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Abstract

There is increasing interest in the use of instrumental variable analysis to overcome un-

measured confounding in observational pharmacoepidemiological studies. This is partly

because instrumental variable analyses are potentially less biased than conventional re-

gression analyses. However, instrumental variable analyses are less precise, and regula-

tors and clinicians find it difficult to interpret conflicting evidence from instrumental vari-

able compared with conventional regression analyses. In this paper, we describe three

techniques to assess which approach (instrumental variable versus conventional regres-

sion analyses) is least biased. These techniques are negative control outcomes, negative

control populations and tests of covariate balance. We illustrate these methods using

an analysis of the effects of smoking cessation therapies (varenicline) prescribed in pri-

mary care.
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Key Messages

• Clinicians and regulators struggle to interpret conflicting evidence from instrumental variable compared with conven-

tional regression analysis.

• The relative bias of these methods can be assessed using negative control outcomes, negative control populations

and tests of covariate balance.

• Researchers could report bias component plots with confidence intervals to robustly assess the relative bias due to

each covariate.
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Introduction

Unmeasured or residual confounders can bias the results

from observational studies of routinely collected data. For

example, in pharmacoepidemiological studies, treatment

choice is influenced by a number of factors (e.g. comorbid-

ities, socioeconomic position, education) that relate to out-

comes, but are often not perfectly recorded or measurable

in the sorts of electronic medical records data that are used

in such analyses. This ‘confounding by indication’ means

that the observed association of treatment with an out-

come is often an unreliable indicator of any causal adverse

or beneficial effects of the treatment of interest.

This problem of ‘confounding by indication’ is illustrated

in Figure 1, where the outcome Y is caused by the exposure

X and the unobserved or residual confounder C. The associ-

ation of the exposure with the outcome will be biased be-

cause they are both caused by a confounding factor C.

Confounding by indication affects the likelihood of receiving

the prescription and having the outcome, independently of

the true causal effects of the prescription. Therefore using

methods which adjust for confounding, such as multivariable

adjusted regression or propensity score regression, when the

confounding factors are either not measured or not measured

sufficiently precisely can give biased estimates.1

Instrumental variable analysis is a statistical approach

that can theoretically overcome these problems.2–7

Instrumental variables are defined by three assumptions:

A) they are associated with the exposure of interest; B)

they are not associated with confounding factors; and C)

they have no direct effect on the outcome of interest.8,9

These assumptions are illustrated in Figure 1, where the in-

strument variable Z only affects the prescription X.

We can obtain a valid estimate of the effects of the ex-

posure on the outcome using the so-called Wald estimator

which identifies the effects of treatment on the risk differ-

ence scale. Denote the sub-sample averages of Y and X by

y1 and x1 when Z ¼ 1 and by y0 and x0 when Z ¼ 0. The

Wald estimator is then given by:

ŵ ¼ y1 � y0

x1 � x0

and is consistent for the estimand:

w ¼ E½YjZ ¼ 1� � E½YjZ ¼ 0�
E½XjZ ¼ 1� � E½XjZ ¼ 0�

In a pharmacoepidemiological study of the effects of

prescribed drugs, physicians’ preferences for particular

drugs are potential instruments for the prescriptions they

issue to their patients.7 This is because physicians’ prefer-

ences for medications affect the drugs they issue

(assumption i), but the preferences themselves will not ne-

cessarily be related to their patients’ pre-existing comor-

bidities (assumption ii) and will not necessarily directly

affect their patients’ outcomes (assumption iii). Patients

generally register with their GP long before they are pre-

scribed treatments, so their choice of GP is unlikely to be

related to their GP’s preference for a specific medication,

thus ensuring that using prescribing preference as an in-

strument for treatment received does not violate assump-

tions i and ii. We cannot directly measure physicians’

preferences from prescribing databases, so preferences are

‘latent variables’ indicated by Z in Figure 2. In the analysis

of the effects of smoking cessation therapies in primary

care described here, we use the physicians’ prescriptions of

varenicline or nicotine replacement products to their previ-

ous patients as proxies for their preferences. Recent studies

have found that physicians’ prescribing preferences could

potentially be a valid instrument for prescribing of non-

steroidal anti-inflammatory drugs (NSAIDs), antidepres-

sants, smoking cessation medication and anti-psych-

otics.7,10–20 However, a study using data from German

health insurance records found that physicians’ preferences

are not always valid for NSAIDs.21 Therefore the validity

of physicians’ prescribing preferences as instruments is

context-dependent and needs to be assessed in new appli-

cations or data sources.

