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Frequency response of ice streams
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Changes at the grounding line of ice streams have consequences for inland ice dynamics
and hence sea level. Despite substantial evidence documenting upstream propagation
of frontal change, the mechanisms by which these changes are transmitted inland are
not well understood. In this vein, the frequency response of an idealized ice stream
to periodic forcing in the downstream strain rate is examined for basally and laterally
resisted ice streams using a one-dimensional, linearized membrane stress approximation.
This reveals two distinct behavioural branches, which we find to correspond to different
mechanisms of upstream velocity and thickness propagation, depending on the forcing
frequency. At low frequencies (centennial to millennial periods), slope and thickness
covary hundreds of kilometres inland, and the shallow-ice approximation is sufficient to
explain upstream propagation, which occurs through changes in grounding-line flow and
geometry. At high frequencies (decadal to sub-decadal periods), penetration distances are
tens of kilometres; while velocity adjusts rapidly to such forcing, thickness varies little
and upstream propagation occurs through the direct transmission of membrane stresses.
Propagation properties vary significantly between 29 Antarctic ice streams considered.
A square-wave function in frontal stress is explored by summing frequency solutions,
simulating some aspects of the dynamical response to sudden ice-shelf change.
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1. Introduction

The dynamics of the fast-flowing ice streams that drain large ice sheets are key
to predicting the future of these ice sheets and their contribution to sea-level
change. Changes in the forcing at the ice front are of particular significance, as
these affect the position of the grounding line, where ice flow detaches from the
bed, which in turn affects the water stored above sea level. For rapidly sliding,
water-terminating glaciers, the downstream ice shelf has long been thought to
buttress the ice sheet and suppress high-velocity ice flow into the ocean (Hughes
1973). The very low friction at the bed of some ice streams has been thought
to facilitate the instantaneous long-distance transmission of dynamic stresses
(Thomas 2004; Thomas et al. 2004), with the implication that velocity fields
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should respond to downstream changes far upstream. When such dynamical
changes result in acceleration, they are presumably precursors to thinning. It
is widely accepted that this long-distance instantaneous change operates in ice
shelves, and the almost frictionless base of many ice streams is advanced as the
reason for supposing this mechanism operates in ice streams. However, the idea of
long-distance propagation was an initial assumption by Thomas et al. (2004) and
Thomas (2004), and opposing arguments have been put forward, most recently
by Van der Veen et al. (2011), who suggested that changes in Jakobshavn Isbræ
are predominantly due to ice weakening at the lateral shear margins, based on the
notion that long-distance transmission of stresses is damped by lateral and basal
resistance. Moreover, a recent theory of dynamics (Schoof 2007), which describes
unstable retreat of grounding lines arising from a boundary-layer effect, does not
require the long-distance transmission of stresses, which seemingly implies that
such transmission is not an essential ingredient of the marine ice-sheet instability.
This raises the issue of understanding rapid, long-distance transmission and
interpreting the apparent effects seen in observations.

Because there is no universally agreed definition of what constitutes either
‘rapid’ or ‘long distance’, we shall adopt the following convention. Hindmarsh
(2012) suggested that there is a frontal mechanical boundary layer in ice streams
with frictionless beds, with the longitudinal extent being equal to the width
of the stream, over which stresses decay from the front. Stress transmission
over distances greater than this will be regarded as long distance in this
paper. Hindmarsh (2006a) also showed that, for streams with substantial basal
resistance, the boundary layer has an extent of 10–20 km, which again defines a
minimum scale for ‘long distance’ for basally resisted streams. ‘Rapid’ constitutes
effects occurring on time scales faster than the ratio of ice stream length to ice-flow
speed.

There is no doubt that rapid upstream propagation of thinning and velocity
changes occurs. The events after the collapse of the Larsen A and B ice shelves
show this clearly; substantial speed-up of parts of glaciers adjacent to the
grounding line was observed almost instantly upon ice-shelf collapse (Rignot et al.
2004; Scambos et al. 2004) and spread upstream over the following years (Rott
et al. 2002; Pritchard et al. 2011), associated with strong thinning. There are now
a large number of similar examples, e.g. Jakobshavn Isbrae (Joughin et al. 2008)
and glaciers in West Antarctica (Rignot 2006; Pritchard et al. 2009). Calving
events have been correlated with instantaneous increases in velocity along the
length of Helheim Glacier (Nettles et al. 2008). Pine Island Glacier (PIG) in
the West Antarctica ice sheet (WAIS), which has the largest discharge of all
of the WAIS ice streams (Bentley et al. 1991), has the potential to contribute
significantly to sea-level rise over the coming centuries on account of the reverse
bed slope and the recently observed rates of acceleration, thinning and retreat
(Rignot 1998; Shepherd et al. 2001; Joughin et al. 2003; Thomas et al. 2004).
Because these dynamic changes can be attributed to changes in the conditions at
or near the grounding line (Payne et al. 2004; Thomas 2004), it is imperative to
understand and appropriately model the upstream propagation of these changes
when making predictions of sea-level rise for this century and beyond.

Nevertheless, it remains to be conclusively demonstrated that the acceleration
of PIG is due directly to the transmission of membrane stresses (the three-
dimensional version of longitudinal stresses), and some observational evidence
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exists to the contrary. Joughin et al. (2003) found from measurements that
changes in driving stress consistent with observed thinning were sufficient to
explain much of PIG’s upstream acceleration. Scott et al. (2009) found that,
while acceleration in the grounding-line region is rapidly transmitted upstream
on decadal timescales, inland acceleration is correlated with changes in the
gravitational driving stress, and that no changes in longitudinal stress gradients
were required to explain the changes in velocity.

The observational data thus highlight that upstream propagation of forcing at
the ice front can occur through two mechanisms. One is the direct transmission of
membrane stresses, acting along the body of the ice stream in the horizontal plane.
The other process is through increased flow at the grounding line inducing changes
in the geometry of the ice stream, notably steepening, that lead to increases in the
gravitational driving stress and velocity. The aim of this paper was to understand
the conditions under which both of the two mechanisms operate, and whether a
clear distinction can be made between the two.

Our approach is inspired by Nye (1965), who studied the frequency response of
glaciers to periodic perturbations of the accumulation or ablation rate in space, for
a model based on the shallow-ice approximation (SIA). Here, frequency response
means quantification of the relationship between spatial scales of response and
frequency of forcing. A simple analogy is the way that temperature forcing
propagates into a solid, e.g. snow. A forcing with a particular period induces
a typical decay length and wavelength in the temperature field. Our fundamental
objective is to determine when membrane stresses need to be incorporated into
ice-stream models to accurately reflect observations, and how the time scale
of the forcing at the ice front affects upstream propagation of velocity and
thickness changes.

Shallow-ice models respond to forcing through geometric coupling, and are
a well-researched topic in ice dynamics (Hutter 1983). These studies emphasize
the fact that the decay time of a perturbation depends monotonically upon its
wavelength, with longer wavelength perturbations decaying more slowly, as the
slopes are smaller. Accurate representation of long-distance stress transmission
requires the incorporation of membrane stresses to model the effects of ice-
shelf or frontal changes on inland ice flow. Such stresses are now incorporated
in some higher order large-scale ice-sheet models (Blatter 1995; Pattyn 2003;
Pattyn et al. 2008; Bueler & Brown 2009; Price et al. 2011). One scheme for
including these stresses in ice-sheet models, the vertically integrated membrane
stress approximation (MSA), has proved useful (Kamb & Echelmeyer 1986;
Muszynski & Birchfield 1987; MacAyeal 1989; Hindmarsh 2006a). Detailed
numerical modelling studies of PIG (Payne et al. 2004; Dupont & Alley 2005)
and Greenlandic glaciers (Nick et al. 2009; Price et al. 2011) found that
the effects of ice-shelf thinning or removal can indeed be rapidly transmitted
upstream, increasing velocity and thinning, indicating a strong coupling between
surrounding ocean and inland dynamics. However, many large-scale whole ice-
sheet models still use the SIA and do not account for upstream propagation of
frontal forces and may thus be unable to account for rapid dynamical changes
near the ice front (Bamber et al. 2007; Vieli & Nick 2011). If there is a class
of problems for which membrane stresses are important, then the SIA cannot
be used to describe the dynamics in these cases. We therefore aim to provide
a deeper insight into the processes that modulate upstream transmission of
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ocean forcing. A significant outcome is the possibility of assisting in the design
of numerical schemes in large-scale ice-sheet models; for example, quantifying
the spatial and temporal resolution necessary to capture the dynamics of ice
streams and outlet glaciers.

