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Abstract
Adaptive divergence at the microgeographic scale has been generally disregarded because

high gene flow is expected to disrupt local adaptation. Yet, growing number of studies

reporting adaptive divergence at a small spatial scale highlight the importance of this pro-

cess in evolutionary biology. To investigate the genetic basis of microgeographic local

adaptation, we conducted a genome-wide scan among sets of continuously distributed pop-

ulations of Arabidopsis halleri subsp. gemmifera that show altitudinal phenotypic diver-

gence despite gene flow. Genomic comparisons were independently conducted in two

distinct mountains where similar highland ecotypes are observed, presumably as a result of

convergent evolution. Here, we established a de novo reference genome and employed an

individual-based resequencing for a total of 56 individuals. Among 527,225 reliable SNP

loci, we focused on those showing a unidirectional allele frequency shift across altitudes.

Statistical tests on the screened genes showed that our microgeographic population geno-

mic approach successfully retrieve genes with functional annotations that are in line with

the known phenotypic and environmental differences between altitudes. Furthermore, com-

parison between the two distinct mountains enabled us to screen out those genes that are

neutral or adaptive only in either mountain, and identify the genes involved in the conver-

gent evolution. Our study demonstrates that the genomic comparison among a set of genet-

ically connected populations, instead of the commonly-performed comparison between two

isolated populations, can also offer an effective screening for the genetic basis of local

adaptation.
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Author Summary

Where does a local adaptation take place? In general, an adaptive divergence is predicted
to occur between isolated populations because gene flow will erode and prevent the diver-
gence. Therefore, previous genome-wide studies that aim to find the adaptive genes have
compared populations that are usually tens of hundreds of kilometers apart. However,
because nearby populations are likely to be genetically connected or connected until
recently, most of the genome should be undifferentiated, leaving the genetic footprints of
natural selections more pronounced. Thus, if an adaptive divergence is to be found within
a small spatial scale, such case may favor the screening for the adaptive genes. Here, we
took advantage of a unique small-scale local adaptation in Arabidopsis halleri subsp. gem-
mifera, where similar phenotypic differentiation is found across an altitudinal cline on two
distinct mountains. By scanning the genome with a focus on the presence of unidirectional
allele frequency shift along the altitudes, we successfully obtained genes with functions
that were in line with the known phenotypic and environmental difference between alti-
tudes. Our approach is applicable to any species that show microgeographic divergence
and should help understand the genetic basis of small-scale evolution.

Introduction
Recent advances in next-generation sequencing (NGS) technologies have enabled a genome-
scale analysis to infer the phylogenetic history, demography, and selection of natural popula-
tions. One of the intriguing challenges in ecological genomics is to identify the genes underly-
ing local adaptation [1]. Although ecological genomics has been applied to various study
systems, screening methods to detect the selected loci can be represented by two approaches:
those that focus on the adaptive differentiation, and those that focus on the genotype-environ-
ment correlations. The former differentiation-based approach assumes neutral genetic drift to
affect the entire genome, so that unusual differentiation at a particular locus should indicate a
presence of selection. FST-based outlier tests are among the earliest and most common method
to detect the selected loci [2]. The latter correlation-based approach compares a set of subpopu-
lations at heterogeneous environments to detect the loci with correlation between allele fre-
quency and environmental variables [3]. Availability of the genome-scale datasets have
facilitated improvements in these two approaches, along with the development of other meth-
ods that employ indicators such as reduced heterozygosity, skews in site frequency spectrum,
and extended linkage disequilibrium (reviewed in [4]). Although ecological genomics have pro-
vided important insights into the genetic basis of local adaptation, each of the above mentioned
approaches has drawbacks to its practical implementation, which includes false positive and
false negative detection of the selected loci. For instance, FST-based outlier tests generally face
problems in identifying the significant departure from neutral expectation. Without taking
account the actual demographic history, outlier tests may suffer from false positives due to
high variance in FST values among the neutral loci [5]. Within- and between-population struc-
tures can also increase the false positive rate of correlation-based approaches by creating spuri-
ous correlation between allele frequency and environmental variable [6]. In any case, complex
demographic histories and entailing genetic structures are the major issues that challenge the
genome-wide screening for adaptive genes, and a combination of different approaches is pre-
ferred to avoid false detections [6].

Because gene flow will erode and prevent a genetic divergence, adaptive differentiation is
more likely to occur between populations that are reproductively isolated. Geographical
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distance can provide a strong reproductive barrier and also shape environmental differences
(e.g., temperature along the latitudes), both of which may facilitate the adaptive divergence
between populations. Indeed, most ecological genomic studies compare populations that are
tens of hundreds of kilometers apart (e.g. representative study cases reviewed in [7]). The prob-
lem of comparing distantly isolated populations is that the periods since population divergence
are usually long enough to allow the intervention of various demographic processes. As a con-
sequence, complicated population structure seems as an intrinsic difficulty to conduct the
genome-wide scan for adaptive genes. Recently, growing number of works reporting microgeo-
graphic-scale adaptation [8–12] have corroborated the theory that adaptive population diver-
gence can take place even under high gene flow if selective pressure is sufficient [13].
Microgeographic-scale adaptation may in fact be a suitable system for ecological genomics
because the evolutionary split between nearby populations should be relatively recent com-
pared to that of distantly isolated populations. Furthermore, gene flow may benefit the screen-
ing procedure because most of the genome is expected to be undifferentiated between
populations, leaving the genetic footprints of a natural selection more pronounced [14]. In
plant species, NGS-based restriction-site associated DNA (RAD) sequencing has been used to
study the distinct ecotypes that occur within few kilometers from each other in Senecio [15],
andHelianthus [16]. Although these studies have provided insights into the phylogenetic his-
tory, population demography, and genomic structure dynamics during microgeographic-scale
divergence, candidate genes that underlie the phenotypic differentiation were not identified.

An example of microgeographic-scale divergence has been reported from a self-incompati-
ble perennial plant, Arabidopsis halleri subsp. gemmifera. In Mt. Ibuki, a mountain located in
central Japan, populations of this plant are continuously distributed along the top to bottom of
a hiking trail. Although the linear distance between the lowest and highest populations is
smaller than 3 km, highland ecotypes characterized by dense trichomes on the leaves and
stems [17] are found on the peaks (S1 Fig). A previous AFLP-based study on Mt. Ibuki demon-
strated little genetic differentiation between normal and highland ecotypes collected from low
and high altitudes [18]. Thus, it has been suggested that these two ecotypes share a similar
genomic structure and the evolutionary split has occurred relatively recently. Interestingly,
similar phenotypic divergence is also found along the altitudes of Mt. Fujiwara, which situate
approximately 30 km fromMt. Ibuki. Highland ecotypes of the two mountains are regarded as
a convergent evolution, however, no empirical evidences have yet been reported. In addition to
denser trichomes, growth chamber measurements have confirmed other genetically based con-
vergent characteristics of the highland ecotypes, such as shorter but thicker stems and leaves,
increased resource investment to photosynthetic components, and increased accumulation of
ultraviolet (UV) absorbing compounds [19]. Overall, these altitudinal differentiations are con-
sidered as a consequence of high altitude adaptation. Although trichomes in plants often serve
in the defense against herbivores [20], a study in A. halleri subsp. gemmifera revealed no clear
correlation with leaf beetle damage [21]. Interestingly, the hyperaccumulator plant A. halleri
accumulates zinc and cadmium inside its trichome bases [22]. This finding suggests that denser
trichomes in the highland ecotypes might indicate higher tolerance to heavy metals. Alternative
trichome functions in other plant species, including the prevention of external ice formation
[23], avoidance of excess transpiration under strong wind [24], and protection against UV
radiation [25], are also considered to be related to the adaptive significance of dense trichomes
at high altitudes. Other characteristics of the highland ecotypes are also associated with the
common selective pressures in the two mountains, such as dwarf phenotype to resist strong
wind, investment to photosynthetic component to compensate the reduced enzyme activity
due to suboptimal conditions, and accumulation of UV absorbing compound to tolerate
increased UV radiation [19]. However, mountain-specific altitudinal differentiations are also
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reported. For instance, freezing resistance [19] and rapid seed germination (Shin-Ichi Mori-
naga, personal communications) are found only in the highland ecotypes from Mt. Ibuki. Nev-
ertheless, the two mountains share similar environmental characteristics in terms of altitudinal
cline. Although both mountains are relatively low (1,377 and 1,144 m for Mt. Ibuki and Mt.
Fujiwara, respectively), areas above approximately 1,000 m are host to open subalpine grass-
lands with calcareous scree and heavy snow cover in winter. In contrast, areas lower than
approximately 400m occupy the understory of temperate forests. Annual temperature, snow
depth, and canopy openness have been quantified to show gradient variation along the altitude
in both mountains [19]. As in this case, mountain populations may be an excellent model for
the analysis of microgeographic adaptation because steep environmental gradients can shape
selective barriers on a small geographic scale.

