methods

of encoding context, prevalent in the AI field before the AI

winter of the 1980s, have been incorporated into deep learning-

driven modern AI methods as a way of including some of the

structure they provide into the flexible representations provided

by deep learning (e.g., Besold et al., 2017; Garcez et al., 2019;

Mao et al., 2019; Marcus and Davis, 2019)3. The question of

better incorporating contextual structure into deep learning

necessarily raises the question of the analytic and structural units

of context.

Context is strongly coupled to the elements of the

surrounding environment in which reasoning takes place. That

is, in order to conduct and describe reasoning, an agent (human

or artificial) must ground its thoughts, actions, and utterances

to elements of the environment (e.g., as demonstrated by Kopp

and Wachsmuth, 2004). “Grounding” in much of currently-

practiced NLP typically refers to kinds of multimodal linking,

such as semantic roles to entities in an image (Yatskar et al.,

2016), or joint linguistic-visual attention between a caption

and an image (Li et al., 2019). Most work in the broader

AI community concerned with the computational construction

of reasoning environments naturally comes from the robotics

community (e.g., Thrun et al., 2000; Rusu et al., 2008), or

from the deep reinforcement learning (RL) community, where

simulated environments are used for navigation, game-playing,

and problem solving via deep RL (Kempka et al., 2016; Kolve

et al., 2017; Savva et al., 2017, 2019; Juliani et al., 2018). These

environmental platforms are not developed specifically to focus

on communication, underspecification resolution, language

grounding, or concept acquisition, though they may be used for

these cases.

Reasoning successfully about an environment largely

depends on the ability to recognize and reason about the objects

that populate the environment, and a primary component of

the context of objects is the actions that those objects facilitate,

or their affordances (Gibson, 1977, 1979). An affordance is

an action possibility that an item, usually an object, allows

an agent. For example, chairs are can be sat on, cups can

be drunk from, and handles can be grasped. Exploiting

3 Other discussion of these developments took place in keynote

addresses given at AAAI 2020 by David Cox of IBM, Henry Kautz of the

University of Rochester, and Turing Award winners Geo�rey Hinton, Yann

LeCun, and Yoshua Bengio.
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affordances can themselves give rise to other affordances,

such as when grasping a door knob allows the possibility of

opening the door if it is closed. Affordances in the large have

been a topic of interest in many subcommunities in artificial

intelligence, cognitive science, and computational language

understanding (Osiurak et al., 2017). Psychological studies have

shown that humans respond faster when objects are observed

in canonical configurations (or habitats) for their typical

affordances (Yoon et al., 2010). Roboticists are particularly

interested in affordances, and work from that community has

demonstrated that in order to successfully interact with an

object, it is more important to know its function than its name.

Function correlates with action and the associated hot spots

of the objects enabling these affordances (Myers et al., 2015;

Kulkarni et al., 2019; Allevato et al., 2020; Fang et al., 2020;

Murali et al., 2020; Turpin et al., 2021). The computer vision

community has also recently produced data-driven work on

affordances, ranging from a focus on grasping (Tekin et al.,

2019; Grady et al., 2021; Hou et al., 2021) to intention-driven

human-object interaction (Xu et al., 2019).

The advent of large datasets of annotated images and

video has allowed the application of many deep learning

techniques toward computational processing of the objects

depicted in those datasets, and their functions. Of note is

work in spatial affordances for self-driving cars (Chen et al.,

2015), simultaneous object and affordance prediction using deep

CNN backbones (Do et al., 2018), reasoning about human-

object interaction via dual-attention networks (Xiao et al., 2019),

and predicting structural affordances such as concavity through

relational graphs (Toumpa and Cohn, 2019). However, there

exists a gap between many of the approaches facilitated by

large datasets and the approaches to the topic as demonstrated

in psychology and cognitive science: the data-driven systems

are task-specific and have difficulty expanding beyond the

entities they are trained over, they typically do not have a

strong treatment for habitats (McDonald and Pustejovsky, 2013;

Pustejovsky, 2013)—the configurations in which an affordance

of an object may or may not be available for exploitation,

and they depend on large amounts of data which makes them

expensive and time-consuming to train.

One significant early attempt to model the use of language

and non-verbal behavior in situated contexts is the work

associated with the Collaborative Research Center’s Situated

Artificial Communicator project (Rickheit and Wachsmuth,

2006). Importantly, for our present discussion, the focus of

this work was on task-oriented communicative interactions,

combining language, knowledge, planning, and sensorimotor

skills. The results reported in Kranstedt et al. (2008) discuss

how gesture and deixis are distinguished in task-oriented

communication, concerning the distinction between object-

pointing and region-pointing. They further discuss the

integration of deictic gesture in the determination of the

semantics of a multimodal expression, through multimodal

alignment. Subsequent work on how to annotate multimodal

dialogue to best reflect the negotiation of common ground

has resulted in annotation specifications for capturing such

interactions (Tenbrink et al., 2008, 2013) as well as multimodal

datasets that encode these complex interactions between gesture

and language in dialogue (Lücking et al., 2013). The use of

multiple modalities enrich the ways that humans and agents can

communicate in situation based tasks, such as those investigated

in the cognitive robotics community [e.g., Cangelosi (2010)].

The broad definitions of the goals of situated dialogue

in a multimodal setting were laid out in Kruijff et al. (2007)

and Kruijff et al. (2010), and have given rise to a number

of fruitful and productive research avenues, as reported in

Beinborn et al. (2018) and Krishnaswamy and Pustejovsky

(2021). Our “situated grounding” approach uses multimodal

simulated environments and exploits affordances to both

facilitate learning of object properties and to compose the

constraints imposed by the use of affordances to learn structural

configurations (Krishnaswamy and Pustejovsky, 2019c;

Krishnaswamy et al., 2019; Pustejovsky and Krishnaswamy,

2019). We have demonstrated how to exploit multimodal

information to conduct learning over smaller data samples

than typical end-to-end deep learning pipelines. This potential

for sample efficiency suggests that situated grounding allows

reusing elements of the learning pipeline to apply solutions

from one task to another.

Recent work on multimodal conversational modeling

(Crook et al., 2021; Kottur et al., 2021; Chiyah-Garcia et al., 2022)

has pushed the boundary of what capabilities, as mentioned

in Kruijff et al. (2010), can be addressed using multimodal

transformer architectures, such as Chen et al. (2020) and Hu

et al. (2020). There is some recent work attempting to integrate

the data-driven, neurally-encoded information associated with

robotic arm placement and control with linguistic symbolic

guidance and instruction through dialogue (She et al., 2014; She

and Chai, 2017).

3. Multimodal communication in
context

As sophisticated as current task-based AI systems are and

as intelligent as they can behave in their domains, they often fail

in understanding and communicating crucial information about

their situations. Robust communicative interaction between

humans and computers requires that:

1. All parties must be able to recognize input and generate

output within multiple modalities appropriate to the context

(e.g., language, gesture, images, actions, etc.);

2. All parties must demonstrate understanding of contextual

grounding and the space in which the conversation takes

place (e.g., co-situated in the same space, mediated through

an interface, entirely disconnected, etc.);
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3. All parties must appreciate the consequences of actions taken

throughout the dialogue.

Multimodal tasks rely on the contexts established between

and across modalities (Matuszek, 2018), and so we propose

that the difficulties faced by multimodal end-to-end systems,

as well as the difficulty evaluating the state of these tasks

is largely because contextual encoding still tends to be hit-

or-miss, and the nature of the analytic and structural units

of context, as humans use for sensitive contextual reasoning,

remain the subjects of debate. This section introduces our

approach to this problem: a modeling language and theoretical

framework, VoxML (Pustejovsky and Krishnaswamy, 2016),

that captures common object and event semantics, with a

particular focus on habitats and affordances. VoxML models

ontological information that is difficult to learn from corpora

due to being so common that it is rarely documented and

therefore not available to machine learning algorithms4.