In this study, we use a simplified, vertically integrated, one-dimensional flow-
line model of a basally or laterally resisted ice stream, described in §2. This
model includes membrane stresses (based on MacAyeal (1989)) and we use it
to investigate upstream propagation of a periodic forcing applied to stresses
near the grounding line. We apply this forcing at a small distance upstream
from the grounding line to avoid having to specify the details of the mechanism.
Schoof (2011) found that the errors introduced by the depth integration are small,
even close to the grounding line. The use of a periodic forcing allows the model
solution to be obtained analytically, which provides direct quantification of the
amplitude and phasing effects that varying frontal forcing has on inland thickness
and velocity profiles (see §3). These are characterized in terms of exponentially
damped waves, with decay length and wavelength that are functions of ice-stream
configuration, rheology and frontal forcing period.

Using model parameters from 29 Antarctic ice streams, we characterize the
upstream propagation for a range of different forcing frequencies (§4). For
each ice stream, we find two distinct types of behaviour dependent on the
forcing frequency. Many ice streams have laterally resisted sections abutting
basally resisted sections. In §5, a solution is presented for an ice stream that
changes from lateral to basal resistance, broadening this methodology by allowing
stacking of differently resisted ice-stream portions to better represent real ice-
stream conditions. Our linearized model formulation allows the summation of
different frequency forcings to create arbitrary forcings close to the ice front.
This is demonstrated in §6 through the construction of a square-wave function
for the strain rate just upstream of the grounding line, which may provide
an approximation of the effects of ice-shelf thinning and thickening at the
grounding line on the inland velocity and thickness. The work concludes with
a discussion in §7.

2. Ice-stream model formulation

The physical basis of our model is similar to that of Payne et al. (2004), Dupont &
Alley (2005), Walker et al. (2008) and Nick et al. (2009), except that here
we use an idealized ice stream with periodic forcing to allow analytical rather
than numerical results to be obtained. We consider a one-dimensional flow-line
model for an ice stream of length [X ∗], such that −[X ∗] < x∗ < 0 represents
the horizontal position. Thickness is given by H ∗(x∗, t∗) = s∗(x∗, t∗) − b∗(x∗),
where s∗(x∗, t∗) represents the ice surface and b∗(x∗) the ice base. Time is
denoted t∗. The forcing is prescribed at x∗ = 0, which is considered to be a
small distance upstream of the grounding line. Grounding-line movement is
not modelled explicitly, but we allow thickness changes at x∗ = 0 to implicitly
describe such motion. Hence, our focus in this study was on propagation and
not on instability. Dimensional quantities are denoted with an asterisk (∗) and
non-dimensional quantities without.
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ice divide

x* = –[X*] x* = 0

H*
u*

∂s*
∂x*

Figure 1. Schematic of the ice-stream model, where u∗ is velocity along the ice stream and H ∗ is
ice thickness. The ice stream flows from the ice divide at x∗ = −[X∗] to x∗ = 0, just upstream
of the grounding line. The gradient in surface slope at x∗ = 0 is shown, which is set to 3 at
zeroth order.

We use the vertically integrated ice-stream model of MacAyeal (1989) in
one dimension

2
v

vx∗

(
H ∗B∗

∣∣∣∣vu∗

vx∗

∣∣∣∣
1/n−1

vu∗

vx∗

)
− T ∗

b = r∗g∗H ∗ vs∗

vx∗ , (2.1)

where B∗ is the ice-stiffness parameter, u∗ is ice velocity, T ∗
b is the frictional

resistance we term the traction, r∗ is the density of ice and g∗ is the gravitational
acceleration. Here B∗−n = A∗

v, where A∗
v is the rate factor in the viscous

relationship e∗ = A∗
vt∗n relating the strain rate e∗ to the deviator stress invariant

t∗. Depth-averaged viscosity for the one-dimensional case was used to obtain
the force balance equation (2.1). The first term in equation (2.1) represents
the membrane stresses, the second term is the basal traction and the term
on the right-hand side is gravity-driven stress. This is often referred to as the
‘shallow stream approximation’ and here we refer to it as the ‘MSA’. If the basal
friction term is zero, this represents a shallow shelf approximation, whereas if the
membrane stress term is set to zero, it represents the SIA. The driving stress
(on the right-hand side of equation (2.1)) plays a role in both approximations.
The boundary conditions at the upstream end are that any perturbations die
away towards the ice divide, x∗ = −[X ∗] (ice thickness at the ice divide can be
estimated from a Vialov (1958) profile). The continuity equation is also needed
to complete the system,

vH ∗

vt∗ = −v(H ∗u∗)
vx∗ + a∗, (2.2)

where a∗ is accumulation. A schematic of the modelled ice stream is shown in
figure 1. The exact dependence of the traction T ∗

b on the velocity depends on
whether the ice stream is basally or laterally resisted. Both cases are dealt with
in the following sections, in which the model is scaled, a linear perturbation
analysis is performed and the linear equations are solved for periodic forcing.
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3. Frequency response of ice streams

(a) A basally resisted ice stream

For a basally resisted ice stream T ∗
b = t∗

xz and a sliding law relationship is given by

u∗ = A∗H ∗m−n−1|t∗
xz |n−1t∗

xz , (3.1)

where A∗ is a coefficient representing either the rate of sliding or the rate of
internal deformation, in which case A∗ = 2A∗

v/(n + 2). n is a rheological index
and m is a constant which is either n + 2 (for internal deformation according to
a nonlinear viscous law) or n + 1 (for sliding according to a Weertman-type law).
The problem is scaled using

3 = [H ∗]
[X ∗] , [u∗] = [A∗][H ∗]m−1(r∗g∗)n |3|n

and [t∗] = [X ∗]
[u∗] , [t∗

xz ] = r∗g∗3[H ∗], [a∗] = [H ∗]
[t∗] ,

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

where 3 is defined as the aspect ratio of the ice stream and length is scaled with
the distance from the divide to the grounding line, [X ∗]. A∗ and B∗ are scaled
with [A∗] and [B∗], respectively. The velocity scale [u∗] is prescribed and used to
calculate the sliding coefficient [A∗]. This gives the non-dimensional momentum
equation (2.1) as

U
v

vx

(
HB

∣∣∣∣vu
vx

∣∣∣∣
1/n−1

vu
vx

)
− txz = H

vs
vx

, (3.3)

where

U = 2[B∗][u∗]1/n31/n

r∗g∗[H ∗](n+1)/n
(3.4)

is a dimensionless measure of viscosity and is typically much smaller than unity.
The sliding law in equation (3.1) and the continuity equation become

u = AH m−n−1|txz |n−1txz (3.5)

and
vH
vt

= −vq
vx

+ a, q = uH , (3.6)

where q is ice flux. Now consider a linear perturbation,

H = H0 + H1(x , t), s = s0 + s1(x , t), txz = txz0 + txz1(x , t),

and u = u0 + u1(x , t),
vu
vx

=
(

vu
vx

)
0
+ vu1

vx
(x , t),

vs
vx

=
(

vs
vx

)
0
+ vs1

vx
(x , t),

⎫⎪⎬
⎪⎭

(3.7)

where zeroth-order components (denoted with subscript 0) are constants (s0 =
H0 = u0 = txz0 = 1) and first-order components (denoted with subscript 1) depend
upon x and t. In this study, we are predominantly interested in the length scales
associated with the upstream propagation of frontal effects occurring near the
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grounding line. For this reason, we choose the thickness, velocity and strain-rate
scales at x = 0 and define the zeroth-order solution from these parameters. We
assume that the negative surface slope at the grounding line is the aspect ratio of
ice thickness to ice-stream length, 3 (e.g. ds∗/dx∗ = −3 at zeroth order in figure 1).
This choice is compatible with real-world ice streams, and the sensitivity to this
assumption is explored in §4. If we define g as the dimensionless zeroth-order
uniform strain rate at the grounding line, then, after scaling,(

vs
vx

)
0
= −1 and

(
vu
vx

)
0
= g. (3.8)

For this choice of zeroth-order slope, g = 2 corresponds to steady state (see the
electronic supplementary material, §S1). The scaled sliding factor and ice stiffness
are not perturbed and are set as constants, A = B = 1 (in dimensional units,
A∗ = [A∗], B∗ = [B∗]).

Consider an ice stream such that b = 0 and H1(x , t) = s1(x , t). At first order
equations (3.3), (3.5) and (3.6) simplify to

txz1 = H1 − J
vH1

vx
+ G

n
v2u1

vx2
, (3.9)

u1 = (m − 1)H1 − nJ
vH1

vx
+ G

v2u1

vx2
(3.10)

and
vH1

vt
= −m

vH1

vx
+ nJ

v2H1

vx2
− G

v3u1

vx3
, (3.11)

where

J ≡ 1 − U|g|1/n , G ≡ U|g|1/n−1, (3.12)

and the nonlinear perturbation terms are dropped. Next, consider a
transformation into spectral coefficients,

H1 = Ĥ 1 exp(iut + ikxx), u1 = û1 exp(iut + ikxx)

and
vu1

vx
= ûd exp(iut + ikxx).