Thanks to the genetic information accumulated in A. thaliana, ecological genomics has
become a powerful approach to screen adaptive genes from wild Arabidopsis species [26–29].
However, while these studies have provided fruitful insights into the genetic basis of local adap-
tations, genomic comparisons have so far been conducted at the macrogeographic-scale, using
distantly isolated populations. Here, we test the prediction that genomic comparison at the
microgeographic-scale can also offer an effective screening for the genetic basis of local adapta-
tion. If the screening procedure works as expected, we should be able to find some correlation
between the candidate genes and the observable phenotypic or environmental differentiation.
In addition, a replicated analysis in two independent but synchronizing environmental tran-
sects will have a good chance of finding the genes involved in a convergent evolution. Our
study system take advantage of the above mentioned populations of A. halleri subsp. gemmifera
on Mt. Ibuki and Mt. Fujiwara, where populations continuously distribute along a steep envi-
ronmental cline and the populations at each extreme (the lowest and highest populations on
each mountain) are locally adapted to their habitats. Within each mountain, the loci governing
altitudinal adaptation should be highly differentiated between the lowest and highest popula-
tions. More importantly, theoretical models predict that, if a set of populations is distributed
along an environmental continuum and neighboring populations are exchange their genes,
clines of allele frequencies at the adaptive loci can be observed [30, 31]. Because neighboring
populations of A. halleri subsp. gemmifera in both mountains are close enough to allow gene
flow, we placed an emphasis on detecting correlations between allele frequencies and altitudi-
nal clines. Thus, we employed both differentiation-based and correlation-based approaches to
screen the selected loci from a genome-wide SNP dataset. Credibility of the screening proce-
dure was evaluated by comparing the proportion of a certain Gene Ontology (GO) term
between screened and unscreened set of genes. Here, we selected 30 GO terms that cover the
representative phenotypic and environmental entries within the database. If we successfully
retrieve the genes under natural selection, then we should be able to see coincidence between
the enriched GO terms and the known phenotypic or environmental differentiation across the
altitudes. Furthermore, the screened loci were narrowed based on the presence of genetic hitch-
hiking. The screening procedure was independently applied to each mountain, and we
obtained two lists of candidate genes that are potentially involved in altitudinal adaptation. By
comparing these gene lists, we distinguished between genes that are adaptive only in either
mountain, and those involved in the convergent evolution.
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Results and Discussion

Establishment of the draft reference genome and the genome-wide SNP
dataset
To perform a genome-wide screen for loci associated with local altitudinal adaptation, we
began by establishing a draft de novo reference genome for A. halleri subsp. gemmifera. The
whole-genome shotgun method via next-generation sequencing (NGS) was applied to a single
individual sampled from the base of Mt. Ibuki. Using 190× coverage sequence data (haploid
genome size of A. halleri = 255 Mbp [32]), genome assembly resulted in 149,013 scaffolds, with
an N50 of 4,825 bp and a total of 252 Mbp, which corresponds to 98.8% of the entire genome.
The resulting reference genome was evaluated by mapping A. thaliana exon sequences from
33,602 genes deposited in the TAIR10 database (The Arabidopsis Information Resource;
http://www.arabidopsis.org). For comparison, we mapped the same A. thaliana exon sequences
to the high-quality reference genome of A. lyrata (695 scaffolds, with an N50 of 24.5 Mbp,
totaling 207 Mbp [33]). As a result, 92.9% and 90.7% of the A. thaliana exons were mapped to
the reference genomes of A. halleri subsp. gemmifera and A. lyrata, respectively. Although the
number of scaffolds remains excessive compared with the actual chromosome number in A.
halleri (2n = 16; [32]), our draft de novo reference genome sequence covers the entire genome
well and will facilitate genomic studies in this species.

On both Mt. Ibuki and Mt. Fujiwara, four distinct populations associated with different alti-
tudes were situated along hiking trails from the bottom to the top of the mountains. The four
populations are found at the altitudes of 380, 600, 1,000, and 1,250 m on Mt. Ibuki and at 200,
400, 700, and 1,100 m on Mt. Fujiwara (Fig 1B and S1 Table). The linear distance between the
lowest and highest populations is approximately 2.7 km on Mt. Ibuki and 1.9 km on Mt. Fuji-
wara. In addition to the main study sites, four reference populations were set apart from the
mountains (Fig 1A and S1 Table). These populations were situated at low altitudes (220, 230,
370, and 520 m) with environments similar to the lowest populations from the main study
sites. On the two mountains, five individuals from each altitude-specific population were col-
lected for analysis, whereas four individuals were collected from the reference populations.
Through genome-wide resequencing of each of these 56 individuals, we obtained a set of
527,225 reliable SNPs with a minimum read count of five per individual (S1 Table). The aver-
age inter-SNP spacing across the entire genome was 484 bp. The mapped A. thaliana exon
information was used to examine the proximity of each SNP to a functional gene. Among the
527,225 SNPs, 327,980 overlapped with or were within 5 kbp of an exon for 22,395 genes.
These SNPs and the associated functional gene information were used for the following
analyses.

Genetic structure of the populations
Genetic diversity (He) was significantly different (bonferroni-corrected p-value from pairwise
Wilcoxon test< 0.01) among all paired populations within each mountain, except for IB0380
vs. IB0600 in Mt. Ibuki, and FJ0400 vs. FJ1100 in Mt. Fujiwara (Table 1). Although the statisti-
cal significance is somewhat overestimated, lower populations of Mt. Ibuki tended to have
smaller genetic diversity compared to higher populations. To examine the population structure
within and between the two mountains, we conducted a STRUCTURE [34, 35] analysis of all 56
individuals (including the reference populations) using a set of 10,000 randomly selected SNPs.
Based on 20 independent runs for each value of K (the number of subpopulations) from 1 to
12, both the log likelihood value and Evanno’s ΔKmethod [36] indicated the optimum K to be
six (Fig 2B). Under K = 6, each cluster clearly corresponded to the two mountains and the four
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reference populations (Fig 2A). It is notable that the four altitude-specific populations on each
mountain were not genetically subdivided. However, subdivision within each mountain were
indicated with higher K values. Further STRUCTURE analysis within each mountain supported
the split in Mt. Ibuki, but not in Mt. Fujiwara (S2 Fig). Previous study has demonstrated that
although snow depth and canopy openness increased with increasing altitude in both moun-
tain, Mt. Ibuki showed steeper gradients for both environmental components [19]. Thus, the
genetic split in Mt. Ibuki may indicate a restricted gene flow among the altitudes due to stron-
ger environmental barrier. Nevertheless, interleaving populations of Mt. Ibuki (IB0600 and
IB1000) seem to be comprised of some admixed individuals. These individuals indicate the
presence of gene flow between the neighboring altitude-specific populations. In fact, although
highland ecotypes from the top of the mountain are easily distinguished based on their ap-
pearance, plants with intermediate phenotypes are found at intervening altitudes. Because
highland and normal ecotypes are highly cross-compatible (Shin-Ichi Morinaga, personal

Fig 1. Location and of the studied populations. (A) Geographic locations of the two mountains (the main
study sites) and the four low-altitude reference populations. Altitude is indicated by the numbers in the
population names. See S1 Table for coordinates. (B) Locations of the four altitude-specific populations on
each mountain.

doi:10.1371/journal.pgen.1005361.g001
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Table 1. Summary statistics of genetic diversity and differentiation among the altitude-specific populations.