Following on Clark et al. (1983); Stalnaker (2002); Asher and

Gillies (2003); Kruijff et al. (2007); Tomasello and Carpenter

(2007); Abbott (2008), and others, we adopt and elaborate

the notion of computational common ground that emerges

between interlocutors as they interact, and facilitates further

communication by providing common knowledge among

agents (Chai et al., 2014). Common ground is one such method

of encoding and analyzing situational and conversational

context (Kruijff, 2013; Pustejovsky, 2018).

We break down computational common ground into

representations of:

• A: the agents interacting;

• B: the set of the agents’ beliefs, desires and intentions (BDI);

• P: the perceived objects involved in the interaction;

• E : the minimal embedding space required to execute the

activities implicated during the course of the interaction.

All these parameters also include the terms used to discuss

them. For instance, in Figure 1, we have a shared task involving

washing and putting away dishes. In this context, the participants

most likely agree that they share a goal to, e.g., clean the dishes,

empty the sink, put the dishes away, etc. (if one of them does

not share this belief, this impacts the way both of them will

communicate about the task and their beliefs about it). This in

turn implicates the properties of the objects involved, e.g., what

4 For example, that a ball is round is taken as a given and so the two

words actually collocate comparatively rarely. The result of this can be

seen in action by taking two simple sentences: “This is a ball” and “This ball

is round,” and getting contextualized token embeddings from a text-only

model, such as BERT. Using the uncased version of BERT-base, the cosine

distance between the two boldedwords is 0.377. But if “round” is changed

to “flat” or “square,” the cosine distance between the two contextualized

embeddings actually goes down, to 0.345 or 0.303 respectively.

FIGURE 1

Two humans interacting in a shared task with example common

ground entities.

it means to have a clean plate vs. a dirty plate with relation to

what a plate is for.

Specific object properties are a topic of much discussion in

semantics, including Generative Lexicon theory (Pustejovsky,

1995; Pustejovsky and Batiukova, 2019), and are also of

interest to the robotics community (Dzifcak et al., 2009).

Object properties, though important for theoretical semantics

and practical applications of modern intelligent systems,

pose a problem for even some of the most sophisticated

task-based AI systems. A formal structure provided by the

elements of common ground and situational context proposes

a possible solution to these difficulties. Subsequently, we detail

experiments we have been conducting in VoxWorld, the

situated grounding platform based on the VoxML modeling

language. These experiments combine neural learning and

symbolic reasoning approaches to address transfer learning and

affordance learning for an intelligent agent.

3.1. Modeling context

The actions facilitated, or afforded, by objects (Gibson,

1977) are a primary component of situational context. Gibson’s

initial formulation of affordances defines the term as what the

environment “offers the animal.” Gibson refers to the term

as “something that refers to both the environment and the

animal in a way that no existing term does. It implies the

complementarity of the animal and the environment” (Gibson,

1979).

We use the term in our work in a way that attempts

to cover the extensive ground that Gibson uses it for, while

maintaining a clear relation between the environment (including

object configuration as a positioning, or habitat), the properties

of an object that allow it to be used for certain behaviors

(e.g., the “graspability” of a handle), and the language used to
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describe these behaviors and ground them to an environment or

situation, as has been explored in recent neural AI work (e.g.,

Das et al., 2017; Hermann et al., 2017).

For instance, a cup standing upright on its supporting

surface is in a position to be slid across it, while on its side,

the cup is in a position to be rolled. Executing one or the

other of these actions would require the cup to be placed in the

prerequisite orientation, and may result in concomitant effects,

such as anything contained in the cup spilling out (or not). These

configurational constraints are encoded as habitats in Feature

Structure (1), with the property of being upright encoded as

an intrinsic habitat (H[3]) and being on its side encoded as an

extrinsic habitat (H[5]).

(1)
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LEX =

[

PRED = cup

TYPE = physobj•artifact

]

TYPE =















HEAD = cylindroid[1]

COMPONENTS = surface[1], interior[2]

CONCAVITY = concave[2]

ROTAT_SYM = Y

REFL_SYM = XY, YZ















HABITAT =

















INTR = [3]

[

UP = align(Ȳ ,EY )

TOP = top(+Y)

]

EXTR =









[4]

[

UP = align(Ȳ ,EY )

TOP = top(−Y)

]

[5]
[

up = align(Ȳ ,E⊥Y )
]

























AFFORD_STR =





























A1 = H → [put(x, y, on([1])]support([1], y)

A2 = H[3] → [put(x, y, in([2])]contain([2], y)

A3 = H → [grasp(x, [1])]hold(x, [1])

A4 = H → [lift(x, [1])]hold(x, [1])

A5 = H → [ungrasp(x, [1])]release(x, [1])

A6 = H[3,4] → [slide(x, [1])]R

A7 = H[5] → [roll(x, [1])]R

...





























EMBODIMENT =

[

SCALE = <agent

MOVABLE = true

]









































































































We correlate these afforded behaviors (a la Gibson, and

Pustejovsky, 1995’s telic roles) with the notion of habitats

(McDonald and Pustejovsky, 2013; Pustejovsky, 2013), or

conditioning environments that facilitate affordances. VoxML

provides the format for the symbolic encodings of our

neurosymbolic pipeline. Each component of a VoxML encoding,

or “voxeme” (e.g., object shape, event semantic class, individual

habitat, affordance, etc.) can be hand-encoded, extracted

from corpora, or learned, providing a way to habituate

common qualitative knowledge into a structured but flexible

representation. This qualitative knowledge is important to

reflect human-like qualitative reasoning capabilities in a

computational context. When reasoning about a ball rolling,

humans do not need to know the exact value of parameters

like speed or direction of motion, but to simulate the event

computationally, every variable must have a value for the

program to run. VoxML provides a structured encoding of

properties for these variables that allows a system to generate

values when needed. Feature Structure (1) shows the VoxML

encoding for a cup. Note the intrinsic upward orientation of the

habitat H[3] where the cup’s Y-axis is aligned with that of the

world, and the afforded behaviors that may be conditioned on

a particular habitat, or may be available in any habitat (denoted

H →). [[CUP]] has a “roll” affordance ([roll(x, [1])]R), where

R simply stands for the resultant state of the process resultative

(Pustejovsky and Batiukova, 2019).

3.1.1. Multimodal simulations

The situated, simulated environments of the VoxWorld

platform bring together three notions of simulation from

computer science and cognitive science (Pustejovsky and

Krishnaswamy, 2019):

1. Computational simulation modeling. That is, variables in

a model are set and the model is run, such that the

consequences of all possible computable configurations

become known. Examples of such simulations include

models of climate change, the tensile strength of materials,

models of biological pathways, and so on. The goal is to arrive

at the best model by using simulation techniques.

2. Situated embodied simulations, where the agent is embodied

with a dynamic point-of-view or avatar in a virtual or

simulated world. Such simulations are used for training

humans in scenarios such as flight simulators or combat

situations, and of course are used in video gaming as

well. In these contexts, the virtual worlds assume an

embodiment of the agent in the environment, either as a first-

person restricted POV or an omniscient movable embodied

perspective. The goal is to simulate an agent operating within

a situation.

3. Embodied theories of mind and mental model building. Craik

(1943) and, later, Johnson-Laird (1987) develop the notion

that agents carry a mental model of external reality in their

heads. Johnson-Laird and Byrne (2002) represent this model

as a situational possibility, capturing what is common to

different ways the situation may occur. Simulation Theory in

philosophy of mind focuses on the role of “mind reading” in

modeling the representations and communications of other

agents (Gordon, 1986; Goldman, 1989, 2006; Heal, 1996).