⎫⎬
⎭ (3.13)

u is the frequency of the frontal forcing (which is restricted to be real), and kx is a
complex spatial wavenumber. This transformation provides the perturbations in
terms of frequency responses. Any of the thickness, velocity or strain rate can be
chosen as the forcing, with specified amplitude, and the other two perturbation
amplitudes are then found by solving the model. We choose to use the strain rate
as the leading forcing by setting ûd . Substituting the spectral transforms into
equations (3.9) and (3.10) produces a phasing relationship between the velocity,
thickness and strain-rate perturbations depending on kx ,

Ĥ 1 =
(

1 + Gk2
x

ikx(m − 1 − ikxnJ)

)
ûd , û1 = ûd

ikx
. (3.14)
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Substituting these transformations and the phasing information into the
continuity equation (3.11) leads to a cubic characteristic equation for wavenumber
as a function of constants describing ice rheology and periodic forcing,

Gk3
x + (Gu − inJ)k2

x + mkx + u = 0. (3.15)

For any given forcing frequency u, solving this cubic for kx provides estimates of
spatial wavelength

l = 2p

Re(kx)
, (3.16)

decay length

DL = − 1
Im(kx)

, (3.17)

where DL is the length upstream at which only e−1 of the perturbation remains,
and the speed of upstream propagation of the resulting perturbation in velocity
or thickness (phase speed) is given by

vp = u

Re(kx)
. (3.18)

The group velocity is different from the phase velocity, and thus there is dispersion
in the system.

(b) The shallow-ice approximation

Nye (1965) solved a similar problem for the SIA but with frequency variations
in the accumulation. The MSA problem can be modified to give the corresponding
SIA solution for frontal forcings in the strain rate as follows. The force balance
equation is given by equation (2.1) with B∗ = 0 and T ∗

b = t∗
xz for the basal case,

which can be substituted into the sliding law in equation (3.1) to give

u∗ = −A∗(r∗g∗)nH ∗(m−1)|vx∗s∗|n−1(vx∗s∗).

Using the scalings in equation (3.2) along with the assumptions at zeroth order
(as discussed above) gives the ice flux as

q = −H m|vx s|n−1(vx s).

The linear perturbation then results in

q1 = mH1 − nvxH1 (3.19)

and
vtH1 = −mvxH1 + nv2

xH1, (3.20)
and a transfer to spectral coordinates of the above equation gives a quadratic for
kx as a function of u,

−ink2
x + mkx + u = 0, ⇒ kx = − im

2n

(
1 ±

√
1 + 4niu

m2

)
. (3.21)

This expression is the equivalent to the cubic equation (3.15) for the MSA as U
tends to zero. Thus, the SIA is the low U limit of the MSA, corresponding to very
weak coupling in the membrane term.
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(c) Limiting behaviour

The high-frequency limit of the frequency response can be calculated from
equation (3.15) by expanding in terms of the complex wavenumber kx = Re(kx) +
i Im(kx). Analysing the balance of the terms for u � 1 gives equations for the real
and imaginary parts of the equation separately as

2G Re(kx) Im(kx) = 0 and (Im(kx))2 − (Re(kx))2 = 1
G

, (3.22)

respectively. Thus, Re(kx) → 0 and Im(kx) → −(
√

G)−1 as u → ∞ and this
provides the spatial wavelength and the minimum decay length DL for the MSA
and SIA (for which G = 0: see equation (3.12)) as

MSA (u → ∞) : l → ∞ DL → √
G (3.23)

and

SIA (u → ∞) : l → 0, DL → 0. (3.24)

In dimensional units, the limit for the MSA decay length is

MSA (u → ∞) : D∗
L → g(1−n)/2n[X ∗](n−1)/2nL∗(n+1)/2n , (3.25)

using equation (3.12), where L∗ is defined as the membrane coupling length
(MCL) from Hindmarsh (2006a),

L∗ =
(

2[B∗][u∗]1/n

r∗g∗3

)n/(n+1)

. (3.26)

This minimum decay length is not equal to the MCL because it also now depends
in part on the length scale of the ice stream and the zeroth-order strain rate
at the grounding line. In contrast, for the SIA, DL tends to zero for high
frequencies. For the MSA in the high-frequency limit, the wave speed diverges
(see equation (3.18)).

In the low-frequency limit, the spatial wavenumber and decay number can be
calculated in the same manner as for the high-frequency limit (by expanding
equation (3.15) and evaluating the terms as u → 0). This gives the spatial
wavelength and decay lengths in this limit as

MSA (u → 0) : l → ∞, DL → −2G

nJ ± √
n2J2 + 4mG

(3.27)

and

SIA (u → 0) : l → ∞, DL → n
m

, (3.28)
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for the MSA and the SIA, respectively, where DL is the maximum decay length
in this case. The corresponding limits of the wave speed (equation (3.18)) in the
low-frequency limit are

MSA (u → 0) : vp → −3G Im(kx)2 − 2nJ Im(kx) − m
1 − G Im(kx)2

(3.29)

and
SIA (u → 0) : vp → −m, (3.30)

with Im(kx) as u → 0 given in equation (3.27).
Equation (3.18) indicates that the speed of upstream propagation (or phase

velocity) is dependent on the frequency of the periodic forcing and the spatial
wavenumber (which is itself a function of the forcing frequency), and is not
directly related to the expected velocity predicted for kinematic wave propagation
(Cuffey & Paterson 2010). Even in the low-frequency limit (equation (3.29)), the
wave speed for the MSA is more complicated than the kinematic wave speed
predicted by the SIA.

(d) A laterally resisted ice stream

For a laterally resisted ice stream, the lateral drag for a stream of semi-width
W ∗ can be solved approximately by using the flow law and writing

t∗
xy = t∗

l
y∗

W ∗ ⇒ dv∗

dy∗ = 2A∗t∗n
l

y∗n

W ∗n
,

where t∗
xy = t∗

l at y∗ = W ∗, the lateral margin, and the velocity is v∗(x∗, y∗).
Integrating the second of these equations over the semi-width of the ice
stream and setting v∗ = 0 at y∗ = W ∗ gives the centre-line velocity u∗(x∗) = v∗
(x∗, y∗ = 0) as

u∗1/n = nW ∗1/nA∗1/nt∗
l , where n =

(
2

n + 1

)1/n

, (3.31)

as used by Hindmarsh (2006a) (see also Cuffey & Paterson 2010). For the laterally
resisted case, A∗ is the viscous rate coefficient given by A∗ = B∗−n , and the
traction can be written as

T ∗
b = H ∗

W ∗ t∗
l = H ∗

W ∗ C ∗u∗1/n , where C ∗ = B∗

nW ∗1/n
. (3.32)

Thus, the horizontal force balance for a laterally resisted ice stream of semi-width
W ∗ in equation (2.1) can be written in dimensional units as

2
v

vx∗

(
H ∗B∗

∣∣∣∣vu∗

vx∗

∣∣∣∣
1/n−1

vu∗

vx∗

)
− H ∗

W ∗ C ∗u∗(1/n) = r∗g∗H ∗ vs∗

vx∗ . (3.33)

If [t∗
l ] = r∗g∗3[W ∗] and the same scales for [X ∗] and [t∗] are used as for the basal

case, then equation (3.31) gives

[u∗]1/n = n[A∗]1/nr∗g∗3[W ∗](n+1)/n . (3.34)
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One would usually prescribe the width scale [W ∗] and then calculate the velocity
scale. However, in order to ease comparison between the basal and lateral cases,
we choose the velocity scale at the grounding line and derive the width. The
zeroth-order slope and strain rate are defined as those of the basal case (see
equation (3.8)). The definition of U is then given by equation (3.4) and the
continuity equation (3.6) and scaled momentum equations (3.31) and (3.33) are
linearized and transformed into spectral coordinates and solved (see §3a and the
electronic supplementary material, §S2, for more details). This gives the same
phasing relationship (3.14) and the cubic characteristic equation (3.15) as for the
basal case, but note that, for the lateral case, m = 1.

4. Results

The cubic equation for basally and laterally resisted streams driven by
periodically varying the strain rate at the ice front (3.15) is solved to give the
complex wavenumber as a function of the prescribed forcing frequency, kx(u).
Perturbations decay towards the ice divide only for Im(kx) ≤ 0. In the case of
equation (3.15), our calculations always show one admissible root, although we
have not proved this for all cases.

The amplitude of the strain-rate forcing is set to ûd = 1 at x = 0, and
because Ĥ 1 and û1 are directly proportional to ûd, this can be done without
loss of generality. Physically, this means we are changing the magnitude of
the longitudinal strain rate just upstream of the grounding line, which may
be interpreted as, for example, an increase in strain slightly upstream owing
to a reduction in back pressure at the grounding line. However, what causes
the upstream change in strain rate is not explicitly modelled. Because the
basally and laterally resisted cases display the same qualitative behaviour, only
a basally resisted example is fully explored (a table of decay length statistics for
laterally resisted streams can be found in the electronic supplementary material,
§S2 and table S1).