Heterozygostiy
statistics

Pairwise G'ST

Mt. Ibuki P He Ho vs. IB0380 vs. IB0600 vs. IB1000

IB0380 0.162 0.051 0.047

IB0600 0.162 0.050 0.046 0.027

IB1000 0.224 0.064 0.053 0.046 0.043

IB1250 0.209 0.061 0.056 0.048 0.046 0.034

Mt. Fujiwara P He Ho vs. FJ0200 vs. FJ0400 vs. FJ0700

FJ0200 0.224 0.066 0.055

FJ0400 0.204 0.060 0.049 0.034

FJ0700 0.228 0.064 0.056 0.036 0.034

FJ1100 0.196 0.061 0.042 0.043 0.041 0.037

P, proportion of polymorphic loci

He, mean expected heterozygosity

Ho, mean observed heterozygosity.

doi:10.1371/journal.pgen.1005361.t001

Fig 2. Genetic structures of the populations. (A) structure analysis with a K of 2 to 8 using all 56 individuals from the 12 populations. The result for each K
is based on the simulation that provided the best LnP(D) value (the log probability value) among 20 independent runs. Each bar represents an individual and
the estimated membership in a particular genetic cluster. (B) Plotting of the mean LnP(D) values from the structure analysis (blue dots) and Evanno’s ΔK (red
dots). Error bars indicate the standard deviation of LnP(D) values from the 20 independent runs. Both the maximum value of LnP(D) and the peak position of
Evanno’s ΔK are found at K = 6. (C) Maximum likelihood tree for the 12 populations obtained from TreeMix. The bootstrap supports for the nodes were
calculated from 100 replicates. The scale bar represents 10 times the average standard error of the entries in the covariance matrix. Horizontal branch
lengths are proportional to the amount of genetic drift. See S2 Fig for additional analysis within each mountain.

doi:10.1371/journal.pgen.1005361.g002
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communications), these intermediate plants are likely to have originated from natural hybrid-
ization due to frequent gene flow between neighboring populations. In addition, pairwise G0

ST

values showed a pattern of genetic differentiation by distance in both mountains (Table 1).
Thus, the population structure in each mountain can be regarded as a simple linear stepping-
stone model proposed by Kimura and Weiss (1964 [37]).

We also examined the historical relationship among populations with TreeMix [38], a sta-
tistical model used to infer patterns of population splits and mixtures from genome-wide allele
frequency data. The maximum likelihood tree based on 518,706 bi-allelic SNPs clearly demon-
strated that the evolutionary split between the two mountains predated the differentiation of
the altitude-specific populations (Fig 2C). In addition, the tree explained most (99.1%) of the
variance in relatedness between the populations, which indicates that the tree captures the his-
torical relationship without adopting migration events from distantly related populations.
These results indicate that although the two mountains share a common ancestry, the differen-
tiation of the altitude-specific populations took place independently on each mountain. There-
fore, the morphologically similar highland ecotypes found on the two mountains may be
considered to be a consequence of convergent evolution. Together with the results from STRUC-

TURE analysis, these findings suggest that these populations are a suitable model for exploration
of the genetic basis of microgeographic adaptation.

Screening for SNPs associated with altitudinal adaptation
To identify the SNPs associated with altitudinal adaption, we conducted a screening based on
the following assumptions: first, and most importantly, we anticipated a cline in the allele fre-
quency as a result of natural selection across environmental gradients. Therefore, we focused
on those loci that undergo a unidirectional change in allele frequency along the altitudinal
cline. To further reduce the number of candidate loci, we adopted the following two selection
criteria: 1) the SNP loci should be highly divergent between the lowest and highest populations;
and 2) the frequency of the derived allele should be higher in the highest-altitude populations.
We developed an index U to measure the unidirectional change in allele frequency, used G0

ST

proposed by Hedrick (2005 [39]) to measure the divergent between lowest and highest popula-
tions, and also developed an index ΔD0 to measure the frequency of the derived allele at the
highest populations (see Materials and Methods section for details). Indices at each loci were
averaged across a 4kbp window size and the upper 1.5 times the IQR (interquartile range) of a
genome-wide frequency distribution (Fig 3) was determined as a screening threshold. Screen-
ing was conducted independently for the populations from each mountain, and only those
SNP loci that fulfilled all three criteria were further considered. The number of SNPs that ful-
filled the criteria was 5,523 for Mt. Ibuki and 5,407 for Mt. Fujiwara (Fig 4). The total number
of identified SNPs in common between the two mountains were 358. Among the screened
SNPs, 3,869 fromMt. Ibuki and 3,527 from Mt. Fujiwara were linked (overlapping or within
5 kbp of an exon) to a gene. The number of genes linked to the screened SNPs was 923 and 924
on Mt. Ibuki and Mt. Fujiwara, respectively.

To gain perspective into the biological process in which the screened SNPs are involved, we
conducted a Gene Ontology (GO) enrichment analysis for each mountain. We tested for
enrichment in 30 GO terms that cover the representative phenotypic and environmental
entries within the database. To adjust for multiple comparisons, significant enrichment was
accepted if the corresponding false discovery rate (FDR) q-value [40] was below 0.05. Here, we
tested for enrichment using two approaches: one is an SNP-based method, where the ratio of
SNPs that are associated and unassociated with a given GO term is compared between the lists
of screened (SNP loci that fulfilled all three criteria mentioned above) and unscreened (all SNP
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Fig 3. Genome-wide frequency distribution of the three indices. Histograms show the frequency distribution of U (A, B),G0
ST (C, D), and DD0(E, F)

estimated for all 527,225 SNPs in Mt. Ibuki (A, C, E) and Mt. Fujiwara (B, D, F). Box plots for each index are shown above the histogram.Whiskers of the
box plot indicates the 1.5 times the IQR (interquartile range). Spikes below the histograms show the SNPs that fulfilled the threshold for each criterion.

doi:10.1371/journal.pgen.1005361.g003
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loci) datasets. Another is a gene-based method, where the ratio of genes that are associated and
unassociated with a given GO term is compared between the lists of screened and unscreened
SNPs. Because the SNP-based method assumes that every screened SNP represents an indepen-
dent observation, linkage between SNPs will cause bias, and the significance of enrichment will
be overestimated [41]. However, the gene-based method ignores the joint effect of multiple
SNPs within a gene, which may underestimate the significance of enrichment [41, 42]. As pre-
viously recommended for gene set enrichment analysis [43], we declare that our enrichment
analysis is an exploratory procedure rather than a pure statistical solution. Not surprisingly,
the SNP-based method detected more significant enrichment in GO terms compared with the
gene-based method (Fig 5 and S2 Table). Here, we discuss the SNP-based enriched GO terms
that were significant in both mountains. The four common GO terms were ‘response to red or
far red light,’ ‘cellular response to DNA damage stimulus,’ ‘meristem development,’ and ‘tri-
chome differentiation.’ It is noteworthy that the GO term related to trichomes, which consti-
tute the most distinguishing characteristic of the highland ecotype [17], was detected in both
mountains. In addition, enrichment for ‘trichome differentiation’ was also indicated by the
gene-based method in both mountains. Detection of a major defining characteristic of the
highland ecotype supports the validity of our screening procedure. Although the adaptive sig-
nificance of the denser trichomes in the highland ecotypes remains unknown, our result
strongly suggests that the trait has evolved under an common selective pressure between the
two mountains. Another common GO term related to morphogenesis was ‘meristem develop-
ment.’ This GO term can be related to the morphological differentiation where plants at the
lower altitude are characterized by their tall and spindly appearance, and highland ecotypes by
their dwarf-like appearance (S1 Fig).