Simulation semantics (as adopted within cognitive linguistics

and practiced by Feldman, 2010; Narayanan, 2010; Bergen,

2012; Evans, 2013) argues that language comprehension is

accomplished by such mind reading operations. There is

also an established body of work within psychology arguing

for mental simulations of future or possible outcomes, as

well of perceptual input (Graesser et al., 1994; Zwaan and

Radvansky, 1998; Barsalou, 1999; Zwaan and Pecher, 2012).

The goal is semantic interpretation of an expression by

means of a simulation, which is either mental (a la Bergen

and Evans) or interpreted graphs such as Petri Nets (a la
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FIGURE 2

Visualization of “lean the cup on the book”.

Narayanan and Feldman). The aforementioned approaches

cover only certain embodied theories of mind that are

relevant to this work vis-à-vis the building of mental models

and representations.

Bridging AI and cognitive science in this way has particular

relevance to grounded natural language understanding,

especially in the challenges of incorporating world knowledge,

ecological semantics (Gibson, 1979; Feldman, 2006), and

affordances (Gibson, 1977; Tamari et al., 2020). Krishnaswamy

(2017) brings computational model testing, situated

embodiment, and mental modeling machinery together

into Monte-Carlo visual simulation of underspecified motion

predicates, which forms the backbone of a situated approach to

learning and language understanding. Given a label (symbol) of

a motion verb, there may be a large space of potential specific

instantiations of that motion that satisfy the label. The specifics

may depend on the objects involved, and may contain many

underspecified variable values (e.g., speed of motion, exact

path—depending on the verb, etc.). This makes resolving

underspecification ripe territory for the application of neural

networks as universal function approximators.

In the washing and putting away dishes scenario from

above, each agent maintains their own model of what the other

agent knows, including respective interpretations of vocabulary

items. For instance, if the mother says “pass me that plate”

and the son throws it at her, it becomes clear to her that his

interpretation of “pass” differs from hers. Since the computer

system operationalizes all these motion predicates in terms of

primitive motions like translate and rotate, it needs a model

that accommodates flexible representations of these primitive

motions and of their composition into more complex motions.

The Monte-Carlo simulation approach of VoxWorld

provides the model in which to operationalize these complex

motion predicates in ways that behave according to the

preconceived notions of a typical human user. Given an input

(a simple event description in English), the input is parsed

and broken out into VoxML representations of the objects,

events, and relations involved. These individual structured

representations are then recomposed. From that recomposition,

the variables of the composed representation that remain

unassigned are extracted as the underspecified features.

The VoxML- and Unity-based VoxSim software

(Krishnaswamy and Pustejovsky, 2016b) was then used to

generate over 35,000 animated visualizations of a variety of

common motion events (put, slide, lift, roll, lean, etc.) with a

vocabulary of common objects (cups, pencils, plates, books,

etc.), that displayed a wide variety of underspecified variables

in their respective operationalizations. Every visualization

was given to 8 annotators each, along with two other variant

visualizations of the same input event, and the annotators

were asked to choose the best one, as well as to choose the

best event caption for each visualization5. We then extracted

the range of values assigned to underspecified parameters in

those visualizations which annotators judged appropriate, and

used a feedforward deep neural network (DNN) to predict

the best values for underspecified parameters given an event

input in plain English. When given an input text, VoxSim runs

the underspecified parameter symbols through the model, and

the resultant output values are assigned to the relevant input

parameters, resituated in the scene, and executed in real time to

create an appropriate visualization of the input event. Figure 2

shows the resulting state for one such visualization for “lean the

cup on the book.”

This pipeline is shown in Figure 3 and serves as the basis

for interactively exploring learning and reasoning through

situated grounding and has been used to explore problems in

spatial reasoning, concept acquisition for structures and novel

configurations, and referring expressions (Krishnaswamy and

Pustejovsky, 2019a,c; Krishnaswamy et al., 2019).

A standard VoxML library including 23 object encodings

with habitats and affordances, 8 programs, and 12 relations

is available with the VoxSim distribution at https://github.

com/VoxML/VoxSim. Pustejovsky and Krishnaswamy (2016)

contains the specification for crafting more voxemes.

4. A�ordance embeddings for
transfer learning of object properties
and linguistic description

If through correlating cross-modal representations, situated

grounding serves as a platform for improving sample efficiency

through reuse, it should also facilitate transferring knowledge

gained from solving one problem and applying it to another

5 Data is available at https://github.com/nkrishnaswamy/

underspecification-tests.

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2022.774752
https://github.com/VoxML/VoxSim
https://github.com/VoxML/VoxSim
https://github.com/nkrishnaswamy/underspecification-tests
https://github.com/nkrishnaswamy/underspecification-tests
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishnaswamy and Pustejovsky 10.3389/frai.2022.774752

FIGURE 3

Pipeline for generating multimodal simulations.

situation. Situatedness is particularly useful for transfer learning,

because similar concepts often exist in similar situations (cf.

analogical generalization, a la Forbus et al., 2017).

In Section 1, we discussed the difficulty that unimodal

language understanding systems can have when answering

certain simple questions pertaining to situatedness, e.g.,

“what am I pointing at?” In addition, top-performing object

recognition and image classification algorithms of the last

decade [e.g., AlexNet (Krizhevsky et al., 2012), ResNet (He

et al., 2016), or Inception (Szegedy et al., 2017)] have

since been shown to sometimes learn or exploit trivial

or spurious correlations in the data, such as correlating

object class with background features, or learning only

object poses shown with little occlusion (Barbu et al., 2019).

These resulting biases make it difficult for such systems

to identify objects that do not occur in the large datasets

they train over (e.g., a new type of chair that a human

would recognize as such even if it lacks many stereotypical

design features of a chair), or that occur in non-canonical

framing or view (e.g., a picture of a chair taken from

above).

Moreover, the reason that humans can identify novel objects

as belonging to a known or similar class as well as recognize

objects in unconventional situations is likely due to neural

processes triggered within the brain when humans (and some

primates) are presented with objects to interact with. Memories

of these interactions guide subsequent analysis of other objects

(Jeannerod et al., 1995; Grafton et al., 1997), making object

identification in humans an inherently multimodal process.

Multimodal cues allow humans to learn and “cache out”

representations of objects and their associated activities into

grounded semantics that can be referenced through language

(Arbib, 2008; Pustejovsky, 2018).

While situated grounding provides a solution to linking

linguistic terms to entities sharing the agent’s co-situated space,

the agent can still only discuss these entities if she knows the

appropriate terms for them. If an agent encounters a new object

that she doesn’t know the name of, she can discuss it in terms of

“this one” or “that one,” but cannot decontextualize the reference

with a lexical label.

Since similar objects typically have similar habitats and

affordances (e.g., cylindrical items with concavities often serve

as containers), it is worth investigating whether such properties

can be transferred from known objects to novel objects that are

observed to have similar associated properties.

The method we use is termed affordance embedding. This

follows an intuition similar to the Skip-Gram model in natural

language processing (Mikolov et al., 2013), or the masked

language model of BERT (Devlin et al., 2018), but exploits the

linkage between affordances and objects present in a modeling

language like VoxML, which is tightly coupled to simulated

physics of the real world.

As an example, [[CUP]], as shown in Feature Structure (1),

only affords rolling under a particular condition, encoded as

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2022.774752
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishnaswamy and Pustejovsky 10.3389/frai.2022.774752

H[5], which requires that the cup be placed with its Y-axis (Ȳ),

the same axis of symmetry it shares with [[BALL]], perpendicular

(⊥) to the Y-axis of the embedding space E . Compare this to

a ball, which is rollable no matter its orientation. Therefore,

[[CUP]] is similar to [[BALL]] in terms of its rollability in general,

but may not be most similar in terms of the circumstances

under which rolling can occur, and so may not be as similar in

terms of other affordances such as grasping or containing. What

is novel about our approach here is that by using affordances

to learn correlations to other affordances without learning

the object label directly, we explicitly target the problem of

handling objects not encountered in the training vocabulary

(see Sections 4.3, 4.4), we consider the effect of both habitats

and affordances on object reasoning, and we demonstrate our

method’s performance on the task even though it is only trained

over a small sample size.