As the use of instrumental variable methods is relatively

novel in epidemiology, we currently do not have sufficient

information to advise policy makers and regulators about

the specific situations where instrumental variable analysis

is likely to provide a less biased estimate of the causal effect

of a drug than conventional regression analyses. Here we

describe how negative control outcomes, negative control

populations and bias component plots can be used to assess

Figure 1. Directed acyclic graph of outcome Y, prescription X, the in-

strumental variable Z and a potentially unmeasured confounder C (left).

Each variable’s directed effects (edges) are denoted by arrows.

Figure 2. Directed acyclic graph of an analysis using the physicians’

prescriptions to their previous patients, Z* as a proxy for their prefer-

ences, the true underlying instrument, Z, which is a latent variable. The

exposure, outcome and confounder are indicated as X, Y and C,

respectively.
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the validity of instrumental variables for dealing with con-

founding by indication.22

Methods

In this section, we describe three approaches to assess the

relative bias of conventional and instrumental variable esti-

mates by using: i) negative control outcomes; ii) negative

control populations; and iii) bias component plots.

Negative control outcomes

One way to evaluate whether the instrumental variable as-

sumptions hold is to investigate whether the instrumental

variables are associated with negative control outcomes

likely to be affected by the same confounders as the out-

come of interest, but that are unlikely to be directly af-

fected by the exposure. These may be: (i) outcomes for

which we believe there can be no plausible effect of the ex-

posure; or (ii) records indicating whether an outcome of

interest occurred before the patient was exposed to the

treatment of interest (see Figure 3). If the instrumental vari-

able is associated with a negative control outcome, then

this suggests that there may be residual confounding and

that assumption B of the instrumental variable analysis has

been violated. The association of the instrument and the

negative control outcome can be tested using linear regres-

sion. It is important to choose a negative control outcome

that is affected by the same confounders as the outcome of

interest, and which has sufficient variation to have ad-

equate power.23 If a rare negative control outcome is used,

then plots comparing the conventional linear and instru-

mental variable regression estimates would have wide con-

fidence intervals and are likely to be uninformative.24

The negative control outcome here can be a different

diagnosis from the outcome of interest which occurs after

prescription but is unlikely to be affected by treatment:

an example in the case of varenicline is a urinary tract

infection (see Figure 4). This is likely to be a suitable

negative control outcome because a smoking cessation

drug prescription is unlikely to be affected by a patient’s

risk of developing a urinary tract infection. However,

patients prescribed varenicline (as we will see) are gener-

ally healthier than those prescribed nicotine replacement

therapy. Therefore they are likely to have a lower risk

of urinary tract infection prior to prescription. Thus,

urinary tract infections are affected by the same con-

founders, but are unlikely to be caused by varenicline.

An example of a negative control outcome that is af-

fected by treatment but occurred before the patient was

prescribed treatment, could be a diagnosis of schizophre-

nia in the 6 months before the first smoking cessation

prescription.

Negative control populations

Another possible method to evaluate the instrumental vari-

able assumptions is to use a negative control population. A

negative control population has a similar confounding

structure as the population of interest but was not exposed

to the treatment of interest. In the context of physician pre-

scribing preferences, the negative control population com-

prises patients that consulted with a GP who recently

Negative control outcomes: 

Negative control population: 

Time 

Attended GP A but was not 

prescribed smoking 

cessation therapy

Prescribed smoking 

cessation therapy by GP A 

Outcome 3 

Negative control 

outcome 1 

Negative control 

outcome 2 

Patient A 

Patient B 

Figure 3. Proposed negative control outcomes and negative control populations.