Another common GO term ‘response to red or far red light’ is also interesting since previous
observation has detected a positive correlation between canopy openness and altitude in both
mountains [19]. Although we could not observe an enrichment in the term ‘photosynthesis,’
the increased investment to photosynthetic components in the higher altitudes in both

Fig 4. Overlap of screened SNPs among the three criteria. Venn diagram shows the overlaps of screened SNPs among the three criteria. The number of
SNPs that fulfilled all three criteria were 5,523 (1.05% of the 527,225 SNPs) in Mt. Ibuki (A) and 5,407 (1.03% of the 527,225 SNPs) in Mt. Fujiwara (B).

doi:10.1371/journal.pgen.1005361.g004
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Fig 5. Enrichment analyses of the selected Gene Ontology terms. The histograms show the fold
enrichment of a given GO term within each dataset for the two mountains. Vertical red line indicate the
expected ratio of SNPs or genes associated with a specific GO term under the null hypothesis. Significant
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mountains could be related to an adaptation against light environment variance. In this con-
text, measurement based on cyclobutane pyrimidine dimer has demonstrated that opened can-
opy at higher altitudes induce increased UV induced DNA damage. At the same time, a
correlation between altitude and UV tolerance via accumulation of UV absorbing compound
was also detected in both mountains [19]. Although enrichment in the term ‘response to UV’
was not detected, we succeeded to find a significant enrichment in the term ‘cellular response
to DNA damage stimulus’ in both mountains. These coincidence point out a possibility that
light environment is an important selective pressure for the convergent evolution between the
two mountains. On the other hand, although tolerance against freezing seems as an indispens-
able ability for high-altitude adaptation, previous observation detected an increased tolerance
only from the highland ecotypes of Mt. Ibuki [19]. GO enrichment analysis were consistent
with this result, where significant enrichment of the term ‘response to freezing’ was detected in
Mt. Ibuki, but not in Mt. Fujiwara. Overall, consistency between the enriched GO terms and
known features of the highland ecotypes suggests that our screening procedure provided a
good estimate for the SNP loci associated with altitudinal adaptation.

Application of BayeScan and LFMM
Here, we also tested other popular approaches to find the loci under selection. We used BayeS-
can [44–46] to find the FST outliers between the lowest and highest populations, and LFMM
(Latent Factor Mixed Models [47]) to find the loci that correlate with the altitude. As shown in
S3 Fig, these typical outlier tests did not fit very well with our dataset, especially in terms of
detecting statistically significant outliers. More specific, at the significance level of a FDR q-
value = 0.01, none of the loci from both mountains were detected by the BayeScan analysis. In
Mt. Ibuki,–log10(q-value) of even those with the most highly differentiated loci (loci that are
fixed for one allele in the lowest, and fixed for another in the highest population) reached a ceil-
ing around 1.0. The problem seems to be caused by our sampling design, where small number
of individuals were collected from limited geographical points. According to the manual for
BayeScan, statistical power to detect the outliers will be limited when small sample size is used.
On the other hand, LFMM analysis detected 1,530 outliers (FDR q-value< 0.01) in Mt. Ibuki,
however, none were detected in Mt. Fujiwara. In LFMM, the background population structure
is modelled from a chosen number of latent factors (K), which corresponds to the number of
neutral genetic structure of the data. Underestimated value of K leads to liberal tests with false
positives, whereas overestimated K leads to conservative tests with false negatives. Here, we
used K = 2 as a number of latent factor in both mountains. From the STRUCTURE analysis, a
genetic split was detected in Mt. Ibuki and K = 2 was statistically supported (S2A and S2C Fig).
However, in Mt. Fujiwara, clear differentiation (K = 2) was not supported (S2B and S2D Fig).
Thus, K = 2 for Mt. Fujiwara may have been an overestimate, leading to a conservative test
with false negatives. Although we can run the LFMM with K = 1, such run will not account for
background population structures and will produce a plethora of false positives because a large
set of loci is correlated with the altitude. Overall, because typical outlier analyses expect a set of
numerous individuals from variable locations (environment) as an input, our dataset would
not be suitable for these tests. Another problem may be the linear stepping-stone population
structure detected in our study sites (Table 1), where not only the adaptive loci but also a large

enrichment was accepted and denoted with asterisks if the corresponding false discovery rate (FDR) q-value
was below 0.05. Here, we show only a subset of the tested GO terms. See S2 Table for the full list of GO
terms.

doi:10.1371/journal.pgen.1005361.g005
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set of neutral loci can be correlated with the altitude. Under this condition, it would be difficult
to determine the cutoffs to correct for the underlying population structure.

Candidate genes for altitudinal adaptation
Based on the screened SNPs linked to genes, we attempted to narrow down and sort the candi-
date genes according to the likelihood of having undergone natural selection. Here, we assumed
that the presence of genetic hitchhiking represented a footprint of a selective sweep [48]. How-
ever, we acknowledge that variation in mutation rates, non-uniform recombination rates, and
chromosomal rearrangements can also lead to differentiated genomic regions and clusters of
genes that contribute to local adaptation are more likely to diverge together regardless of selec-
tive sweeps [49]. To detect local signatures of genetic hitchhiking, we scanned for continuous
allele frequency clines (the primary criterion for screening the SNPs) around the screened
gene-linked SNPs. Through an independent scanning procedure within each mountain, we
identified 474 and 629 continuous hitchhiking regions, or ‘genomic islands,’ which included
573 and 721 genes in the populations from Mt. Ibuki and Mt. Fujiwara, respectively (see S3
Table for the genes within top 100 genomic islands). To reduce the false positive detection
from a single SNP locus, genomic islands that contained only one screened SNPs were rejected
and total of 350 and 203 genes fromMt. Ibuki and Mt. Fujiwara, respectively, were excluded.
Based on the length of the continuous hitchhiking region (i.e., the length of linkage disequilib-
rium) and the steepness of the allele frequency clines (i.e., the difference in allele frequencies
between lowest and highest populations), the genomic islands were ranked according to how
likely they were to have undergone a selective sweep (see S4 Fig for workflow). Linkage disequi-
librium can be disrupted by recurrent mutations and recombination events during the evolu-
tionary time course; a higher ranking indicates that the genomic region experienced stronger
and/or more recent natural selection.

Here, we considered the top 20 genomic islands as promising candidates that were recently
subject to natural selection (Table 2). For example, we detected a steep allele frequency cline
spanning approximately 10 kbp on Mt. Ibuki, with a peak near the 5’ UTR of EDA8
(AT4G00310; Fig 6A). EDA8 includes GO terms such as ‘regulation of flower development’,
‘response to freezing’, and ‘seed dormancy process’ [50]. Because freezing tolerance [19], flow-
ering period, and seed dormancy (Shin-Ichi Morinaga, personal communications) differ
between the lowest and highest populations fromMt. Ibuki, the functional annotations of
EDA8 are in line with the known phenotypic and environmental differences between altitudes.
However, an allele frequency cline was not detected in the same genomic region on Mt. Fuji-
wara (Fig 6B). Mountain-specific candidate genes, such as EDA8, may indicate the underlying
differences in natural selection between the mountains or that each mountain utilizes distinct
genes to overcome a common natural selective pressure. Other genes fromMt. Ibuki with nota-
ble GO terms included the following: FNR1 (AT5G66190), with ‘response to cold,’ and ‘photo-
synthesis’ [50]; LIS (AT2G41500), with ‘seed dormancy process,’ and ‘response to freezing’
[50]; EMB2788 (AT4G27010) with ‘regulation of flower development’ [50]; SAR1
(AT1G33410), with ‘regulation of flower development’ [50]; FTSH12 (AT1G79560) with
‘embryo development ending in seed dormancy’ [51]; and AT5G16280 with ‘vegetative to
reproductive phase transition of meristem’ [50]. Specific genes fromMt. Fujiwara included the
following: AT2G40270 with ‘response to bacterium,’ and ‘response to insect’ [50]; BAM7
(AT2G45880) with ‘vernalization response’ [50]; STO (AT1G06040), with ‘response to temper-
ature stimulus,’ and ‘response to light stimulus’ [50, 52]; AVP1 (AT1G15690), with ‘response
to water deprivation,’ and ‘response to salt stress’ [53]; and FWA (AT4G25530), with ‘photope-
riodism, flowering,’ and ‘trichome morphogenesis’ [50] (see Table 2). Detailed analysis of the
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Table 2. Genes within the top 20 genomic islands from eachmountain.