For affordances to be truly useful in learning about new

concepts, they need to demonstrate accuracy in analogizing new

entities to existing ones and the ability to make such predictions

from a small amount of prior data. Here we use habitats and

affordance information derived from a purposely small dataset

to address object similarity in a situated grounding context. In

the remainder of this section, we will:

• Detail our methods for analogizing objects from their

habitats and affordances;

• Present results showing the accuracy we can achieve using

different variations on these methods;

• Show how we deploy the resulting models in real-time

interaction;

• Demonstrate how to correlate newly-learned gestures to

object grasping actions.

4.1. Methodology

To automatically explore affordances such as grasping, a

system must have an agent capable of grasping items, namely

an embodied, situated agent that explores its situation and

grounds its reasoning to its own dynamic point of view. In

Krishnaswamy et al. (2017) and Narayana et al. (2018), we

examined the problem of situatedness and communication

within a situated context in an encounter between two “people”:

an avatar modeling multimodal dialogue with a human.

Our agent in VoxWorld, known as Diana, is situated in a

virtual VoxSim environment (Figure 4). A human interlocutor

can give Diana instructions about what to do with objects in

her virtual world using both spoken language and live gesture,

making Diana an interactive collaborator6.

6 A full-length video demo of Diana can be viewed here. More

information can be found at https://www.embodiedhci.net.

FIGURE 4

Diana interacting with a human in the “Kitchen World”

environment.

Here we will discuss a zero-shot transfer learning method

using objects available to the Diana agent. Our dataset, code, and

results may be found at the link below7.

4.1.1. Training data

The data we use comes in the form of VoxML-encoded

objects that drive the semantic processing in the Diana system

(e.g., McNeely-White et al., 2019). These datasets typically

contain separate encodings for distinct objects of the same type,

e.g., “red block” vs. “blue block” or other type-token distinctions

including those based on attributive qualities, so we strip the

data down to contain one VoxML encoding per voxeme type.

This leaves us with 17 distinct object types to train on: apple,

ball, banana, blackboard, block, book, bottle, bowl, cork, cup, disc,

grape, knife, paper sheet, pencil, spoon, and table.

These objects contain a diverse set of habitats describing

configurational and size constraints and a diverse set of

affordances including many behaviors in common, such as

grasping, and many distinct behaviors that are conditioned

on particular circumstances, including supporting, containing,

rolling, and sliding.

Given an affordance structure taken from a voxeme

(compare to Equation 1 above), there will be, for each affordance,

an encoding H[N] → [E]R, where H[N] refers to the habitat

encoding and points to an enumerated element of the intrinsic

or extrinsic habitat structure8, [E] refers to the event that can

be executed if the object is conditioned by habitat H[N], and

R refers to the result. For example, in the affordance H[3] →

[put(x, y, in([2])]contain([2], y) from the [[cup]] object:

• H[3] points to the intrinsic “upright” habitat of the cup,

being the typical orientation;

7 https://a�ordance-embeddings.s3.amazonaws.com/a�ordance-

embeddings.zip

8 Plain H with no reentrancy index refers to a null precondition,

meaning that the following behavior is a�orded by any habitat or

configuration of the object.
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• In this habitat, if some agent x puts object y in

subcomponent [2] of the cup (that being the interior),

• then the cup contains that object.

To train our affordance embedding models, we create a

word2vec-style Skip-Gram-style algorithm using Keras. The

inputs to this algorithm are ASCII representations of the

affordance encodings as discussed above. We split the encoding

on →, leaving a tuple (H[N], [E]R). Because the N in H[N] may

be ambiguous across objects (e.g., the habitat denoted H[1] in

two respective objects may be different), H[N] then looks up the

equivalent habitat in the voxeme’s habitat structure and replaces

H[N] with that. Thus, if the same habitat (e.g., “upward”: [UP

= align(Ȳ , EY ), TOP = top(+Y)]) is denoted as H[2] in object

voxeme but H[3] in another, they will be normalized and be

vectorized the same way.

4.1.2. Learning model

Affordance embeddings are designed to exploit the

correlations between habitats and affordances over a vocabulary

of known objects, and to map those correspondences to novel

objects that are observed to possess some known habitats or

affordances. We then infer in what manner those affordances

may be enacted on the novel object, by comparing it to a known

object. For instance, a habitat-affordance pair for a [[CUP]]

voxeme might be (H[3] = [UP = align(Ȳ , EY ), TOP = top(+Y)],

H[3] → [put(x, in(this))]contain(this, x)) (gloss: the cup’s Y-axis

is aligned upward with the Y-axis of the embedding space, and

if something is put inside the cup, the cup contains that thing).

The model outputs probabilities for each individual habitat or

affordance. Subsequently, for each possible action the agent

may take with an object (e.g., grasp, pick up, move, slide, put

on, etc.), the system queries the learned affordance embeddings,

excluding those affordances that include the particular action

in question. Conceptually, this restates the answer to a query,

e.g., “describe the appropriate habitat for grasping an object” in

terms of other actions that can be taken in that habitat, and the

habitat is matched to other objects that share that habitat. This is

effectively a second-order collocation. Other objects that share

a similar habitat are likely to share a similar affordance, and

perhaps also other affordances that do not depend on the habitat

in question, allowing us to potentially learn how to, say, grasp

a new object from inferring something about the containment

properties of another object.

Because the data is sparse due to the small sample, we

elected to use a Skip-Gram style model (although İrsoy et al.,

2021 suggests that a corrected CBOW model can perform as

well as Skip-Gram on sparse tasks). We provide one affordance

as the “focus word" and optimize the model as it attempts

to predict additional associated affordances as the “context

words.” We use both habitats alone as tokens when training the

embeddings, and also affordances along with their conditioning

habitats as additional tokens, so that the model trains to

optimize for predicting coocurring habitats and coocurring

affordances simultaneously. Because habitats are conditioning

environments on affordances, habitats may occur alone but

affordances do not occur without conditioning habitats. The

result of this process is a model that is optimized to predict

habitats and affordances based on other habitats and affordances

they cooccur with. Therefore, under this assumption an object

can be represented as a collection of afforded behaviors, each of

which was originally symbolically encoded but is vectorized for

semantic computation.

Our pipeline is implemented in TensorFlow using the

Keras API. We begin by training 200-dimensional habitat and

affordance embeddings using the previously discussed Skip-

Gram model. This model is trained for 50,000 epochs with a

window size of 3. The resultant embeddings serve as important

input features to the object prediction models.

We then represent an individual object in terms of its

habitats or affordances. This involves reducing the structured

VoxML encoding to a single vector with minimal information

loss. Fortunately, affordance encodings in VoxML encode

dependencies on habitats without including dependencies on

other affordances [that is, VoxML convention is to encode

resultant states of affordances as distinct habitats that themselves

facilitate other behaviors (Pustejovsky and Krishnaswamy,

2016)], so given an affordance structure that has largely

conditionally independent components, we can represent the

object as an average of the individual habitat and affordance

vectors. When testing, out-of-vocabulary habitats or affordances

are not included in the average because they add nothing

informative to the model for this task; when analogizing a novel

object to known objects the vast majority of information comes

from what the model can already infer about the known object.

These averaged embeddings form the object representations that

the prediction models are trained over.

We used two separate architectures to learn object prediction

from affordance embeddings: a 7-layer feedforward multilayer

perceptron (MLP) as an initial proof-of-concept and a somewhat

more sophisticated 4-layer 1D convolutional neural net (CNN),

due to 1D CNNs’ demonstrated utility in human activity

recognition (Cruciani et al., 2020) and text classification

(Gargiulo et al., 2018). A summary of both model architectures

are give in Table 1.