Rate of 

urinary tract 

infection 

Confounders

Physicians’ 

preferences for 

varenicline 

Physicians’ 

previous 

prescription Actual 

prescription 

issued 

Figure 4. Using urinary tract infections as a negative control outcome

to investigate the effects of prescribing varenicline.
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prescribed the medication of interest to another patient,

but the negative control patient attended the GP for an un-

related reason and were not themselves prescribed the

medications of interest (see Figure 3). In the case of smok-

ing cessation therapies, these patients may not themselves

be smokers. If the GP’s preferences have no direct effect

on their patients’ outcomes then the instrumental vari-

able, the physicians’ previous prescription, should not be

associated with the outcomes in the negative control

population. This is because a GP’s preferences for smok-

ing cessation medications cannot directly affect the out-

comes of patients who were not prescribed smoking

cessation medications. If the proposed instrument is asso-

ciated with any outcomes in the negative control popula-

tion, this suggests that it may be operating through

another mechanism.

Bias component plots

Historically, studies using instrumental variables have re-

ported tables of covariate balance across the exposure and

the proposed instrument.25 Under the assumption that the

structure of the observed confounding is similar to the unob-

served confounding, we can potentially make inferences

about the relative bias of the conventional linear and instru-

mental variable regression due to residual confounding. The

confounders of the exposure-outcome relationship are not

necessarily the same as the confounders of the instrument-

outcome relationship. There is a substantial literature that

describes methods to investigate the relative bias due to

observed confounders. Brookhart and Schneeweiss (2007)

described how to use the ‘prevalence difference ratio’ to in-

vestigate the relative bias.26 This is the ratio of the difference

in an observed dichotomous confounder across values of the

exposure and values of the instrument. However, this statis-

tic does not directly account for the strength of the instru-

ments. Brookhart and Schneeweiss conclude that if the

prevalence difference ratio is smaller than the strength of the

instrument, then the instrumental variable results are likely

to have a lower asymptotic bias. Baiocchi and colleagues

(2014) recommend generating a single statistic by dividing

the prevalence difference ratio by the strength of the instru-

ment to calculate what they term the ‘bias ratio’.24 Jackson

and Swanson (2015) illustrated how simple plots of the asso-

ciations of instrument and exposures with observed con-

founders can be misleading about the relative bias of

instrumental variable and conventional linear regression.27

These methodological papers agree that one can only com-

pare the relative bias of the two approaches if the fact that

the instrument only explains a small proportion of the vari-

ation in the exposure is accounted for.24,26,27 To see why,

compare the following expression for bias of the linear re-

gression if the covariate C is omitted:

biasðOLSÞ=bC ¼ E½CjX ¼ 1� � E½CjX ¼ 0�

.where bC is the direct effect of C on the outcome. The bias

in the Wald estimator if covariate C is omitted is:

biasðIVÞ=bC ¼
E½CjZ ¼ 1� � E½CjZ ¼ 0�
E½XjZ ¼ 1� � E½XjZ ¼ 0�

For comparisons, we normalize bC ¼ 1. Jackson and

Swanson argue that these estimated biases should be pre-

sented graphically using bias plots to aid interpretation.27

Bias components without confidence intervals are

uninformative

One limitation of these methods is that they ignore sam-

pling variability, so the calculated differences could simply

be due to chance. Furthermore, sampling variability will

have a larger impact on the instrumental variable results

because the instrumental variable estimates are less precise.

Therefore, sampling variability must be taken into account

when assessing bias. The simplest way to do this is to pre-

sent confidence intervals around both the treatment and in-

strumental variable biases components and present a

statistical test for differences between the terms.