Mt. Ibuki

Rank AGI code Gene Representative GO terms under ‘Biological Process’

1 AT1G67120 MDN1 gluconeogenesis; cytoskeleton organization; embryo sac development

2 AT3G44713

3 AT2G43160

4* AT3G58160 XIJ actin filament-based movement; Golgi localization; mitochondrion localization

5* AT4G00310 EDA8 seed dormancy process; leaf development; response to freezing

6 AT2G48060

7*
(2)

AT4G31300 PBA1 hyperosmotic response; response to temperature stimulus; response to cadmium ion

8 AT4G34910 protein import into nucleus

9* AT1G80930 translation

10* AT5G66190 FNR1 response to cold; detection of biotic stimulus; photosynthesis

11* AT2G33820 MBAC1 mitochondrial transport

12* AT4G04972

13 AT1G28240

14* AT2G41500 LIS meristem structural organization; seed dormancy process; response to freezing

15* AT4G27010 EMB2788 embryo sac egg cell differentiation; regulation of flower development; maintenance of meristem identity

16 AT1G33410 SAR1 response to auxin; regulation of flower development; maintenance of meristem identity

17* AT1G79560 FTSH12 chloroplast organization; embryo development ending in seed dormancy; ovule development

18
(1)

AT2G36850 GSL8 meristem initiation; trichome morphogenesis; telomere maintenance in response to DNA damage

19 AT5G16280 vegetative to reproductive phase transition of meristem; protein desumoylation; hydrogen peroxide biosynthetic
process

20* AT4G32730 MYB3R1 cytokinesis by cell plate formation; regulation of transcription, DNA-templated

Mt. Fujiwara

Rank AGI code Gene Representative GO terms under ‘Biological Process’

1
(18)

AT2G36850 GSL8 meristem initiation; trichome morphogenesis; telomere maintenance in response to DNA damage

2*
(7)

AT4G31300 PBA1 hyperosmotic response; response to temperature stimulus; response to cadmium ion

3 AT2G41225

4 AT4G30990

5 AT2G40270 response to bacterium; response to insect; regulation of plant-type hypersensitive response

6 AT2G45880 BAM7 vernalization response; regulation of shoot system development

7* AT5G63190 auxin-activated signaling pathway; response to sucrose; response to fructose

8* AT1G06040 STO hyperosmotic response; response to temperature stimulus; response to light stimulus

9 AT1G29400 ML5 fatty acid beta-oxidation; positive regulation of meiosis; positive regulation of growth

10* AT3G03340 UNE6 positive regulation of cell proliferation; double fertilization forming a zygote and endosperm

11 AT1G63440 HMA5 response to zinc ion; detoxification of copper ion; response to copper ion

12* AT2G38823

13* AT1G15690 AVP1 response to water deprivation; response to salt stress; leaf development

14* AT1G25510 proteolysis

15 AT3G15300 MVQ4

16* AT1G60780 HAP13 intracellular protein transport

17 AT1G32750 HAC13 RNA splicing, via endonucleolytic cleavage and ligation; transcription from RNA polymerase II promoter; DNA
mediated transformation

18 AT4G25530 FWA trichome morphogenesis; photoperiodism, flowering; cell wall organization

19 AT1G52830 IAA6 de-etiolation; response to auxin

(Continued)
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adaptive roles of these mountain-specific genes in A. halleri subsp. gemmifera would highlight
unique characteristics of natural selection in the superficially similar habitats between the two
mountains. We also found that some genes within the list shared a common function. For
instance, four genes from Mt. Ibuki (EDA8, PBA1, FNR1, and LIS) and three genes fromMt.
Fujiwara (PBA1, BAM7, and STO) had GO terms under ‘response to temperature stimulus.’
Among the 22,395 SNP-tagged genes, only 863 were associated with this GO term, and an
empirical p-value for the observed result was 0.007. Although increased freezing tolerance was
detected only in highland ecotypes of Mt. Ibuki [19], our results suggest that temperature varia-
tion can be an important selective pressure for altitudinal adaptation in both mountains. Infer-
ring environments and ecological traits from genomic information, the so-called ‘reverse
ecology’ approach [54], may give rise to a new era in ecological genomics on wild plant species.

The most novel findings of this study are candidate genes that are shared between the two
mountains. In total, two genes were ranked within the top 20 genomic islands on both moun-
tains. An empirical p-value to find two common genes between two independent gene lists
from a set of 22,395 SNP-tagged genes was 0.001, which supports the presence of convergent
evolution involving the same genes. Interestingly, both genes had functional annotations rele-
vant to altitudinal adaptation. One of these ‘shared’ genes is GSL8 (AT2G36850), which is
annotated with the GO terms ‘meristem initiation,’ ‘trichome morphogenesis,’ and ‘telomere
maintenance in response to DNA damage’ [50]. On both mountains, the genomic region
around GSL8 underwent a continuous unidirectional allele frequency shift that spanned at
least approximately 15 kbp and most likely involved a longer region (Fig 6C and 6D). The long
linkage distance observed in this case may be evidence of recent selection acting on this geno-
mic region. In addition, anatomical observation of transposon-induced gsl8 A. thalianamutant
lines detected dwarfed growth, revealing the wild-type gene function in normal morphological
development [55]. These results indicate that GSL8 is an ideal candidate gene for explaining
the morphological convergence found between the highland ecotypes on the two mountains.
Another candidate is PBA1 (AT4G31300), which presents the GO terms ‘response to tempera-
ture stimulus,’ ‘response to salt stress,’ and ‘response to cadmium ion’ [50, 56]. PBA1 shows an
altered expression level in response to various stresses, such as NaCl [56], zinc [57], genotoxic
agents [58], oxidants [59], and viral infection [60]. Furthermore, an RNAi knockdown lineage
showed defects in plant immunity against bacterial pathogens [61]. Considering the variety of
functions related to abiotic and biotic stresses, PBA1 appears to be a promising candidate for
playing a role in altitudinal adaptation. Overall, these ‘shared’ genes may be a result of common
natural selection acting on genetic variation that preceded the divergence of the two mountain
populations, and they highlight the genetic basis of convergent evolution. Needless to say,
other highly ranked genes without notable GO terms are also worth examining because they
might retain unknown adaptive functions. To validate our result, the screened candidate genes
must be further investigated by functional analyses of the genes, detecting loci that alter fitness,
and field measurements including transplantation experiments.

Another ecological genomic study in A. halleri has been conducted at the Swiss Alps, where
genome-wide SNP analyses were performed to search for the imprints from natural selection

Table 2. (Continued)

20 AT2G46430 CNGC3

Numbers in parenthesis indicate rank in the other mountain. Asterisks indicate the presence of other genes that are located in the same genomic island.

AGI codes in bold indicates genes with nonsynonymous SNPs that were highly differentiated (G’ST > 0.4) between the lowest and highest populations.