All models were trained for 1,000 epochs with a batch

size of 100. We performed 17-fold cross-validation on

each of these architectures, holding out each one of the

objects in turn. We train each kind of architecture on

habitats alone and on habitats and affordances together,

for the reasons discussed above. Hereafter an “affordance-

based” model refers to one trained by including habitat-

affordance coocurrences in the inputs to the embedding

model.
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TABLE 1 MLP (L) and CNN (R) architectures.

MLP CNN

Input Input

Dense (32× tanh) Conv1D (64× ReLU)

20% Dropout ReLU

Dense (196× ReLU) 20% Dropout

20% Dropout Conv1D (250× ReLU)

Dense (92× tanh) Global Max Pooling 1D

20% Dropout 20% Dropout

Dense (196× tanh) Dense (196× tanh)

Dense (92× ReLU) 20% Dropout

Dense (32× tanh) ReLU

Output (softmax) Output (softmax)

70,913 params 100,923 params

Bolded lines indicate layer types.

A classifier trained on all objects but “bottle” will predict the

most similar object to a bottle based on the observed habitats

and affordances of the bottle. Given an input object with an

affordance like “grasping,” it should predict an object that a

bottle can be grasped similarly to.

4.1.3. Ground truth

Wemust assess the results of the predictionmodel against an

established ground truth. This presents a problem as equivalent

human judgments are qualitative (i.e., one person may judge a

bowl most similar to a cup while another might judge it most

similar to a plate, while a third adjudicator might consider both

comparisons equally valid). Therefore, we presented a set of 7

annotators, all adult English speakers with at least some college

education, with the object set in use in the training data, and

asked them to list “[f]or each object, which 2 other objects in

the list are most similar to it, in terms of shape/structure and the

things you can do with it.” They were given no other information,

no briefing on the affordance embedding task, and no access to

the VoxML encodings for the objects.

We computed a Fleiss’ kappa score (Fleiss and Cohen, 1973)

of approximately 0.5520 over the annotations to assess the level

of inter-annotator agreement (IAA), with a standard error of

0.0067 (with an assumption that the null hypothesis is that

κ = 0). According to Fleiss and Cohen’s informal metrics,

this constitutes “moderate” agreement, but the annotation was

also made more complex due to the fact that annotators were

asked to make two choices per object rather than one, and there

were many cases where annotators agreed on one object-object

similarity while disagreeing on another. Some downstream

effects of this are discussed in Section 4.2.

The annotation gave us 119 non-distinct object triplets,

e.g., {apple, ball, grape} which we then plotted in 3D space

according to the object indices in the vocabulary, and used to

conduct k-means clustering to provide us with an automatically

TABLE 2 Prediction accuracy results with 6 means.

% predictions % predictions always

Model in correct cluster in correct cluster

GloVe embeddings 50.20 13.18

word2vec embeddings 48.37 13.23

Jaccard distance 66.67 19.28

MLP (Habitats) 78.82 27.06

MLP (Affordances) 84.71 38.82

CNN (Habitats) 78.82 27.06

CNN (Affordances) 81.18 40.00

Bolded numbers indicate best performing model for metric.

quantifiable proxy for ground truth against which to assess

the object prediction. Human annotations provided the initial

raw data that was converted into clusters in 3D space to

quantitatively assess the performance of the model. These

clusters are what the model is assessed against.

We conducted clustering using k = 6; for a test set of 17

objects where annotators were asked to group them into non-

exclusive sets of 3, 6 means most closely approaches an average

cluster size of 3 objects. Subsequent prediction results were

considered a “true” positive if the predicted object (e.g., [[CUP]])

clusters with the ground truth object (e.g., [[BOWL]]). We assess

two metrics: the percentage of results in which the prediction

correctly clusters with the ground truth across the five trials in

that iteration, and the percentage of time the prediction always

clusters with the modal, or most commonly occurring, cluster

containing the ground truth object.

4.2. Results

We assess two types of baselines for comparison. First, we

test pretrained GloVe embeddings (Pennington et al., 2014)

and the word2vec Skip-Gram model, two well-established

word embedding methods, on their ability to determine vector

similarity between the lexemes for objects in our vocabulary.

This serves as an assessment of object similarity determination

based on linguistic data alone, without access to any multimodal

information, such as affordances. Second, we use the VoxML

encodings directly to establish a heuristic baseline by assessing

object similarities based on Jaccard distance (Jaccard, 1912)

between their respective habitats and affordances. The Jaccard

distance calculation is simply the intersection over union of

affordances of the test object with each candidate object, and

we choose the top 5 candidates based on this method. Results of

these baselines were assessed relative to the ground truth clusters

established in Section 4.1.3.

Using our ownmodels, we ran a total of 340 individual trials:

5 tests with each of the 17 hold-out objects evaluated against

the clusters derived from the human annotation, run by each

architecture trained over habitats or affordances. Table 2 shows

the accuracy results for baselines and each model-data pair.
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Our models perform broadly similarly, achieving upward of

75% prediction accuracy relative to the ground-truth clusters in

all cases, exceeding 80% accuracy in some cases, and consistently

exceeding the performance of the unimodal and purely heuristic

baselines by upward of 10–20%. We believe this is because the

affordance embedding models capture dependencies between

an object’s encoded structural constraints and its behavior in

a way that is not captured by the linguistic cooccurrence

captured by pretrained static word embeddings (cf. the example

in Section 3.1 referencing the BERT vectors for “ball” and

“round”), or by the simple intersection-over-union approach

of Jaccard distance. Instead, we use the symbolic encodings

to construct neural representations and use those to make

similarity-based predictions of symbolic class labels. Thus, the

percentage of times when the predictions always cluster correctly

with the ground truth across all five individual trials in the same

conditions is lower but still well in excess of a random chance

baseline of
[

( 1
k
)5 × 100

]

% and always above
( 1
k
× 100

)

%.

We believe this shows that even with a very small dataset,

habitat and affordance information is very informative and

useful when predicting similar objects and can function

effectively with sparse data using a small and efficient model.

We see some artifacts of the clustering that arise from the

annotator judgments. For instance, some annotators grouped

apple with grape and ball, presumably due to their round shape,

which captures the roll affordance of all those objects. However,

other annotators grouped apple with grape and banana due

to all being types of edible fruit, even though eat was not an

affordance in the vocabulary used. Therefore, one cluster that

arose frequently was {apple, ball, grape, banana}, even though

annotators that grouped apple with ball tended to group banana

with bottle, pencil, or knife (reflecting similar shapes). Artifacts

like these tended to negatively affect the assessment for objects

predicted to be similar to objects such as banana, and reflect

a need for more rigorous assessment of the qualitative ground

truth proxy.

4.2.1. Statistical analysis

We surmise that if habitat and affordance encodings

were not informative features in predicting object similarity,

then classifiers trained on affordance embeddings would not

consistently predict the same objects for a given set of input

affordances; the null hypothesis here is therefore that affordance

embedding-trained classifiers would perform no better than

noise.

In evaluating the significance of the results, we treated every

affordance-based classifier as an “annotator” and computed a

Fleiss’ kappa value following an IAA calculation similar to that

which we performed over the ground truth cluster annotations

(Section 4.1.3).

We use standard statistical techniques for identifying

outliers, such as z-score filtering and normalization (Rousseeuw

and Hubert, 2011). Because a single outlier can make the

standard deviation large, it is common to use the median of all

absolute deviations from the median (MAD) as a more robust

measure of the scale (Leys et al., 2013).

When outliers, defined as when a classifier trial makes

a judgment that does not concur with the judgment of any

other trial of any classifier (i.e., singletons), are included, κ ≈

0.3006 with a standard error of approximately 0.0216, but when

singleton outliers are excluded, κ ≈ 0.7139 with a standard error

of 0.0731. These values are then used to calculate a z-score:

z = 0.3006/0.0216 ≈ 13.8995 (outliers included)

z = 0.7139/0.0731 ≈ 9.7643 (outliers excluded)

Converting this to a p-value yields p < 0.001 in both cases.