Under the assumption of a constant effect of treatment,

we can test whether the linear regression or instrumental

variable bias component is bigger using a modified

Hausman test. This test can be estimated using generalized

method of moments; see online code repository for statis-

tical code for this test at [https://github.com/nmdavies/vare

nicline-cprd-neg-control/]:

ðb̂iv � b̂olsÞ
sqrt

�
vârðb̂iv � b̂olsÞ

� � Nð0; 1Þ

where b̂ols and b̂iv are the ordinary least squares regression

and instrumental variable regression estimates of the bias

component terms. The null hypothesis of this test is that

there is no difference between the linear regression and in-

strumental variable bias components. The alternative hy-

pothesis is that there are differences. If there is little

evidence of systematic differences between the instrumen-

tal variable and linear regression bias components, then we

cannot say with any certainty which is bigger and it is diffi-

cult to draw any strong conclusions about the likely rela-

tive bias of the conventional linear and instrumental

variable estimators. This is because any differences in the

bias components could just be due to sampling variability,

not differences in the true underlying distributions in the
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population or the true underlying distribution of unob-

served confounders. Covariates which have systematic dif-

ferences between the conventional linear and instrumental

variable regression bias components are informative about

the relative bias. We can illustrate this point using a simple

simulation of a hypothetical analysis. Consider the follow-

ing data-generating process:

v;w;u � Nð0;1Þ

The proposed instrument is distributed as an independ-

ent dichotomous variable. Therefore the exclusion restric-

tion is valid:

z � bernoullið0:2Þ

Without loss of generality, assume that we have 10 po-

tential (but not true) dichotomous confounders, j ¼ 1; : :;10:

cj � bernoullið0:2Þ

Let the dichotomous exposure equal:

x ¼ 1ðzcþ uþw > dÞ;

where 1ðaÞ ¼ 1 if a and 0 otherwise, and c is the strength of

the effect of the instrument on the exposure, we set c ¼ 0:5.

We set the parameter d to ensure that Pr ½x ¼ 1� ¼ 0:2. The

outcome is a continuous variable equal to:

y ¼ xbþ uþ v

Conventional linear regression will suffer from bias due

to the confounder u. We set the effect of the exposure,

b ¼ 0:5, and N ¼ 10;000. The left panel of Figure 5 pre-

sents bias components without confidence intervals as

recommended by Jackson and Swanson (2015).27 From

this figure, we would erroneously conclude that the instru-

mental variable analysis has larger bias components than

conventional regression,n as the instrumental variable bias

components are larger. However, in this simulated ex-

ample, we know for certain that the instrumental variable

analysis is asymptotically unbiased. The right panel of

Figure 5 adds confidence intervals around the point esti-

mates. The confidence intervals make it clear that there are

no systematic and detectable differences in the bias compo-

nents. Therefore bias component plots are not interpret-

able without confidence intervals.

Selecting on (non-) treatment

Swanson and colleagues have suggested, using a simulated

data-generating process, that instrumental variable studies

can suffer from collider bias if analyses are restricted to pa-

tients who received a specific set of treatments, or if un-

treated patients are excluded.29 An example might be a

study of smoking cessation treatment that ignored all

smokers who chose not to take any medication. At present,

it is not clear how pervasive this bias is in empirical phar-

macoepidemiological studies. We can use the simulation

described by Swanson and colleagues to investigate

whether this bias is likely to be detectable using the meth-

ods described above. We modified their simulation to have

a proxy (measured) confounder which had only a weak

correlation with the true confounder (r2¼ 0.01) and found

that if we restricted the analysis to treated patients, the in-

strumental variable bias component was detectable and an

order of magnitude larger than the linear regression bias

component. Therefore, whereas this bias is possible in em-

pirical pharmacoepidemiological studies, it is likely to be

Figure 5. Bias component plots (left), are not informative without confidence intervals (right). Simulated bias component terms for 10 potential con-

founders (indicated c1 to c10) for the actual prescription (�) and proposed instrument ( ).