See S3 Table for the extended list.

doi:10.1371/journal.pgen.1005361.t002
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related to environmental variation [29]. By focusing on the highly differentiated genomic
regions associated with environmental factors such as precipitation, slope, radiation, site water

Fig 6. Local signature of a unidirectional allele frequency shift across altitudes. (A–D) The four colour-coded line graphs in each panel correspond to
the allele frequency difference of the altitude-specific populations compared to the lowest population. Each dot of the line graph is an average of allele
frequency differences 2 kbp down- and upstream from its genomic position (4 kbp window size). Arrows indicate the mapped exons of A. thaliana genes and
small black dots represent the observed SNP positions. Continuous trend of unidirectional allele frequency shift was considered a footprint of natural
selection and the proximal gene was accepted as candidates. (A, B) Example for a mountain-specific candidate gene. A steep allele frequency cline is found
in 3 to 13 kbp regions of scaffold 11982 in Mt. Ibuki with a peak located near the 5’ UTR of EDA8 (A). Conversely, no such trend is observed in the same
genomic region in Mt. Fujiwara (B). (C, D) Example for a ‘shared’ candidate gene. Unidirectional allele frequency shift is detected from the 36 kbp and 50 kbp
region (and most likely further) of scaffold 14751in both Mt. Ibuki (C) and Mt. Fujiwara (D). The region overlaps the exons of theGSL8 gene. See Table 2 for
other genes screened in our analysis.

doi:10.1371/journal.pgen.1005361.g006
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balance, and temperature, a list of 175 genes were obtained. Although the study case in the
Swiss Alps was conducted in a wider geographical scale compared to the present study, the
populations were situated at various altitudes ranging from 790 m to 2,308 m. Thus, we may
have a chance to find common genes related to altitudinal adaptation between the mountains
in central Japan (Mt. Ibuki and Mt. Fujiwara) and Swiss Alps. Unfortunately, none of the genes
within the top 20 genomic islands from our study were found in the 175 genes from the Swiss
Alps. However, three genes within each of the top 100 genomic islands fromMt. Ibuki and Mt.
Fujiwara were also listed in the Alps (S3 Table). Although the coincidence is not surprising
considering the large number of genes within each list (empirical p-value for the observed
result was 0.09 for Mt. Ibuki and 0.06 for Mt. Fujiwara), we noticed that a single gene, CMT1
(AT1G80740), was detected in all three locations (empirical p-value = 0.006). This gene was
ranked as the 51st and 40th in the gene list from Mt. Ibuki and Mt. Fujiwara, respectively, and
was associated with site water balance in the Swiss Alps. Although we must further compare
the selected loci and haplotypes between central Japan and Swiss Alps, the gene may be an evi-
dence of convergent evolution to altitude in different continents.

Although theories for local adaptation have supported the development of population geno-
mics, several central predictions remain untested, especially for predictions involving gene flow
(reviewed in [1]). Under gene flow, adaptive differentiation requires an allele with high fitness
in one environment to show lower fitness in the other environment [62]. Thus, fitness trade-
offs of the adaptive traits are expected to be associated with trade-off at the loci level. Otherwise
the allele with the highest fitness will invade the other population thereby causing the locus to
become monomorphic [63]. In addition, the loci involved in local adaptation are expected to
cluster together on the chromosomes [14, 49, 64]. Further investigations on our candidate
genes should provide an opportunity to empirically evaluate the untested predictions, and help
understand the evolutionary dynamics of adaptive genes during local adaptation. In this con-
text, an improved reference genome with longer scaffolds would not only enhance accuracy of
detecting the selected genes, but also would assist in clarifying the positional relationship
among the adaptive loci. The Joint Genome Institute (JGI) has recently assembled another ref-
erence genome for A. halleri which is available at: http://phytozome.jgi.doe.gov/pz/portal.
html#!info?alias=Org_Ahalleri_er. Although dataset usage is restricted prior to publication,
the reference genome from JGI has shorter total genome size (145.5 Mbp versus 252.2 Mbp)
but longer N50 value (24.4 Kbp versus 4.8 Kbp), compared to our present reference genome.
However, we are also developing an improved version of the A. halleri subsp. gemmifera refer-
ence genome, which should be comparable to the A. halleri genome from JGI.

Our study demonstrates that typical outlier-based approaches (BayeScan [44–46] and
LFMM [47]) have limitation in screening for the selected loci at a microgeographic-scale. Due
to recent colonization event, not only the selected loci, but also a large set of neutral loci can
show patterns of variation where allele frequencies change along the environmental gradient.
In such cases, the selected loci may not differ from the genomic mean sufficiently to be consid-
ered as an outlier. We therefore suggest that a genomic region-based approach (genomic
islands in the present study) which aims to detect the genetic hitchhiking regions may be more
successful, rather than approaches that treat each locus as independent. Another promising
approach would be a comparison between parallel environmental gradients. A study in sessile
oak investigated whether SNP variation of candidate genes reflect the clinal pattern of bud
burst along altitudinal and latitudinal gradients [65]. By comparing the results in the two paral-
lel gradients, a set of genes showing imprints of selection in both gradients were obtained,
which can be considered as evidence for convergent evolution. In the present study, we also uti-
lized two independent but parallel altitudinal clines, where phenotypic observations indicate
the presence of a convergent evolution. Because the probability of occasionally detecting the
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same gene from parallel environmental gradients is very low, the common genes appear intui-
tively promising. We anticipate that the number of ecological genomic studies on convergent
evolutions will grow, as it provides an excellent opportunity to efficiently screen the candidate
genes responding to natural selection.

Materials and Methods

Study sites and sampling of materials
Arabidopsis halleri subsp. gemmifera is a perennial, self-incompatible, clonal herb distributed
in the Russian Far East, northeastern China, Korea, Taiwan, and Japan [66]. The highland eco-
type, characterized by denser trichomes, was formerly treated as the variant Arabis gemmifera
var. alpicola [17] and is found only in the higher altitudes of Mt. Ibuki and Mt. Fujiwara in cen-
tral Japan. On both mountains, continuous variation in morphological characters is found
along altitudes (Shin-Ichi Morinaga, personal communications). Our main study populations
were located on Mt. Ibuki (IB0380, IB0600, IB1000, and IB1250) and Mt. Fujiwara (FJ0200,
FJ0400, FJ0700, and FJ1100). The low-altitude reference populations were situated at Minoo
(MN0220), Inotani (IN0230), Itamuro (IT0520), and Okunikkawa (OK0370). See Fig 1A and
1B and S1 Table for the location and coordinates. Leaf samples were collected from each of the
12 populations and silica-dried for subsequent DNA extraction. To avoid sampling of clones,
the sampled individuals were at least 4 m apart from each other.

Establishment of the reference genome of Arabidopsis halleri subsp.
gemmifera
Genomic DNA was extracted from the dried leaf of a single individual using the DNeasy Plant
Kit (QIAGEN). This individual was collected from population IB0380 and was not included in
the resequencing analysis. DNA libraries were prepared using the Illumina TruSeq DNA Sam-
ple Preparation Kit for paired-end reads, the Roche GS Titanium Rapid Library Preparation
Kit for 454 single reads, and the SOLiD Mate-Paired Library Construction Kit for mate-pair
reads. Instead of SOLiD adapters, Illumina adapters were used in the final step of mate-pair
library construction. Reads were generated using the Illumina GAIIx, HiSeq2000 (300 bp
paired-end reads, 3 kbp and 5 kbp mate-pair reads), and Roche 454 GS FLX Plus Titanium
(single reads) systems. Subsequent data processing was performed with CLC Genomics Work-
bench version 6 (CLC bio). Raw reads were trimmed based on quality scores of 0.05 and a max-
imum allowance of two ambiguous nucleotides. Reads shorter than 60 bp for the Illumina
platform and 100 bp for the Roche 454 platform were discarded. De novo assembly was carried
out using the “De Novo Assembly” function with the following parameters: Mismatch cost 3,
Insertion cost 3, Deletion cost 3, Length fraction 1, Similarity 1, Minimum contig length 200.
Single reads from the Roche 454 platform were used as guidance-only reads. The number of
reads used to construct the reference genome was as follows: 74,102,134 (7,034,411,911 nt) Illu-
mina 300 bp paired-end reads, 150,099,682 (13,756,599,514 nt) Illumina 3 kbp mate-pair
reads, 127,910,808 (11,644,031,026 nt) Illumina 5 kbp mate-pair reads, 66,195,930
(6,338,573,278 nt) single reads from the broken pairs of Illumina 3 kbp mate-pair reads,
73,840,719 (7,058,674,210 nt) single reads from the broken pairs of Illumina 5 kbp mate-pair
reads, and 3,534,305 (2,579,555,709 nt) Roche 454 single reads. The established de novo A. hal-
leri subsp. gemmifera reference genome sequences is uploaded online and freely available. The
quality of the assembled reference genome was validated by mapping the exon sequence of A.
thaliana at the TAIR10 database (The Arabidopsis Information Resource; http://www.
arabidopsis.org). A total of 217,183 A. thaliana exon sequences were mapped using the “Map