The kappa value measures agreement rather than correctness,

and so it, and the accompanying z-score and p-value should

be viewed in conjunction with the accuracy of the affordance

embedding classifiers shown in Table 2.

4.3. Discussion

It is less useful to assess how affordance embedding-based

models perform in the abstract over a diverse object set when we

are more concerned with predicting similarities with particular

novel objects as might be encountered by an agent in situ. We

therefore kept objects out of the dataset entirely, such that they

were not used in any training or cross-validation, but contained

similar habitats and affordances to objects in the dataset.

(2)



























































































































plate

LEX =

[

PRED = plate

TYPE = physobj•artifact

]

TYPE =















HEAD = sheet[1]

COMPONENTS = base, top[2]

CONCAVITY = concave[2]

ROTAT_SYM = Y

REFL_SYM = XY, YZ















HABITAT =

















INTR = [3]

[

UP = align(Ȳ ,EY )

TOP = top(+Y)

]

EXTR =









[4]

[

UP = align(Ȳ ,EY )

TOP = top(−Y)

]

[5]
[

UP = align(Ȳ ,E⊥Y )
]

























AFFORD_STR =

















































A1 = H → [put(x, y, on([1])]

support([1], y)

contain([2], y)

A3 = H → [grasp(x, [1])]

hold(x, [1])

A4 = H → [lift(x, [1])]

hold(x, [1])

A5 = H → [ungrasp(x, [1])]

release(x, [1])

A6 = H[3,4] → [slide(x, [1])]R

A7 = H[5] → [roll(x, [1])]R

...

















































EMBODIMENT =

[

SCALE = <agent

MOVABLE = true

]



























































































































Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2022.774752
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishnaswamy and Pustejovsky 10.3389/frai.2022.774752

FIGURE 5

Top: Grasping a book vs. grasping a plate. Bottom: Rolling a cup

vs. rolling a plate. The “rolling” habitat places the objects in the

same orientation, e.g., with the cup’s opening parallel to the

ground.

One such object is plate. Feature Structure (2) shows the

VoxML structure for [[PLATE]]. Compare this with [[CUP]], as

shown in Feature Structure (1), to see similarities in habitats

and affordances. A container like cup or bowl, plate also shares

support affordances with, e.g., block and table, and is rollable

like non-container objects like apple. Over 10 tests against plate,

the baselines and classifiers each produced the following most

frequently-predicted objects (in descending order of frequency):

• GloVe embeddings: ball, table, bowl, bottle, knife

• word2vec embeddings: spoon, ball, knife, table, disc

• Jaccard distance: bottle, cup, bowl, cork, knife

• MLP (Habitats): book, cup, bowl, bottle

• MLP (Affordances): cup, bottle, apple

• CNN (Habitats): book

• CNN (Affordances): cup, bottle

The affordance embedding models predict commonalities

with other containers, rollable objects that have similar habitat

constraints, and objects that have similar grasps.

From these results on an individual object, we can begin

to speculate about some of the features that each model is

capturing. First, we observe that the baselines do not perform

particularly well in a qualitative analysis in this test, either.

The pretrained GloVe and word2vec embeddings seem to

capture common cooccurrence context between plates and other

common tabletop items in the vocabulary, but there appears

to be little systematic correlation between the typical uses of

these objects. In fact, we hypothesize that the correlation in the

model between “plate” and “ball” might actually be influenced

by the cooccurrence of these terms in the context of baseball!

The Jaccard distance metric performs slightly better, operating

directly over the habitats and affordances, but still predicts one

object that has only a grasp affordance in common with plate:

a knife—and that grasp behavior is rather different in terms of

hand pose.

Meanwhile, when trained solely on habitat embeddings,

both the MLP and CNN models, while capturing containers

similar to plate, also tend to predict book as the most similar

object. The CNN model in particular predicted only book as

similar to plate. We surmise that habitat embeddings, being

sparser overall, tend to predict correlations between behaviors

that are common over very many objects, such as grasping, and

that book and plate, having similar dimensional constraints, are

predicted to be grasped similarly (see Figure 5, top).

The models trained on affordance embeddings as well

appear to be better at capturing more specific behavioral

affordances, commonly predicting similarity between containers

like cup and bottle and a plate, which might also be rolled in the

same way (see Figure 5, bottom, where a non-container like an

apple would be rolled in the same way). Cups and bottles are not

grasped like plates, suggesting that the affordance-based model

is discriminating between common behaviors like grasping that

are available in almost any habitat and more object- and habitat-

specific behaviors.

These results show that objects can be analogized to each

other in terms of their behaviors, and these analogies can be

mademore specific and accurate by comparing both the afforded

behaviors and the habitats in which they occur. That is, if an

agent encounters an object for which she has no name but can

determine that it has a number of affordances in common with

another object, she can use that second object as a starting point

to reason about the first.

4.4. Deployment

The situated grounding mechanisms provided by an

embodied agent like Diana and the models learned from

affordance embeddings allow the agent to discuss, learn about,

and manipulate novel items that she comes across in her virtual

world, including the objects in our domain.

Having established that similar objects share similar

affordances; developed a method for selecting similar objects

based on their configurations, constraints, and behaviors; and

provided a way for the agent to estimate grasp poses in real

time, we can now ask the question: what happens if the agent

encounters an unknown object in her virtual world?

The affordance embedding model runs in a Python client

connected via socket to the rest of the Diana system running

in Unity. The avatar sends a behavior (“grasp”) and the set of

affordances of the novel object. The model returns an object that

satisfies that behavior using similar affordances.

For example, if the agent comes across an unfamiliar object

that appears to share the H[2] = [UP = align(Ȳ , EY ), TOP =
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FIGURE 6

(1) Human: What is that?; (2) Diana: I don’t know, but I can grasp it like a cup; (3) Human: Grab it. + resultant grasp.

top(+Y)] (upward alignment) habitat of [[CUP]], she can infer

that it might be grasped similarly. Figure 6 shows this process

enacted through interactivemultimodal dialogue. In frame 1, the

human points to a new object (recognizable as a bottle, but the

agent has no label associated with it). In frame 2, the agent says

“I don’t know”—reflecting the semantic gap in her vocabulary—

“but I can grasp it like a cup”—reflecting the information about

it that she is able to infer from its habitats and affordances, which

gives her a way to talk about this object with her human partner.

In frame 3, the human says “grab it,” and the agent demonstrates

her inferred method of grasping, based on the object similarity

predicted from affordance embeddings. The way the hand is

positioned is described later in this paper, in Section 4.5.

Because we use pre-existing VoxML encodings generated

for a specific purpose, our training data is necessarily small.

However, our results suggest that we can use transfer learning

via affordance embeddings to generate partial knowledge about

novel objects, as we demonstrate with overall accuracy in

Section 4.2, and with the specific examples of plates and bottles

in Section 4.3 and here above.

We have been able to demonstrate that a fairly simple

affordance embedding technique inspired by Skip-Gram can

yield promising results, which suggests that knowledge of

habitats and affordances provides a significant amount of

information per sample toward classifying action-based object

similarity in a way that the cognitive science literature suggests

humans do as well. We demonstrate effectiveness at predicting

similar objects based on their structure, configuration, and

attached behaviors using simple, straightforward architectures,

and much less data than attempting to learn the same

correlations from unstructured text.

4.5. Interactive learning of object
grasping

Section 3.1.1 discussed how parameters in a predicate may

be underspecified, and how Monte-Carlo sampling can be an

effective way of determining the distribution of values that

satisfy the predicate. However, underspecified parameters in a

predicate can also be inferred from the properties of objects,

namely the habitats which they can occupy and the behaviors

afforded by them. For instance, if a cup is both concave and

symmetric around the Y-axis, then there is no need to explicitly

specify the orientation of the concavity; we can infer that it is

aligned with the object’s Y-axis, and this in turn requires that

certain conditions (habitats) be enforced for certain affordances

to be taken advantage of, such as putting something in the cup,

or grasping the cup appropriately in order to drink from it

(Krishnaswamy and Pustejovsky, 2016a).