We solve for the complex wavenumber for 29 Antarctic ice streams using
drainage basin area and grounding-line velocity and thickness data taken from
Rignot et al. (2008). This shows how the stream characteristics affect the
frequency response. The length scale [X ∗] is approximated as the square root
of the area. The zeroth-order slope is taken to be the aspect ratio of thickness
over length scale, as discussed in §3a. Although this is an approximation, decay
lengths and critical periods were found to be insensitive to variations in 3: when
3 varies by a factor of 10, the minimum decay length for a given ice stream
varied by a factor of approximately 3. For this choice of slope, we require g = 2
for an ice sheet in steady state at zeroth order (see §3a and the electronic
supplementary material, §S1). The Glen index n = 3 is used, and for the basally
resisted case m = 4 (summarized in table 1), whereas, for the laterally resisted
case, m = 1 (summarized in the electronic supplementary material, table S1).
We set B∗ = 106 Pa yr1/3, corresponding to a temperature of around −30◦C.
The dimensionless viscosity parameter U is small for all streams considered:
0.0066 ≤ U ≤ 0.037. An example of the relation between forcing frequency and
wavenumber, in terms of decay number Im(kx) and spatial wavenumber Re(kx),
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Table 1. Ice streams and outlet glaciers in the Antarctic with parameters taken from Rignot et al.
(2008), where [H ∗] and [u∗] are grounding-line thickness and velocity, respectively. The length scale
[X∗] is defined as the square root of the area and we set B∗ = 106 Pa yr1/3. 3 is the ratio of thickness
scale to ice-stream length and U is the dimensionless viscosity parameter. MCL is the membrane
coupling length calculated using the expression formulated by Hindmarsh (2006a). Decay length D∗

L
and T ∗

sp are calculated using the model of basal resistance, where T ∗
sp is the period at which the spatial

wavenumber on the MSA curve of kx (u) changes from increasing as a function of u to decreasing with u,
which gives a measure of the demarcation between the fast and slow forcing branches shown in figure 2.
Average values for West and East Antarctica are shown. FER, Ferrigno ice stream; PIG, Pine Island
glacier; THW, Thwaites glacier; LAN, Land glacier; BIN, Bindschadler ice stream; MAC, MacAyeal
ice stream; EVA, Evans ice stream; RUT, Rutford ice stream; INS, Institute ice stream; MOL, Moller
ice stream; FOU, Foundation ice stream; SUP, Support Force glacier; REC, Recovery ice stream; SLE,
Slessor ice stream; BAI, Bailey ice stream; DAV, David glacier; REN, Rennick glacier; NIN, Ninnis
glacier; MER, Mertz glacier; DIB, Dibble glacier; FRO, Frost glacier; TOT, Totten glacier; DEN,
Denman glacier; LAM, Lambert glacier; RAY, Rayner and Thyer glaciers; SHI, Shirase glacier; JUT,
Jutulstraumen; BYR, Byrd glacier; STA, Stancomb–Wills glacier.

D∗
L (km)

T ∗
p = 1 (years) T ∗

p = 100 (years)[H ∗] [u∗] [X∗] MCL T ∗
sp

name (km) (km yr−1) (km) 3 U (km) MSA SIA MSA SIA (years)

FER 1.5 1.7 118 0.013 0.036 9.79 18.3 12.8 69.2 71.3 6.37
PIG 1.1 2.5 405 0.0027 0.037 34.2 62.2 29.6 189 197 15.3
THW 1.1 2 427 0.0026 0.034 33.6 62.5 27.3 183 191 18.3
LAN 1.3 1 114 0.011 0.035 9.28 17.2 9.83 59.1 61.1 10.2
BIN 0.6 0.3 374 0.0016 0.034 29.9 55.1 10.2 80.6 86.8 109
MAC 0.6 0.3 418 0.0014 0.033 32.5 60.5 10.8 86.3 92.6 117
EVA 1.5 0.6 330 0.0045 0.018 16.3 35.3 13.4 101 106 24.4
RUT 2 0.4 230 0.0087 0.013 9.05 21.2 9.13 70 72.7 18.6
INS 1.3 0.4 386 0.0034 0.017 18.4 40.3 11.9 93.2 99.5 40.9
MOL 1.1 0.1 249 0.0044 0.015 10.6 24.1 4.81 39.3 43 90.4
FOU 2.3 0.6 718 0.0032 0.009 21.2 54.4 19.9 161 169 26.1
West: 1.3 0.9 343 0.0051 0.026 20.4 41 14.5 103 108 41

SUP 1.6 0.1 365 0.0044 0.009 10.7 27.5 5.84 48.3 53.1 78.9
REC 1.8 0.8 998 0.0018 0.011 35 84.9 27.1 218 231 34.5
SLE 1.3 0.5 706 0.0018 0.015 30.6 69.2 18.1 144 156 52.4
BAI 2 0.2 266 0.0075 0.01 8.49 21.3 7.01 56.7 60.1 32.3
DAV 2.7 0.5 463 0.0058 0.008 12.9 33.9 14.5 117 121 18.7
REN 1.5 0.2 230 0.0065 0.014 9.44 21.7 6.51 51.7 55.2 39.5
NIN 1.5 0.8 453 0.0033 0.018 22.2 48.2 18.1 137 144 24.9
MER 1.8 0.8 286 0.0063 0.017 13.7 30.1 14.3 104 108 15.2
DIB 1.5 0.8 182 0.0083 0.024 11.2 22.6 11.3 77.1 79.6 13.7
FRO 2 1.7 369 0.0054 0.019 18.5 40.3 23.4 160 164 9.84
TOT 2 0.8 755 0.0026 0.011 26.2 63.9 23.5 187 196 25.8
DEN 2.5 1.5 475 0.0053 0.013 18.3 43.6 25.2 182 186 10
LAM 3 0.7 978 0.0031 0.007 22.7 63.4 25.1 207 216 22
RAY 1 1 322 0.0031 0.032 24.6 46.2 16.9 120 126 26.4
SHI 1.3 2.2 446 0.0029 0.029 31.4 60.7 29.3 196 203 14.8
JUT 2 0.7 351 0.0057 0.014 14.3 33.1 14.9 113 117 17
STA 1.4 0.7 329 0.0043 0.02 17.8 37.4 14.4 107 112 23.6
BYR 2 0.8 998 0.002 0.01 32.3 80.6 27.1 219 232 31
East: 1.83 0.822 499 0.0045 0.016 20 46 17.9 136 142 27.3
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Figure 2. The relationship between frequency u and wavenumber kx plotted as dimensionless
wavenumber (Re(kx )) and decay number (Im(kx )) as a function of forcing frequency u for
parameters appropriate to Pine Island Glacier (table 1) for the case of basal resistance.
A dimensional scale for the decay length D∗

L is shown (blue right-hand axis, in kilometres) along
with a dimensional scale for the forcing period T ∗

p (top blue axis on colour bar, in years). The SIA
is shown as solid circles and the MSA is displayed with a range of U values, where U = 0.037 is
the standard value for PIG (upward pointing triangles). U = 0.01, diamonds; U = 0.003, sideways
triangles; U = 0.001, stars. The line on which Re(kx ) = −Im(kx ) is also shown (black dashed line).

is shown in figure 2 for the parameters of PIG. Both the MSA (3.15) and the
SIA (3.21) solutions are displayed. In this case, the time scale is [t∗] = 162 years,
and the period Tp = 2p/u is varied between approximately half a day (this
corresponds to tidal forcing; note that we are ignoring visco-elastic effects) and
16 000 years (deglaciation time scale).

Figure 2 is a plot (Argand diagram) of the real and imaginary parts of the
wavenumber for different forcing frequency u. It is best to view u as the
independent variable, and then plot the relationship between the decay number
and wavenumber. The main axes are dimensionless but a dimensional scale for
the decay length (kilometres, right-hand axis, blue) and for the colour scale in
terms of the dimensional forcing period T ∗

p (in years) is also shown for ease of
interpretation. Two distinct branches of the curve, both with almost constant
decay length, can be distinguished for the MSA using standard PIG parameters
(shown as upward-pointing triangles): a slow, low-frequency forcing with a
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Figure 3. Plots of (a) the maximum (blue) and minimum (red) decay lengths D∗
L for the case

of basal resistance and (b) the demarcation period between the fast and slow branches T ∗
sp for

basal (blue) and lateral (red) resistance, shown for 29 Antarctic ice streams (see the electronic
supplementary material, tables S1 and S2, for full data).

maximum decay length of approximately D∗
L = 293 km (Im(kx) = −1.38) and a

fast, high-frequency forcing with a shorter minimum decay length of D∗
L = 61.9 km

(Im(kx) = −6.54). The spatial wavenumber increases with frequency on the upper
branch, and decreases as the frequency becomes very high on the lower branch.
This dual branch behaviour is a generic feature of the solution, and is seen
for all Antarctic ice streams considered in this study. Figure 3a shows that the
difference between the decay lengths for the slow and fast branches (the maximum
and minimum decay lengths, respectively) varies between the ice streams owing
to the different geometries and properties of each stream (see also table 1 and
the electronic supplementary material, table S2 and §S2). The minimum decay
length is independent of m and thus is the same for both basal and lateral
resistance, varying between 17 and 84.8 km for the 29 ice streams in table 1
(note: D∗

L at T ∗
p = 1 year in table 1 is very close to the minimum decay length).