Genome Scan for Microgeographic-Scale Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1005361 July 14, 2015 18 / 26

http://www.arabidopsis.org/
http://www.arabidopsis.org/


Reads to Reference” function with the following parameters: Mismatch cost 2, Insertion cost 2,
Deletion cost 2, Length fraction 0.3, Similarity 0.9. Using the same parameter settings, the A.
thaliana exon sequences were mapped to the reference genome of A. lyrata [33] downloaded
from the JGI’s PHYTOZOME portal (US Department of Energy Joint Genome Institute;
http://www.phytozome.net/alyrata).

Individual-based resequencing, SNP discovery, and data cleaning
Genomic DNA from each of the 56 individuals was isolated with the DNeasy Plant Kit (QIA-
GEN). DNA libraries were constructed according to the Low-Throughput Protocol of the Tru-
Seq DNA Sample Preparation Kit (Illumina). After quantification, 76 and 93 bp paired-end
reads were obtained from the Illumina GAIIx platform and 101 bp paired-end reads from the
HiSeq2000 platform. Raw short read sequences have been deposited at DDBJ and are freely
available. Subsequent mapping and SNP calling procedures were performed using CLC Geno-
mics Workbench version 6 (CLC bio). Prior to mapping, all sequences were trimmed based on
a quality score of 0.05 and a maximum allowance of two ambiguous nucleotides. Broken pairs
and reads shorter than 65 bp were discarded. For each individual, the reads were mapped to
the reference genome with the following parameters: Mismatch cost 3, Insertion cost 3, Dele-
tion cost 3, Length Fraction 0.97, and Similarity fraction 0.97. The reads from each individual
were mapped to satisfy 9- to 15-fold coverage of the reference genome (S1 Table). We used
101 bp reads for mapping, but shorter reads were employed when the input was insufficient to
meet the coverage demands. The short reads used for each individual are now undergoing the
registration process and will be made freely available. SNPs were accepted if the locus had at
least five reads per individual and the frequency of the antagonistic allele exceeded 20%. A total
of 2 million provisional SNP loci were detected from the 56 individuals. Among these loci,
those with a total read count over 10,000 were excluded because excessive read coverage may
indicate nucleotide mismatches from paralogous copies of duplicated sequences. In addition,
only those loci that had at least five reads in each individual were retained. Accordingly, a set of
527,225 SNP loci with an average read coverage per individual of 20 was obtained. Among
these reliable SNP loci, 518,706 were bi-allelic, while 8,442 were tri-allelic, and 77 were tetra-
allelic.

Population structure analyses
A Bayesian clustering analysis of population structure was performed with STRUCTURE version
2.3.4 [34, 35]. All 56 individuals from the 12 populations were subjected to analysis, and 10,000
SNP loci were randomly selected for the input dataset. Twenty independent runs for each value
of K (the number of subpopulations) ranging from 1 to 12 were performed. For the optional
setting for each run, we chose 400,000 iterations, with the first 200,000 iterations discarded as
burn-in, and we applied the admixture model with correlated allele frequencies. To decide the
best number of genetic clusters for the 56 individuals, we plotted the values of LnP(D) (log like-
lihood of the observed genotype distribution) and estimated Evanno’s ΔK [36] for each K.
Based on the largest value of LnP(D) and a clear peak of ΔK, we selected 6 as the best K (Fig
2B). As we found further subdivisions within the mountains in runs with K above 6, we con-
ducted additional analysis within each mountain. Using the same SNP loci and settings men-
tioned above, 20 individuals from each mountain were subjected to a set of analysis with K
from 1 to 4. Although LnP(D) and ΔK supported K = 2 for Mt. Ibuki, genetic subdivision was
not supported in Mt. Fujiwara (S2 Fig). Graphical representations of the results were generated
using the program Distruct [67].

Genome Scan for Microgeographic-Scale Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1005361 July 14, 2015 19 / 26

http://www.phytozome.net/alyrata


A maximum likelihood tree of the 12 populations was constructed with TreeMix version
1.12 [38]. This program uses a set of genome-wide allele frequency data from populations to
construct the maximum-likelihood tree. Population splits are represented as nodes, and branch
lengths are proportional to the amount of genetic drift experienced by the population. Migra-
tion events are inferred for populations that fit the tree poorly. Input allele frequency data for
the 12 populations were generated based on 518,706 bi-allelic SNP loci. We first inferred the
maximum likelihood tree without adopting a migration event, using OK0370 as an outgroup.
To judge the confidence of the topology, 100 bootstrap replicates were performed. We then cal-
culated the fraction of the variance in relatedness between populations that was explained by
the tree (f of Equation 30 in [38]).

Screening for SNPs associated with altitudinal adaptation
Screening of the 527,225 SNP loci was carried out according to the following three distinct
criteria.

For the first criterion, we defined an index (U) to evaluate the level of unidirectional change
in allele frequencies across altitudes. For each locus, the following index, ranging from −1 to 1,
was calculated for each mountain:

U ¼ jFL � FH j þ
jFL � FH j � jFL � FM1j � jFM1 � FM2j � jFM2 � FH j

2

where F indicates the allele frequency of a specific nucleotide in the lowest (L), lower-middle
(M1), higher-middle (M2), and highest (H) altitude-specific populations. The nucleotide show-
ing the largest allele frequency difference between the lowest and highest populations was used
to calculate each F. The index yields greater values if the difference in the allele frequency
between the lowest and highest populations is larger and if the allele frequency of the interven-
ing population falls between that in the lower and higher populations. In other words, for a
given allele frequency difference between the lowest and highest population, U value is highest
when the frequency increases or decreases monotonically along the altitude. For each SNP
locus, we calculated �U , which is an average of the U values 2 kbp down- and upstream (4 kbp
window size) from its genomic position to minimize the spurious noise from single SNP locus.

The second criterion was used to evaluate the genetic difference of a given SNP locus
between the lowest and highest populations within each mountain. For each SNP locus,
Hedrick’s G0

ST [39] were calculated and averaged across 2 kbp down- and upstream from its
genomic position to obtain �G0ST .

Because the preceding two criteria basically filter those genes that are highly differentiated
between lowest and highest populations, genes adaptive in the lower altitude can also be
detected. While those genes are also interesting, our study system focus on high-altitude con-
vergent evolution in two distinct mountains, and thus needed a third criteria to spot the genes
that are related to high-altitude adaptation. Thus the third criterion was adopted to select those
loci that show increased derived allele frequency (DAF) in the highest population compared
with the low-altitude reference populations. Allele frequency data from the four reference pop-
ulations (16 individuals in total) were combined and the allele with minor frequency was
regarded as the derived allele. DAF of the reference populations ranges from 0 to 0.5, whereas
DAF of the highest population ranges from 0 to 1.0. For tri- and tetra-allelic locus, we sub-
tracted the major allele frequency from one and used it to calculate the DAF. An index to mea-
sure the increment of DAF in the highest populations (ΔD0) was calculated by:

DD0 ¼ ðjDH � DRjÞð1� DRÞ
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where DH is the DAF in the highest population, and DR the DAF in the reference populations.
As we are not sure whether the allele is really ‘derived,’ especially for locus with high minor
allele frequency in the reference populations, absolute value for the DAF difference is used. In
addition, a probability of the allele being derivative (1 − DR) was used to correct the absolute

DAF difference between the highest and reference populations. As well as other indices, ΔD0
values were also averaged 2 kbp down- and upstream (4 kbp window size) from its genomic

position to obtain DD0 .