Diana consumes input from 3rd party or custom speech

recognition, and can see her human interlocutor’s gestures with

custom recognition algorithms running on deep convolutional

neural networks trained on over 8 h of annotated video and

depth data from a Microsoft KinectTM.

One of Diana’s default vocabulary of 34 gestures is a

downward-opening “claw” gesture used to mean grasp. This

gesture is sufficient to signal how to grasp an object such

as a block. However, in Diana’s “Kitchen World” scenario,

containing common household objects including those used in

the affordance embeddings training pipeline, she comes across

items, like plates or bottles, that cannot be grasped in this way.

In that case, she must estimate positions on the object where it is

graspable.

Grasp-point inference uses the symmetry of objects as

encoded in VoxML. Objects have rotational and reflectional

symmetry, such that a cup has rotational symmetry around its

Y-axis and reflectional symmetry across its XY- and YZ-planes,

while a knife has only reflectional symmetry across its YZ-plane

in default orientation.

For objects with rotational symmetry, we find all points P

on the surface equidistant from the extremes along the axis of

symmetry, as well as the extreme points of the object along that

axis. For objects without rotational symmetry, we find those

points P on each component of the object that intersect the

plane(s) perpendicular to the plane of reflectional symmetry (see
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FIGURE 7

Grasp points (white spheres) on a cup and knife.

Figure 7). The closest one of these points to the position of the

agent’s hand (w) is taken to be the targeted point of interaction

with the object.

From this point we calculate the maximum amount each

finger (f ) can bend toward the object without intersecting its

bounds, take this distance of the fingers to wrist joint and add

it to/subtract it from the object’s extremities in both directions

along all 3D major axes (extentsx,y,z):

(3) ∀f ∈ F argmin

m6 fwp

| Efw | ×cos(m6 fwp)± extentsx,y,z

The angle of the fingers at this point becomes a grasp pose,

or hand position needed to activate the grasping affordance (that

is, to exploit the graspability) of that object at that position.

Each possible grasp pose comes with an associated affordance

semantics of the form λy.grasp[obj,with(y)] where y represents

the associated iconic gesture. This is the symbolic portion of the

new gesture semantics, which must then be filled with the actual

gesture.

4.5.1. Assigning a�ordance-denoting gesture

A portion of Diana’s interaction is written such that it can be

used to trigger a one-shot learning process that can add a new

gesture to her existing vocabulary and assign a specific action to

it. In this case, the action in question is grasping a specific kind

of object.

During interaction, Diana demonstrates each inferred

possible grasp pose to the human and asks for a preference. The

bolded text indicates the portion of the interaction that activates

the learning pipeline (Dialogue 1):

Now, with the affordance semantics available to be filled, the

visual features of the novel gesture the human makes are fed

into a random forest classifier trained over 2,048-dimensional

feature vectors derived from the annotated video data used

to train the default gesture recognizer. The novel gesture is

situated in the feature space of the 34 known gestures (plus

any novel gestures previously learned). That new vector value is

applied to the outstanding variable in the affordance semantics

generated through the interaction to this point. The result

represents an operationalization of grasp(x) where x is the object

Dialogue 1

Agent eliciting an a�ordance-denoting gesture.

HUMAN: The plate.

DIANA: Okay. [ DIANA points to the plate. ]

[HUMANmakes “claw down” gesture. ]

DIANA: Should I grasp it like this? [ DIANA grasps plate from beneath. ]

[HUMANmakes “thumbs down” gesture. ]

DIANA: How about like this? [ DIANA grasps plate from side. ]

HUMAN: Yes.

DIANA: Is there a gesture for that?

[HUMANmakes “grasp plate” gesture. ]

FIGURE 8

Iconic plate gesture for “grasp the plate”.

requiring novel exploitation of its affordances to grasp it. This

operationalized predicate is then propagated down to any other

events that use [[GRASP]] as a subevent over the object x.

This now allows the human to instruct the agent to grasp an

object using the correct pose, with a single visual cue, as in

Figure 8. Furthermore, the avatar can subsequently be instructed

to perform any actions that subsume grasping that object.

Figure 9 gives the neurosymbolic learning pipeline for object

affordances and accompanying actions. This pipeline is activated

when Diana says “Is there a gesture for that?” Because the

learned object affordance is propagated down to other events

that contain the associated action, we can fill in other action

sequences with this association using a continuation-passing

style semantics a la Van Eijck and Unger (2010); Krishnaswamy

and Pustejovsky (2019b). For example, extending the dynamic

event structure developed in Pustejovsky and Moszkowicz

(2011), the VoxML encoding of the event [[SLIDE_TO]] can

be represented as in (4). This is a derived event composed

from the activity [[SLIDE]] and the directional PP [[TO_LOC]]
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FIGURE 9

Neurosymbolic pipeline for learning interactions with object a�ordances. The new visual features are situated in the feature space of a deep

convolutional neural model and assigned a new label.

(Pustejovsky and Krishnaswamy, 2014).

(4) grasp(e1, AG, y); while[hold(AG, y) ∧ on(y, SURF) ∧

¬at(y, LOC)],move_to[e2, AG, y, LOC]);

if[at(y, LOC), ungrasp(e3, AG, y)]

Therefore, if the agent encounters a [[SLIDE]] action with an

outstanding variable [λy.slide(y, loc)], and the human supplies

a gesture denoting grasp(plate), then the agent can directly lift

grasp(plate) to the slide action and apply the argument plate to y:

λy.slide(y, loc)@plate ⇒ slide(plate, loc). while(C,A) states that

an activity, A, is performed only if a constraint, C, is satisfied at

the same moment. Here, should something cause the agent to

drop the object or, should the agent lift the object off the surface,

the constraint, and therefore the overall [[SLIDE]] action will

cease and remain incomplete.

Once a gesture has been learned for a particular object, e.g.,

[[CUP]], the same gesture can be reused to signal the agent to

grasp not only instances of that same object, but also objects

that agent has inferred can be grasped similarly, as through

the affordance embeddings transfer learning method. What this

does is then connect the affordance-based inference, wherein

Diana can speak about an object in terms of what it is similar

to, even if she doesn’t know what it is called, to an ability to

respond to and generate pertinent gestures about it, giving her

a handle on inferring partial information about the new object

via two modalities at play in situated communication: gesture

and language.

5. Discussion: Data and
representation

In this research we have deliberately eschewed relying on the

large training datasets in use bymuch of the AI community. This

was a conscious choice: nevertheless, the question of the trade-

off between the methods proposed above, requiring rich prior

knowledge, and automatic acquisition of implicit information

through larger-scale machine learning, needs to be addressed.

In this we believe it is important to consider how the

history of AI has progressed to this point. Early AI saw great

promise in symbolic representations, presenting computers as

powerful symbol-processing machines, but these hopes were

not borne out, leading to the infamous AI winter. One

early proponent of AI approaches decoupled from explicit

representation was Rodney Brooks (1991) who notably viewed

the shortcomings of symbolic AI as including its lack of

capturing either situatedness or embodiment with regard

to robotics. Brooks was not a core researcher in neural

networks. Nonetheless, since the mid-1990s, neural network

approaches, once disregarded, have grown to dominate the

field through their ability to uncover patterns implicit in
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data and apply those patterns to various different tasks.

The notion of extracting relevant information from the

data, or “world” (a la Brooks) itself has proven to be very

powerful.

Nevertheless, when we take a closer look at where the

training data for the most successful models comes from, it

becomes clear that the successes of large models comes not just

from the ability to find patterns in data, but also that intensive

data curation efforts themselves have been undertaken to make

the data suitable for training over by a large neural model, and

that the data, despite its size, is still limited. Let us examine some

specific, popular datasets and their applications: BookCorpus

and its companionMovieBook, Something-Something,HICO and

HICO-DET.