Thus, we find that for all ice streams considered even sub-decadal to decadal
forcings can be transmitted tens of kilometres inland. The maximum decay length
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Figure 4. The amplitude of (a) the first-order flux perturbation q1 and (b) the first-order integrated
flux (or ‘volume’) perturbation (equation (4.1)). Solid lines, MSA; dashed lines, SIA.

is around three to four times bigger for the laterally resisted as opposed to
basally resisted streams, because the low-frequency limit is m-dependent (see
equation (3.27)).

The black dashed line in figure 2 shows the line where −Im(kx) = Re(kx)
(which, for large u, is approximately the same as the SIA (solid circles)). Complex
wavenumbers to the left of this line have wavelength l greater than decay
length DL. It can be seen that for the MSA this can be expressed as l > DL;
in other words, we do not expect to be able to observe the upstream sinusoidal
variations except at sufficiently low frequencies, when the spatial wavelength is
not significantly greater than the decay length.

Figure 4 shows the frequency response of PIG in terms of the amplitude of the
linearized flux perturbation and the amplitude of the integrated flux

q1 = q̂1eiut , where q̂1 = û1 + Ĥ 1 and V1 = (û1 + Ĥ 1)
iu

[eiut1 − 1], (4.1)

respectively. V1 is the change in perturbed volume between t = 0 and some time
t = t1 and the amplitude of this volume change over a full period gives the
maximum perturbed volume change at some point t1 = tmax, 0 ≤ tmax ≤ Tp, where
Tp is the dimensionless period. However, because the forcing is periodic, V1 = 0
when t = 0 and t1 = Tp; thus, there is no net change in perturbed volume over
one full period. Figure 4 shows that, for slow forcings (when u is small), the
magnitude of the flux perturbation is small whereas the maximum perturbed
‘volume’ amplitude is large, presumably because the small flux perturbation acts
over a long time period for these slow forcings. On the high-frequency branch
(when u is large), the flux perturbation becomes independent of frequency and
q̂1 ≈ 0.15. Summed volumetric changes within a high-frequency oscillation cycle

Proc. R. Soc. A (2012)



3300 C. R. Williams et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8(a) (b) (c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.2

0.4

0.6

0.8

1.0
|u

1|
 

|h
1|

 

|d
h 1|

 

1 1 1105 105 105

w w w

Figure 5. The magnitude of the perturbations in (a) velocity, (b) thickness and (c) positive surface
slope, as functions of the frequency of the frontal forcing in strain rate for the case of basal resistance
using PIG parameters. Solid lines, MSA; dashed lines, SIA.

are very small owing to the limited time the flux has to build up for short periods.
In between these scenarios, the maximum flux amplitude considered as a function
of periodicity occurs at u ≈ 2.6 (T ∗

p ≈ 388 years).
To understand these perturbations in flux for the MSA, we examine the

magnitude of the perturbations in velocity, thickness and slope (dH /dx) (figure 5)
and the phase angle between velocity and thickness and between velocity and
slope (figure 6), all as functions of forcing frequency. The phase angles shown
in figure 6 are normalized with 2p, so that when Q = 1 the variables vary
in perfect phase and when Q = 0.5 they are in anti-phase (i.e. the maximum
velocity occurs at the same point as the minimum thickness, for example).
At Q = 0.25/0.75 variables vary completely out of phase. When the frequency
u is low, figure 5 shows that the magnitude of the perturbations in velocity and
thickness are substantial. However, figure 6a shows that these changes are in
almost perfect anti-phase (for U � 1, Q → 0.5). Thus any increase in velocity is
compensated by a decrease in thickness, leading to a small flux perturbation
(û1 → −Ĥ 1 in equation (4.1), thus q̂1 → 0). As u increases velocity and thickness
perturbations become out of phase but are still of substantial magnitude
(e.g. at u = 5, |û1| = 0.5, |Qh1u1 | = 0.36), leading to the maximum flux at u ≈ 2.6.
For high-frequency forcings, u � 1, the magnitude of the thickness perturbation
becomes very small but the magnitude of the perturbed velocity tends to a
limiting value (|û1| → ûd/|Im(kx)| ≈ 0.15) as shown in figure 5b and figure 5a,
respectively. This explains the constant amplitude of the flux for high u, q̂1 ≈ û1,
because Ĥ 1 → 0 (see equation (4.1)). Thus, in this case, velocity adjusts rapidly
to changes in the frontal forcing but thickness does not. Furthermore, velocity
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Figure 6. The relative phase angle, normalized with 2p, between perturbed (a) thickness and
velocity, and (b) positive slope and velocity as functions of the frequency of the frontal forcing
in strain rate for the case of basal resistance using PIG parameters. In-phase/anti-phase is at
Q = 1, 0.5 and Q = 0.25/0.75 represents completely out-of-phase behaviour. Solid lines, MSA;
dashed lines, SIA.

moves out of phase with both positive slope and thickness for u � 1, as shown
by Q → 0.25 in figure 6a,b.

In figure 7, the amplitudes of the perturbed, first-order membrane stress,
driving stress and drag terms in the force balance equation (equation (3.3)) are
plotted separately as functions of forcing frequency, u (also shown as a function
of dimensional period T ∗

p in blue). Note that, owing to variations in phasing with
changes in u (shown in figure 6), these amplitudes cannot be directly summed
to zero for force balance. At zeroth order, we have steady state, and the drag
balances the driving stress. The membrane term is of order U, and thus appears
at first order. In the low-frequency limit (centennial to millennial periods), both
the perturbed drag and the driving stress are larger than the membrane stress
perturbation and appear to be approximately in balance. On the branch of
high frequencies (decadal to sub-decadal forcing periods), the perturbed driving
stresses are very small, owing to very little thickness or slope change (figure 5b,c),
and here the perturbed drag and membrane stress terms approximately balance.

For very low frequencies, MSA and SIA predictions of decay length are very
similar but not identical (see equations (3.27) and (3.28) and figure 2): for
PIG, the maximum decay lengths are within 4 per cent. Figure 2 shows that
SIA and MSA predictions of decay number and wavenumber diverge as the
forcing frequency increases. Whereas the MSA decay length forms a second
branch of asymptoting decay number (D∗

L = 62 km, Im(kx) = −6.54), the SIA
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Figure 7. The perturbation amplitude of each term in the force balance (equation (3.3)) as
a function of the forcing frequency for the case of basal resistance for PIG parameters. The
corresponding dimensional axis for the forcing period T ∗

p is also shown (top axis, blue). Light
blue line denotes membrane term; red line, drive term; green line, drag term.

shows monotone behaviour: as u increases and the forcing becomes rapid,
the decay length becomes very small and perturbations decay rapidly as they
travel upstream (DL → 0 as u → ∞; see equation (3.24)). Additionally, the
spatial wavenumber for the MSA decreases for high u, while for the SIA
the relationship between spatial wavenumber and decay number is linear in
the high-frequency limit (see the dashed line in figure 2). These differences in
behaviour of the MSA and the SIA for large u account for the differences shown
between the approximations in figures 4–6. The forcing period at which the
spatial wavenumber on the MSA curve changes from increasing as a function
of u to decreasing as a function of u (i.e. when the MSA curve in kx(u)
in figure 2 turns back on itself) we denote T ∗

sp and record in table 1. This
provides a measure of the demarcation between the fast and slow branches
for the MSA, and thus gives an approximate range of forcings T ∗

p < T ∗
sp for

which the SIA does not capture the dynamics of upstream propagation (since
the SIA does not predict significant upstream propagation on the fast branch).
For the majority of the ice streams evaluated, this timescale is approximately
decadal to sub-decadal (the average for all 29 ice streams is T ∗

sp = 32.5 years),
but varies widely between different ice streams. For example, for PIG T ∗

sp =
15.3 years (u = 0.025) but for the MacAyeal ice stream T ∗

sp = 117 years, indicating
that a forcing of, for example, 50 years may be on the slow branch for
PIG but on the fast branch for the MacAyeal ice stream. Similar results are
found for laterally resisted ice streams, with slightly smaller T ∗

sp values (see
figure 3b and the electronic supplementary material, table S1 and §S2). Finally,
figure 2 indicates that decay length increases as a function of dimensionless
viscosity U, and for small U (shown as sideways triangles and stars) the

Proc. R. Soc. A (2012)



Frequency response of ice streams 3303

propagations are heavily damped. This can be understood by noting that,
as U → 0, the MSA model becomes the same as the SIA, as exemplified by
equation (3.21): the SIA is the low U limit of the MSA.