For all three indices (U , G0
ST , and DD0 ), we analyzed the genome-wide frequency distribu-

tion and the upper 1.5 times the IQR of a genome-wide frequency distribution (Fig 3) was
determined as a screening threshold. Screening was conducted independently for each moun-
tain, and only those SNP loci that fulfilled all three criteria were considered further. Note that
the three criteria are not completely independent. For instance, a steep monotonic allele shift
along the altitude is likely to be found among loci that are highly differentiated between the
lowest and highest populations. See Fig 4 for the overlaps between the sets of loci screened by
different criteria.

Gene Ontology enrichment analysis
To test for enrichment of a specific gene function among the screened SNPs, we conducted a
Gene Ontology (GO) enrichment analysis with 30 GO terms that cover the representative phe-
notypic and environmental entries within the database. (See S2 Table for the complete list of
the selected GO terms). Here, only those SNP loci that were linked (overlapping or within
5 kbp of an exon) to a mapped gene in the A. halleri subsp. gemmifera reference genome were
used. The ratio between ‘the number of SNP loci (or genes) associated with a given GO term
within the screened dataset’ and ‘the number of SNP loci (or genes) unassociated with a given
GO term within the screened dataset’ was compared with the same ratio obtained from the
unscreened dataset. Significant enrichment for each GO term was computed with a one-tailed
Fisher’s exact test for a 2 × 2 table [68, 69], and p-values from multiple comparisons were
adjusted using a 0.05 threshold of the FDR q-value [40].

BayeScan and LFMM analysis
We also applied our datasets to two popular outlier detection methods that take account of the
underlying population structures. Both analysis were independently conducted in each moun-
tain. BayeScan uses a hierarchal Bayesian approach to detect outliers from the locus-specific
FST distribution [44–46]. The program is based on a multinomial Dirichlet model that covers a
wide range of realistic demographic scenarios. In addition, the program can be used with small
number of samples with the risk of a low power, but with no particular risk of bias. We run our
dataset with BayeScan 2.1 using the default parameter settings (20 pilot runs for 5,000 length,
50,000 burn in followed by additional 50,000 iteration with a thinning interval of 10). Posterior
probabilities for each locus were calculated and corrected by the FDR method implemented in
the program. Outliers were identified at the 1% significant levels of the FDR q-value.

Another method LFMM (Latent Factor Mixed Models) uses a hierarchal Bayesian mixed
model to detect outliers from correlations between environmental and genetic variation [47].
At the same time, the program infers the background levels of population structure based on
principal component analysis. Population structure is modelled from a chosen number of
latent factors (K), which corresponds to the number of principal components to describe the
neutral structure of the data. Underestimated value of K leads to liberal tests with false posi-
tives, whereas overestimated K leads to conservative tests with false negatives. Here, based on
the results from STRUCTURE analysis, we used K = 2 as a number of latent factor in each
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mountain. Population altitudes shown in S1 Table were used as the environmental data for
each individual. Using the program lfmm in the LEA package version 1.0 (LEA: an R package
for Landscape and Ecological Association studies; http://membres-timc.imag.fr/Olivier.
Francois/LEA/index.htm), we conducted 20 runs with a burn in number of 5,000 and a total of
10,000 iterations. FDR q-value [40] was calculated for each locus based on the outputted p-
values.

Gene sorting according to the likelihood of having undergone natural
selection
The sorting process of the candidate genes was based on the level of unidirectional change in
allele frequencies across altitudes ( �U described above) and the effect of genetic hitchhiking.
First, the �U values of all SNP loci were plotted and connected with a line across genomic
regions. Continuous regions with positive �U values, starting and ending at the x-intercept,
were considered to be hitchhiking regions (genomic island). In addition to the x-intercept, the
genomic islands were terminated if the neighboring SNP loci were more than 4 kbp apart. We
then defined the x-axis as the base and computed the area inside each genomic island. Genomic
islands that contained at least two screened SNP loci were sorted from those with the largest
area. The top 20 genomic islands contained 38 and 32 genes in the Mt. Ibuki and Mt. Fujiwara
populations, respectively (see S3 Table). Finally, to visualize the unidirectional change in allele
frequency, the difference in allele frequencies between the lowest and higher populations was
plotted using a sliding window approach with window size of 4 kbp and a step size of 1 kbp
(see S4 Fig for workflow).

We also carried out a simulation-based analysis to confirm the statistical significance of our
results. To calculate the empirical p-value for obtaining two common genes from the two inde-
pendent gene lists, we performed one million trials of randomly selecting 38 (number of candi-
date genes within the list for Mt. Ibuki) and 32 (number of candidate genes within the list for
Mt. Fujiwara) genes from a set of 23,395 genes (total number of analyzed SNP-tagged genes).
For each trial, we examined the number of shared genes between the two lists. Similarly, we cal-
culated the empirical p-value for detecting three and four genes with the GO term ‘response to
temperature stimulus’ in two gene lists. Again, we performed one million trials of randomly
selecting 38 and 32 genes from a set of 23,395 genes. This time, however, 863 of the 23,395
genes were tagged with the GO term ‘response to temperature stimulus’ and we counted the
number of genes with the GO term in the two derived gene lists.

Supporting Information
S1 Fig. Morphology of the normal and highland ecotypes from the two mountains. Each
photograph displays the typical morphology of ecotypes found at the altitudes of 380 m (A)
and 1,250 m　(B) on Mt. Ibuki and 200 m (C) and 1,100 m (D) on Mt. Fujiwara. The normal
ecotypes are characterized by a tall, spindly, and glabrous appearance (A and C) and the high-
land ecotypes by a hairy dwarf-like appearance (B and D).
(TIF)

S2 Fig. Additional STRUCTURE analysis within each mountain. (A, B) STRUCTURE analysis with
a K of 2 to 4 using 20 individuals fromMt. Ibuki (A) and Mt. Fujiwara (B). The results for each
K is based on the simulation that provided the best LnP(D) value among 20 independent runs.
(C, D) Plotting of the mean LnP(D) values from the STRUCTURE analysis (blue dots) and Evan-
no’s ΔK (red dots) in Mt. Ibuki (C) and Mt. Fujiwara (D). Error bars indicate the standard
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deviation of LnP(D) values from the 20 independent runs.
(TIF)

S3 Fig. Outlier tests by BayeScan and LFMM. Estimated ‒log10(q-value) from BayeScan and
LFMM are plotted for each SNP locus in Mt. Ibuki (A) and Mt. Fujiwara (B).
(TIF)

S4 Fig. Workflow for the sorting procedure of the candidate genes. (A) Index for the unidi-
rectional allele frequency shift (U) for all SNP locus was calculated and plotted along the
genome. (B) To minimize the spurious noise from single locus, U values were averaged across

2 kbp down- and upstream from the genomic position to obtain �U. (C) The �U values of the

SNP loci were connected with a line, and each continuous region with positive �U values, start-
ing and ending at the x-intercept or either end of a scaffold, was considered as a single hitch-
hiking region (genomic island). By defining the x-axis as the base, the area inside each genomic
island was calculated. In the case shown in the figure, each colored area of (a), (b), and (c) are
calculated. The area of each genomic islands were sorted from highest to lowest. Only those
genomic islands that included at least two screened SNPs were retained, and genes overlapping
or within 5 kbp of a screened SNP locus were considered as candidate genes. (D) Genomic
islands with a larger area show longer and stronger trends of unidirectional allele frequency
shifts.
(TIF)

S1 Table. Details of the individuals and populations included in the present study.
(XLS)

S2 Table. Details of the Gene Ontology enrichment analysis.
(XLS)

S3 Table. Genes within the top 100 genomic islands from each mountain.
(XLS)
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