Simulation of 10 potential confounders when the instrument is valid. Using bias component plots alone we would erroneously conclude that the in-

strumental variable bias components were systematically larger than the linear regression bias components. Once we add confidence intervals to

the point estimates, it becomes clear that the differences in components are entirely consistent with chance. There is no evidence from these poten-

tial confounders that the linear and instrumental variable regression bias component differ.
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detected by the statistics described above. The full statis-

tical code of this analysis is available online at [https://

github.com/nmdavies/varenicline-cprd-neg-control/].

Application of negative controls and bias
plots

Study design and population

We illustrate the use of negative controls and bias plots

using a sample from the Clinical Practice Research

Datalink (CPRD) in which we investigated the effects of

varenicline on suicide and self-harm, and depression.18 We

were concerned that multivariable adjusted estimates of

the effect of varenicline would suffer from residual con-

founding due to healthy user bias. Patients prescribed vare-

nicline were healthier in almost all ways we could

measure, and they were potentially healthier in ways we

could not measure as well. This means we may underesti-

mate the effect of varenicline on adverse outcomes. We

used conventional multivariable adjusted regression and an

instrumental variable analysis using physicians’ prescribing

Table 1. Description of baseline confounders of patients prescribed varenicline or nicotine replacement products

Varenicline Nicotine replacement products

N¼52981 N¼122159

(%) SD (%) SD

Male 49.3 45.9

Age (years)a 44.3 13.1 46.1 15.6

Prescribed in 2007 12.7 25.4

Prescribed in 2008 19.4 17.7

Prescribed in 2009 19.1 17.3

Prescribed in 2010 20.1 14.7

Prescribed in 2011 18.4 12.5

Prescribed in 2012 10.3 7.1

Number of GP visits in previous yeara 6.3 8.9 12.0 11.2

Diagnoses in the previous year

Autism 0.0 0.0

Bipolar 0.0 0.2

Current smoker 61.4 61.6

Dementia 0.0 0.1

Depression 3.8 6.5

Eating disorder 0.0 0.1

Hyperkinetic disorder 0.0 0.0

Learning disability 0.0 0.1

Neurotic disorder 2.0 3.4

Other behavioural disorder 0.0 0.0

Personality disorder 0.0 0.1

Schizophrenia 0.0 0.3

Alcohol misuse 0.9 1.7

Probable self-harm 0.0 0.0

Drug misuse 0.1 0.3

Fractures 1.3 1.8

Any psychiatric illness 6.0 10.5

Chronic disease 7.7 11.2

Prescriptions in the previous year

Antidepressant 17.0 26.5

Antipsychotic 2.9 6.4

CNS stimulant 0.0 0.1

Dementia medication 0.0 0.0

Hypnotic anxiolytic 4.7 7.0

Lithium 0.1 0.4

This sample was larger than used Thomas and colleagues (2013) as in this study we also included patients who attended general practices that were not linked

to the Hospital Episodes Statistics data.18

aContinuous variables, mean and standard deviation (SD) reported.
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Less common with varenicline More common with varenicline  

Figure 6. Negative control outcome: difference in the incidence of urinary tract infections in the four years after smoking cessation treatment for the

index patients by actual prescription (�) and the proposed instrument ( ).

Horizontal lines indicate robust confidence intervals for each prescription. There is little evidence of differences in the prescribing history when the

confidence intervals span zero on the axis.

Table 2. Association of proposed instrument and outcomes of other patients who saw the GP on the same day as they issued a

smoking cessation therapy to an index patient (n¼ 101861)