5. Varying resistance conditions along an ice stream

The stress balance of PIG consists of a 40–50 km region slightly inland of the
grounding line with high driving stress balanced by high basal traction, with
regions upstream and downstream with much lower driving stress in which
longitudinal and lateral stresses play a significant role (Vieli & Payne 2003; Payne
et al. 2004). To understand this further, we join a downstream laterally resisted
region to an upstream basally resisted section. This is achieved by matching the
full triple root solution of the lateral problem in the downstream sector to a
basally resisted solution in the upstream sector. We prescribe the total forcing
just upstream from the grounding line and enforce continuous velocity, thickness
and strain rate across the lateral-to-basal transition at x = XC , along with the
upstream boundary condition that the perturbations tend to zero towards the
ice divide (for full details, see the electronic supplementary material, §S3). To
preserve scales for the matching at x = XC , all parameters and u on both sides
of the divide are kept the same; the only difference between the basal and
lateral cases is the value of m (m = 1 for the lateral case and m = 4 for the
basal case). Because m is not involved in the high-temporal-frequency limit (see
equation (3.23)), only low-frequency forcings with periods of decades or longer
are affected by the change in resistance.

An example of an ice stream with parameters estimated for PIG (table 1) is
shown in figure 8, where the change from lateral to basal resistance is 20 km
upstream of the grounding line (as suggested in Vieli & Payne (2003)) for a
period of 100 years. The purely basal and purely lateral cases are also shown
here, and because in this case the stream changes to basal resistance close to
the ice front, the matched profile is very similar to the basally resisted case. The
degree of agreement will vary with the position of the join along the stream. This
approach adds flexibility to the method since it can easily be expanded to stack
together many ice-stream portions with differing basal conditions to better model
the traction of a real ice stream.

6. Constructing arbitrary periodic forcings in strain rate

Owing to the linear nature of the perturbation model, multiple solutions can be
summed to build an arbitrary periodic forcing close to the ice front. As a simple
example, we construct a square-wave function (figure 9) in strain rate at x = 0,
just upstream from the grounding line, with amplitude ûd = 1 and period Tp,

du1
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Figure 9. (a) A square-wave perturbation in strain rate at x = 0 with a period of 50 years and
(b) the corresponding velocity and thickness perturbations for PIG parameters (table 1), where
j = 301. Solid lines, MSA; dashed lines, SIA.

where the frequency is set to u = 2p(2i − 1)/Tp, i = 1, 2 . . . , j . The step change
in strain rate may represent some aspects of upstream changes caused by sudden
ice-shelf loss due to, for example, calving events or ungrounding from a pinning
point. An example of this square-wave forcing is shown in figure 9 for a period
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of 50 years, T ∗
p = 50 years. A step decrease in strain rate leads to a rapid drop in

velocity and a slower increase in thickness. The relatively high frequency of the
forcing accounts for the small change in thickness and the difference in response
speed of thickness and velocity (velocity and thickness are out of phase), as shown
in §4 for sinusoidal forcings. Although the periodic square wave is an idealized
forcing, the approximate 5–10% thinning and the 50 per cent acceleration of PIG
over a period of 25 years shown in figure 9 are of a comparable magnitude to
observed changes (Rignot 2008; Pritchard et al. 2012). A similar approach could
be used to reconstruct more realistic forcings.

7. Discussion

We have developed an analytical theory for the upstream propagation of a
periodic forcing in the strain rate just upstream of the grounding line. Physically,
this change in strain rate could be a response to changes in the back-pressure
at the grounding line, perhaps due to ice-shelf thinning or thickening. The
fundamental result of this theory is that there are two styles of upstream
propagation of velocity perturbations, each associated with different periods
of forcings. For low-frequency forcing, the propagation does not depend on
membrane stresses while for high-frequency forcing it does.

The model was employed to estimate response characteristics for 29 Antarctic
ice streams using grounding-line parameters from Rignot et al. (2008). The
equivalent ice-stream propagation problem was also solved using the SIA (based
on methods by Nye (1965)). Ice streams with varying traction regimes in
different regions, such as PIG (Vieli & Payne 2003), were also explored by
constructing a method to match basally and laterally resisted ice-stream sections.
For both basally and laterally resisted cases, decay length and the spatial
wavelength of the upstream perturbations can be characterized as functions of
ice rheology, geometry and forcing frequency. High frequencies could represent
seasonal or even tidal forcings, although caution is required since tidal forcings are
usually modelled (visco-)elastically (Reeh et al. 2003; Gudmundsson 2007). Low
frequencies could represent some aspects of natural modes of climate variability
such as the Atlantic multi-decadal oscillation (as suggested by Price et al.
(2011)). More general forcing can be constructed from combinations of Fourier
components, as demonstrated by the construction of a square-wave forcing.
Results for PIG parameters were analysed in detail as an example. We caution
that the problem is ultimately nonlinear and large-amplitude response may
require further investigation.

For all ice streams considered, as the forcing frequency varies, two distinct
response styles emerge: a slow, low-frequency branch (centennial to millennial
periods) with spatial wavenumber increasing with frequency, and a fast, high-
frequency branch (decadal and sub-decadal periods) with spatial wavenumber
decreasing with frequency. On the low-frequency branch, the response can
propagate many hundreds of kilometres upstream. On this branch, velocity is
approximately in phase with negative slope and in anti-phase with thickness, and
drag and driving stress are approximately in balance and both are much larger
than the contribution from membrane stresses. Thus, the SIA is sufficient to
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explain and model the dynamics of the low-frequency branch. The mechanism
for propagation on this branch is due to changes in grounding-line flow and
geometry rather than direct propagation of membrane stresses. On the high-
frequency branch for the MSA, velocity responds very rapidly to forcing, but
thickness and driving stress vary little. On this branch, changes in membrane
stresses are balanced by changes in drag and the effects are directly propagated
tens of kilometres upstream. Thus, we find that there is a clear distinction,
based on the frequency of the frontal forcing, between the two mechanisms for
upstream propagation. Furthermore, this distinction, in terms of the period at the
demarcation between the two branches, varies significantly between ice streams.
A surprising feature of the results was the propagation of high-frequency velocity
effects beyond the boundary layer lengths proposed by Hindmarsh (2006a)
and Schoof (2007), for example. This boundary layer length is an appropriate
description for static situations, but is not particularly informative about length
scales of high-frequency upstream forcing. The difference between the two is
conditioned by the nonlinear rheology of ice, as shown by equation (3.25). It
should be clear that there is a difference between our fast mode of propagation and
‘instantaneous’ changes transmitted seismically. The details of the relationships
between the two waves at high frequency are likely to be complex.

Inland acceleration and thinning have been observed in Greenland and the
Antarctic and various theories have been proposed to explain the mechanisms
behind these changes. Both Joughin et al. (2003) and Scott et al. (2009) (for PIG)
and Van der Veen et al. (2011) (for Jakobshavn Isbræ) found from observations
and a force balance analysis that changes in the transmission of longitudinal
stresses were not necessary to explain upstream acceleration. Although our study
has only dealt with periodic forcings, we would expect some of the results
to be more generally applicable. PIG has now been thinning for at least two
decades (Shepherd et al. 2001). This, together with our findings and those of
Joughin et al. (2003) and Scott et al. (2009), are all consistent with behaviour
on the low-frequency branch forced by changes at or near the grounding line.
This interpretation is also consistent with the diffusive response modelled by
Payne et al. (2004). Furthermore, rapid forcing on the high-frequency branch
has been observed in the form of rapid seasonal speed-up on Jakobshavn caused
by changes in back-stress and ice-front position (Joughin et al. 2008). We
have clarified the distinction between our upstream propagating waves and
kinematic waves in ice streams (Bindschadler 1997; Payne et al. 2004, Nick et al.
2009); in particular, we find that the upstream propagation rate is frequency
dependent, as is the case for downstream flows with non-SIA mechanics (see also
Gudmundsson 2003). Observations by Van der Veen et al. (2011), of significant
changes in driving stress and drag over time which were not accompanied by any
significant change in the membrane stress contribution, are consistent with our
results provided that the forcing varied sufficiently slowly to keep the dynamical
behaviour on the low-frequency branch (figure 7). Thus, whereas Van der Veen
et al. (2011) attribute the speed-up of Jakobshavn to a weakening of ice at
the lateral margins, we find this could be caused by a frontal perturbation.
However, this still leaves the surprisingly large magnitude of the speed-up
unexplained if the Glen index of n = 3 is used (higher n might explain the
magnitude). This highlights the difficulty in attributing any observed changes
in thickness or velocity either to a frontal forcing or to spatial anomalies in
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basal slipperiness or changes at the lateral margins; moreover, it is clear that
the frequency of forcing is an important parameter when attempting to make
this distinction.