BookCorpus

Zhu et al. (2015) created BookCorpus (a.k.a. the Toronto

Book Corpus) as part of a text-to-visual alignment task, aligning

sequences in books to sequences in their movie adaptations

or equivalent. In the collection process, they eliminated books

with less that 20,000 words, however few would argue that a

novelette or short story contains less meaningful information

than a full-length novel in any regard except quantity. The

companion MovieBook corpus is a heavily-annotated corpus

wherein annotators watched an entire movie with the book

open beside it, annotating timestamps down to the second, line

numbers, and alignment types. BookCorpus has since gone on to

be one of the key datasets that has helped to train large language

models like BERT.

Something-Something

The Something-Something dataset (Goyal et al., 2017), is

a well-known dataset in video action recognition, notable for

the diversity of actions on display, with a wide variety of

objects and situations. The dataset consists of crowd-sourced

video snippets all of which are able to be described in the

form of VERBing something or VERBing something RELATION

something, where each “something” is replaced with an arbitrary

object—anything the video creator happened to have on hand

at the time. The videos were crowdsourced with each worker

given a prompt of the above form.Workers then filmed the video

and logged the objects used in place of “something.” However,

beyond minimal quality control like checking for length and

removing objectionable content, no second layer of verification

of the videos was performed. That is, despite the immense effort

expended in the crowdsourcing, there is no evidence that videos

were checked to see if they adequately satisfied the prompt, or

if a different one of the 174 possible action labels was in fact a

better label for a particular video (Patil, 2022).

HICO and HICO-DET

Chao et al. (2015) introduced HICO, a benchmark for

human-object interaction (HOI) detection. While HOI is not

a direct mapping to affordances (i.e., not every human-object

interaction exploits the object’s affordances), it is often a close

enough match to be useful. The images in the dataset for

each object were first selected from Flickr, and then underwent

a rigorous annotation process to verify the presence of a

human and the object of interest, and then the presence

of any relevant actions related to that object (e.g., “person

repairing bike”). HICO’s successor dataset, HICO-DET (Chao

et al., 2018) went even further by extending HICO with object

instance annotations that involved not only drawing bounding

boxes around the relevant people and objects in an annotated

image from HICO, but also annotating links between them so

that images containing multiple HOIs have the right humans

associated with the right objects.

Of course this type of information encoding is necessary—

without it, a neural network could not make sense of the wide

distribution of pixel arrangements that could correspond to a

repairing bike action, or the wide variety of ways that similar

actions or objects may be described or depicted.

This is to say nothing of Wikipedia, often regarded as the

ultimate free dataset, when in reality it is a massive undertaking

by knowledgeable people worldwide, whose construction is

explicitly full of structure and metadata meant to make

information maximally easy to retrieve. The utility of such

datasets cannot be denied, but neither can it be claimed that

models trained over such datasets are somehow representation-

free.

At the very least, these datasets upon which much of modern

AI relies are all weakly annotated. This is not “weakly” in

the sense of poorly done, but in the sense of an annotation

that is designed to be conducted with the minimum effort

possible in order to scale up rapidly, often containing implicit

information (such as the sentence pairs used to train BERT’s

Next Sentence Prediction task, where the “annotation" is simply

the pairing extracted from the dataset), which is also often

noisy. The job of the large neural network is in part to

filter out irrelevant information and discover what exactly the

important dependencies are, but nevertheless significant effort

has always been expended in making the datasets as friendly to

the knowledge extraction process as possible. What this has led

to is a cycle of evaluation and benchmarking which is necessary

for good comparisons, but also leads to difficulty in applying the

conclusions of those comparisons in situations that don’t already

resemble the training data. Put simply, good performance on

ImageNet (or SQuAD, or SWAG, or GLUE, or simulated virtual

multimodal shopping cart decision making) does not guarantee

equivalent results in real-time human-computer or human-

robot interaction, because humans are a constantly moving

target, grounding entities in the discourse to items in the world

fluently in multiple modalities.

It is well observed that most semantic interpretation is

done compositionally. Meaning composition has been called

the "holy grail" of cognitive science (Jackendoff, 2002), but
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if meaning compositionality is to be achieved in machines,

what are the means by which meaningful concepts are actually

represented? This representation need not be fully explicit, as the

aforementioned examples demonstrate, but this also comes at a

price where large-scale annotation efforts are required, on the

part of researchers or tacitly on the part of the general public,

to make enough sense of otherwise unstructured data to make

it suitable for machine learning. What the next phase of AI will

require is not to eschew representation entirely, but data that is

representationally rich and flexible enough to be sample efficient

(Stone et al., 2016).

To quote (Dennett, 1993), “[O]nce we try to extend Brooks’

interesting and important message beyond the simplest of critters

(artificial or biological), we can be quite sure that something

awfully like representation is going to have to creep in like the

tide." Such questions became unavoidable during the course

of this research. The solution to create a minimal encoding

of properties more granular than those typically found in

existing datasets has so far delivered promising results in

real-time interactive systems, and with methods like transfer

learning as demonstrated, we have a way of inferring partial

information about new classes from even a small sample of

existing classes. Methods for exploiting existing datasets for

expanding conceptual vocabulary or situational distinctions are

also promising avenues or research, such as augmenting existing

HOI datasets to be sensitive to factors like relative orientation

(i.e., habitat) and grounding for intent recognition.

6. Conclusions and future work

In this paper, we hope to have demonstrated that the notion

of situatedness goes well beyond visually grounding a text or

a concept to an image or video; rather, it involves embedding

the linguistic expression and its grounding within a multimodal

semantics that relies on neural and symbolicmethods working in

tandem to arrive at a more complete interpretation than either

alone would provide.

We continue to explore creating stronger links between

the habitats and affordances, in order to enable a computer to

automatically discover novel uses for an object, such as being

able to “poke” with a pencil as you would with a knife, when they

are already grasped similarly. Deploying situated grounding-

based transfer learning methods such as affordance embeddings

live on an interactive agent also raises the prospect of learning

affordance and habitat semantics for novel objects through

interactions, such as with reinforcement learning.

Neurosymbolic reinforcement learning in a situated

grounding context is an ongoing point of study in our work,

such as learning to infer novel category distinctions between

objects by observing the differences in how they behave

under the same conditions and then grounding the learned

distinctions to differences in behavior, e.g., what properties

of an object enable stackability or rollability, with preliminary

results available in Krishnaswamy and Ghaffari (2022). This

work leverages hand-encoded VoxML structures, which are

difficult to scale, to nonetheless infer when changes to the

environment have occurred, such as when a new type of object

has been introduced. By giving the AI agent the capacity

to figure out when its own internal model is inadequate

and needs to be updated, this allows us to move away from

the purely axiomatic reasoning that underlies the frame

problem. We have also done preliminary work on expanding

neurosymbolic situated grounding methods to the context of

real-world robotics (Krajovic et al., 2020), enabling contextual

interpretation, dialogue, and question answering in a mixed-

reality environment shared by a human and a navigating

robot.

This neurosymbolic approach, tightly coupled to a physics-

based representation of the world, provides for environmentally-

aware models that can be validated; each additional modality

supplies an orthogonal angle through which to validate

models of other modalities. It provides many methods of

encoding context both quantitatively and qualitatively, and

provides a model to accommodate both neural and symbolic

representations and use them for their different strengths. The

diverse types of data available through a situated grounding

platform are adaptable to different tasks with novel types of

network architectures, with less data overhead than end-to-end

neural machine learning. As such, we hope to pose a challenge to

the tendency in AI toward increasingly large datasets and bigger

models involving more and more parameters, with concomitant

costs in energy and resource usage, by utilizing such platforms

to provide a sustainable way toward more powerful AI.
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