While our results are presented in terms of upstream propagation from
grounding lines, we expect the same pattern to hold for variability generated
internally in ice sheets (although further investigation is needed to verify this).
An example would be penetration of melt to the bed in the ablation zones of
thick ice sheets that results in rapid speed-up. This mechanism, long known from
Alpine glaciers (Iken et al. 1983; Iken & Bindschadler 1986), was observed in
Greenland by Zwally et al. (2002). Price et al. (2008) argued that the forcing
need not be local, and could be transmitted long distances through longitudinal
stress coupling. Our studies indicate that the frequency of forcing can significantly
affect the signal. When coupled with recent work on how the rate of melt supply
controls velocity perturbations (Schoof 2010; Sundal et al. 2011), we can see
that potentially a very complex picture might emerge through further studying
such systems.

Although we find that long-distance short-period upstream propagations are
not associated with significant changes in thickness, further investigation is
required to assess the real-world implications for rapid but non-periodic forcing,
and for a nonlinear system. Within a decade, we will have a good forcing and
thinning record for most ice streams. Our results clearly imply that each ice
stream requires a separate analysis to discriminate between high-frequency and
low-frequency forcing, because we find that the upstream response to a forcing
is not a simple function of the temporal nature of forcing. The forcing time
scale separating the fast and slow branches for each ice stream (T ∗

sp) appears to
be approximately comparable to the current length of the observational record.
These findings agree with data presented by Moon et al. (2012), who found that
Greenland’s outlet glaciers display a complex response to both regional and local
forcing over annual to decadal time scales. The problem presented herein is then of
potential use if viewed as an inverse problem: if the inland velocity and thickness
changes of an ice stream are known, we might hope that the problem can be
inverted to provide the temporal forcing at the ice front that caused these profiles.
If this problem could be solved, then past changes in ice-shelf forcing owing to
calving, fracture or collapse may be inferred, potentially allowing estimation of
past ice–ocean interactions that are otherwise difficult to quantify.

Although the SIA represents a low U limit of the MSA and captures upstream
propagation for sufficiently slow forcings, we caution that this does not imply
that the SIA is appropriate for modelling ice streams. In particular, it performs
poorly at modelling the propagation of decadal and sub-decadal components of
the forcing. In addition, we prescribed the strain rate at the grounding-line,
but Pattyn et al. (2012) have shown that the SIA would not calculate accurate
grounding-line dynamics unless augmented by a flux parametrization such as that
proposed by Schoof (2007). Furthermore, the SIA has been shown to be ill-posed
for some thermo-viscous calculations (Hindmarsh 2004, 2006b). We believe that
it is inadvisable to use the SIA to model upstream propagation dynamics in ice
streams, especially if information about decadal changes is sought.
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Framework Programme, grant no. 226375. Ice2sea contribution number 081.

Proc. R. Soc. A (2012)



3308 C. R. Williams et al.

References

Bamber, J. L., Alley, R. B. & Joughin, I. 2007 Rapid response of modern day ice sheets to external
forcing. Earth Planetary Sci. Lett. 257, 1–13. (doi:10.1016/j.epsl.2007.03.005)

Bentley, C. R., Giovinetto, M. B. & Joughin, I. 1991 Mass balance of Antarctica and sea-level
change. In Proc. Int. Conf. on the Role of Polar Regions in Global Change, pp. 481–488.
Fairbanks, AK: University of Alaska.

Bindschadler, R. 1997 Actively surging West Antarctic ice streams and their response
characteristics. Ann. Glaciol. 24, 409–414.

Blatter, H. 1995 Velocity and stress fields in grounded glaciers: a simple algorithm for including
deviatoric stress gradients. J. Glaciol. 41, 333–344.

Bueler, E. & Brown, J. 2009 Shallow shelf approximation as a ‘sliding law’ in a thermomechanically
coupled ice sheet model. J. Geophys. Res. 114, F03008. (doi:10.1029/2008JF001179)

Cuffey, K. M. & Paterson, W. S. B. 2010 The physics of glaciers, 4th edn, pp. 338–340 and 466–477.
Amsterdam, The Netherlands: Elsevier.

Dupont, T. K. & Alley, R. B. 2005 Assessment of the importance of ice-shelf buttressing to ice-sheet
flow. Geophys. Res. Lett. 320, L04503. (doi:10.1029/2004GL022024)

Gudmundsson, G. H. 2003 Transmission of basal variability to a glacier surface. J. Geophys. Res.
108, 2253. (doi:10.1029/2002JB002107)

Gudmundsson, G. H. 2007 Tides and the flow of Rutford ice stream, West Antarctica. J. Geophys.
Res. 112, F04007. (doi:10.1029/2006JF000731)

Hindmarsh, R. C. A. 2004 Thermoviscous stability of ice-sheet flows. J. Fluid Mech. 502, 17–40.
(doi:10.1017/S0022112003007390)

Hindmarsh, R. C. A. 2006a The role of membrane-like stresses in determining the stability and
sensitivity of the Antarctic ice sheets: back pressure and grounding line motion. Phil. Trans.
R. Soc. A 364, 1733–1767. (doi:10.1098/rsta.2006.1797)

Hindmarsh, R. C. A. 2006b Stress gradient damping of thermoviscous ice flow instabilities.
J. Geophys. Res. 111, B12409. (doi:10.1029/2005JB004019)

Hindmarsh, R. C. A. 2012 An observationally validated theory of viscous flow dynamics at the
ice-shelf calving front. J. Glaciol. 58, 375–387. (doi:10.3189/2012JoG11J206)

Hughes, T. 1973 Is the West Antarctic ice sheet disintegrating? J. Geophys. Res. 78, 7884–7910.
(doi:10.1029/JC078i033p07884)

Hutter, K. 1983 Theoretical glaciology, pp. 256–330. Dordrecht, The Netherlands: Reidel.
Iken, A. & Bindschadler, R. A. 1986 Combined measurements of subglacial water pressure and

surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding
mechanism. J. Glaciol. 32, 101–119.

Iken, A., Röthlisberger, H., Flotron, A. & Haeberli, W. 1983 The uplift of Unteraargletscher at the
beginning of the melt season—a consequence of water storage at the bed? J. Glaciol. 29, 28–47.

Joughin, I., Rignot, E., Rosanova, C. E., Lucchitta, B. K. & Bohlander, J. 2003 Timing of recent
accelerations of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 30, 1706. (doi:10.1029/
2003GL017609)

Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M. & Moon, T. 2008 Seasonal
speedup along the Western Flank of the Greenland ice sheet. Science 320, 781–783. (doi:10.1126/
science.1153288)

Kamb, B. & Echelmeyer, K. A. 1986 Stress-gradient coupling in glacier flow. I. Longitudinal
averaging of the influence of ice thickness and surface slope. J. Glaciol. 32, 267–284.

MacAyeal, D. R. 1989 Large-scale ice flow over a viscous basal sediment: theory and application
to ice stream B, Antarctica. J. Geophys. Res. 94, 4071–4087. (doi:10.1029/JB094iB04p04071)

Moon, T., Joughin, I., Smith, B. & Howat, I. 2012 21st-century evolution of Greenland outlet
glacier velocities. Science 336, 576–578. (doi:10.1126/science.1219985)

Muszynski, I. & Birchfield, G. 1987 A coupled marine ice-stream and ice-shelf model. J. Glaciol.
33, 3–15.

Nettles, M. et al. 2008 Step-wise changes in glacier flow speed coincide with calving and glacial
earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett. 35, L24503. (doi:10.1029/
2008GL036127)

Proc. R. Soc. A (2012)

http://dx.doi.org/doi:10.1016/j.epsl.2007.03.005
http://dx.doi.org/doi:10.1029/2008JF001179
http://dx.doi.org/doi:10.1029/2004GL022024
http://dx.doi.org/doi:10.1029/2002JB002107
http://dx.doi.org/doi:10.1029/2006JF000731
http://dx.doi.org/doi:10.1017/S0022112003007390
http://dx.doi.org/doi:10.1098/rsta.2006.1797
http://dx.doi.org/doi:10.1029/2005JB004019
http://dx.doi.org/doi:10.3189/2012JoG11J206
http://dx.doi.org/doi:10.1029/JC078i033p07884
http://dx.doi.org/doi:10.1029/2003GL017609
http://dx.doi.org/doi:10.1029/2003GL017609
http://dx.doi.org/doi:10.1126/science.1153288
http://dx.doi.org/doi:10.1126/science.1153288
http://dx.doi.org/doi:10.1029/JB094iB04p04071
http://dx.doi.org/doi:10.1126/science.1219985
http://dx.doi.org/doi:10.1029/2008GL036127
http://dx.doi.org/doi:10.1029/2008GL036127


Frequency response of ice streams 3309

Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. 2009 Large-scale changes in Greenland outlet
glacier dynamics triggered at the terminus. Nat. Geosci. 2, 110–114. (doi:10.1038/ngeo394)

Nye, J. F. 1965 The frequency response of glaciers. J. Glaciol. 5, 567–587.
Pattyn, F. 2003 A new three-dimensional higher-order thermomechanical ice sheet model: basic

sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 108,
2382. (doi:10.1029/2002JB002329)

Pattyn, F. et al. 2008 Benchmark experiments for higher-order and full Stokes ice sheet models
(ISMIP-HOM). Cryosphere Discuss. 2, 111–151. (doi:10.5194/tcd-2-111-2008)

Pattyn, F. et al. 2012 Results of the marine ice sheet model intercomparison project, MISMIP.
Cryosphere Discuss. 6, 267–308. (doi:10.5194/tcd-6-267-2012)

Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. 2004 Recent dramatic
thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett. 312,
L23401. (doi:10.1029/2004GL021284)

Price, S. F., Payne, A. J., Catania, G. A. & Neumann, T. A. 2008 Seasonal acceleration of
inland ice via longitudinal coupling to marginal ice. J. Glaciol. 54, 213–219. (doi:10.3189/
002214308784886117)

Price, S. F., Payne, A. J., Howat, I. M. & Smith, B. E. 2011 Committed sea-level rise for the next
century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA
108, 8978–8983. (doi:10.1073/pnas.1017313108)

Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. 2009 Extensive dynamic
thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975.
(doi:10.1038/nature08471)

Pritchard, H. D., Luthcke, S. B. & Fleming, A. H. 2011 Understanding ice-sheet mass balance:
progress in satellite altimetry and gravimetry. J. Glaciol. 56, 1151–1161. (doi:10.3189/
002214311796406194)

Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R. &
Padman, L. 2012 Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484,
502–505. (doi:10.1038/nature10968)

Reeh, N., Lintz Christensen, E., Mayer, C. & Olesen, O. B. 2003 Tidal bending of glaciers: a linear
viscoelastic approach. Ann. Glaciol. 37, 83–89. (doi:10.3189/172756403781815663)

Rignot, E. J. 1998 Fast recession of a West Antarctic glacier. Science 281, 549–551. (doi:10.1126/
science.281.5376.549)

Rignot, E. 2006 Changes in ice dynamics and mass balance of the Antarctic ice sheet. Phil. Trans.
R. Soc. A 364, 1637–1655. (doi:10.1098/rsta.2006.1793)

Rignot, E. 2008 Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR
data. Geophys. Res. Lett. 35, L12505. (doi:10.1029/2008GL033365)

Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. & Thomas, R. 2004 Accelerated ice
discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys.
Res. Lett. 311, L18401. (doi:10.1029/2004GL020697)

Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Li, Y., van de Berg, W. J. & van
Meijgaard, E. 2008 Recent Antarctic ice mass loss from radar interferometry and regional climate
modelling. Nat. Geosci. 1, 106–110. (doi:10.1038/ngeo102)

Rott, H., Rack, W., Skvarca, P. & de Angelis, H. 2002 Northern Larsen ice shelf, Antarctica: further
retreat after collapse. Ann. Glaciol. 34, 277–282. (doi:10.3189/172756402781817716)

Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. 2004 Glacier acceleration and
thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett.
311, L18402. (doi:10.1029/2004GL020670)

Schoof, C. 2007 Ice sheet grounding line dynamics: steady states, stability, and hysteresis.
J. Geophys. Res. 112, F03S28. (doi:10.1029/2006JF000664)

Schoof, C. 2010 Ice-sheet acceleration driven by melt supply variability. Nature 468, 803–806.
(doi:10.1038/nature09618)

Schoof, C. 2011 Marine ice sheet dynamics. II. A Stokes flow contact problem. J. Fluid Mech. 679,
122–155. (doi:10.1017/jfm.2011.129)

Proc. R. Soc. A (2012)

http://dx.doi.org/doi:10.1038/ngeo394
http://dx.doi.org/doi:10.1029/2002JB002329
http://dx.doi.org/doi:10.5194/tcd-2-111-2008
http://dx.doi.org/doi:10.5194/tcd-6-267-2012
http://dx.doi.org/doi:10.1029/2004GL021284
http://dx.doi.org/doi:10.3189/002214308784886117
http://dx.doi.org/doi:10.3189/002214308784886117
http://dx.doi.org/doi:10.1073/pnas.1017313108
http://dx.doi.org/doi:10.1038/nature08471
http://dx.doi.org/doi:10.3189/002214311796406194
http://dx.doi.org/doi:10.3189/002214311796406194
http://dx.doi.org/doi:10.1038/nature10968
http://dx.doi.org/doi:10.3189/172756403781815663
http://dx.doi.org/doi:10.1126/science.281.5376.549
http://dx.doi.org/doi:10.1126/science.281.5376.549
http://dx.doi.org/doi:10.1098/rsta.2006.1793
http://dx.doi.org/doi:10.1029/2008GL033365
http://dx.doi.org/doi:10.1029/2004GL020697
http://dx.doi.org/doi:10.1038/ngeo102
http://dx.doi.org/doi:10.3189/172756402781817716
http://dx.doi.org/doi:10.1029/2004GL020670
http://dx.doi.org/doi:10.1029/2006JF000664
http://dx.doi.org/doi:10.1038/nature09618
http://dx.doi.org/doi:10.1017/jfm.2011.129


3310 C. R. Williams et al.

Scott, J. B. T., Gudmundsson, G. H., Smith, A. M., Bingham, R. G., Pritchard, H. D. & Vaughan,
D. G. 2009 Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in
gravitational driving stress. Cryosphere 3, 125–131. (doi:10.5194/tc-3-125-2009)

Shepherd, A., Wingham, D. J., Mansley, J. A. D. & Corr, H. F. J. 2001 Inland thinning of Pine
Island Glacier, West Antarctica. Science 291, 862–864. (doi:10.1126/science.291.5505.862)

Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S. & Huybrechts, P. 2011 Melt-
induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469,
521–524. (doi:10.1038/nature09740)

Thomas, H. R. 2004 Force-perturbation analysis of recent thinning and acceleration of Jakobshavn
Isbrae, Greenland. J. Glaciol. 50, 57–66. (doi:10.3189/172756504781830321)

Thomas, R. et al. 2004 Accelerated sea-level rise from West Antarctica. Science 306, 255–258.
(doi:10.1126/science.1099650)

Van der Veen, C. J., Plummer, J. C. & Stearns, L. A. 2011 Controls on the recent speed-up of
Jakobshavn Isbrae, West Greenland. J. Glaciol. 57, 770–782. (doi:10.3189/002214311797409776)

Vialov, S. S. 1958 Regularities of glacial shields movement and the theory of plastic viscous flow.
In Proc. of the Symposium of Chamonix. Physics of the Motion of Ice, Chamonix, France,
16–24 September 1958, pp. 266–275. IAHS publication no. 47. Wallingford, UK: International
Association of Hydrological Sciences.

Vieli, A. & Nick, F. 2011 Understanding and modelling rapid dynamic changes of tidewater outlet
glaciers: issues and implications. Surv. Geophys. 32, 437–458. (doi:10.1007/s10712-011-9132-4)

Vieli, A. & Payne, A. J. 2003 Application of control methods for modelling the flow of Pine Island
Glacier, Antarctica. Ann. Glaciol. 36, 197–204. (doi:10.3189/172756403781816338)

Walker, R. T., Dupont, T. K., Parizek, B. R. & Alley, R. B. 2008 Effects of basal-melting
distribution on the retreat of ice-shelf grounding lines. Geophys. Res. Lett. 35, L17503.
(doi:10.1029/2008GL034947)

Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J. & Steffen, K. 2002 Surface
melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222. (doi:10.1126/
science.1072708)

Proc. R. Soc. A (2012)

http://dx.doi.org/doi:10.5194/tc-3-125-2009
http://dx.doi.org/doi:10.1126/science.291.5505.862
http://dx.doi.org/doi:10.1038/nature09740
http://dx.doi.org/doi:10.3189/172756504781830321
http://dx.doi.org/doi:10.1126/science.1099650
http://dx.doi.org/doi:10.3189/002214311797409776
http://dx.doi.org/doi:10.1007/s10712-011-9132-4
http://dx.doi.org/doi:10.3189/172756403781816338
http://dx.doi.org/doi:10.1029/2008GL034947
http://dx.doi.org/doi:10.1126/science.1072708
http://dx.doi.org/doi:10.1126/science.1072708

	Frequency response of ice streams
	Introduction
	Ice-stream model formulation
	Frequency response of ice streams
	A basally resisted ice stream
	The shallow-ice approximation
	Limiting behaviour
	A laterally resisted ice stream

	Results
	Varying resistance conditions along an ice stream
	Constructing arbitrary periodic forcings in strain rate
	Discussion
	References