Robust linear regression

Risk

difference*100

95% confidence interval

Lower Upper

Male 0.77 0.02 1.52

Age (years)a �0.35 �0.65 �0.05

Number of GP visits in previous yeara �0.35 �0.61 �0.08

Diagnoses in the previous year

Autism 0.00 �0.02 0.02

Bipolar �0.01 �0.05 0.03

Current smoker 0.28 �0.51 1.07

Dementia 0.00 �0.12 0.13

Depression �0.04 �0.42 0.35

Eating disorder �0.02 �0.05 0.02

Hyperkinetic disorder 0.00 �0.01 0.01

Learning disability �0.01 �0.06 0.05

Neurotic disorder 0.56 0.29 0.84

Other behavioural disorder �0.01 �0.04 0.01

Personality disorder 0.02 �0.03 0.07

Schizophrenia 0.00 �0.05 0.05

Alcohol misuse 0.08 �0.06 0.22

Probable self-harm �0.01 �0.01 0.00

Drug misuse 0.03 �0.04 0.11

Fractures 0.03 �0.15 0.21

Any psychiatric illness 0.36 �0.10 0.81

Chronic disease 0.12 �0.34 0.59

Prescriptions in the previous year

Antidepressant 0.44 �0.28 1.17

Antipsychotic 0.17 �0.18 0.52

CNS stimulant 0.02 �0.02 0.05

Dementia medication 0.00 �0.12 0.13

Hypnotic anxiolytic �0.02 �0.40 0.35

Lithium 0.07 �0.01 0.16

Robust standard errors clustered by physician reported.

*Mean differences reported. Each outcome was defined as an event in the year after the index prescription.
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preferences for varenicline versus nicotine replacement

therapy as an instrument.18 A description of the study co-

hort characteristics is presented in Table 1. Physicians who

prescribed varenicline to their previous patient were 24

percentage points [95% confidence interval (CI): 23, 25]

more likely to prescribe varenicline to their subsequent pa-

tients than physicians who previously prescribed nicotine

replacement therapy (partial F-statistic¼ 1011.5). The large

value of the partial F-statistic found here indicates that the

instrument is strongly associated with the exposure.

We investigated whether varenicline was associated

with a negative control outcome, urinary tract infections,

as smoking cessation treatment is unlikely to affect the in-

cidence of urinary tract infections. The conventional

regression analysis suggests that patients prescribed vareni-

cline were less likely to be subsequently diagnosed with a

urinary tract infection (Figure 6). However, the instrumen-

tal variable analyses provided little evidence that vareni-

cline caused urinary tract infections (Figure 6). The

simplest explanation of these results is that the conven-

tional regression analysis suffers from residual confound-

ing, and the instrumental variable results do not (i.e. our

instrument is not associated with potential confounders).

We also investigated whether physicians’ preferences had

any effects in a negative control population–individuals

prescribed an antidepressant who consulted with a phys-

ician on the same day that the GP issued a smoking cessa-

tion medication to another patient. We found little

Table 3. Estimates of the bias components for linear regression (equation 1) and instrumental variables (equation 2), and test

for difference between the biases

Linear regression bias component Instrumental variable bias component Test for

differenceb

100*risk

difference

Confidence interval 100*risk

difference

Confidence interval

N¼175,140 Lower Upper Lower Upper P-values

Male 3.06 2.50 3.63 1.05 �1.32 3.42 0.08

Age (years)* �1.66 �1.84 �1.49 �0.65 �1.38 0.08 0.004

Number of GP visits in previous year* �5.82 �5.99 �5.65 �4.88 �5.47 �4.29 5.84E-04

Diagnoses in the previous year

Autism �0.01 �0.02 0.00 �0.03 �0.07 0.01 0.47

Bipolar �0.17 �0.20 �0.14 �0.09 �0.25 0.06 0.35

Current smoker �0.33 �0.98 0.33 3.34 0.70 5.98 0.002

Dementia �0.13 �0.16 �0.10 0.06 �0.08 0.20 0.01

Depression �2.57 �2.83 �2.31 �1.60 �2.73 �0.47 0.07

Eating disorder �0.03 �0.05 0.00 �0.03 �0.14 0.08 0.98

Hyperkinetic disorder �0.02 �0.03 0.00 �0.09 �0.13 �0.04 2.11E-04

Learning disability �0.11 �0.13 �0.08 �0.09 �0.22 0.04 0.79

Neurotic disorder �1.25 �1.43 �1.07 �0.07 �0.92 0.77 0.004

Other behavioural disorder �0.01 �0.03 0.00 0.00 �0.07 0.08 0.65

Personality disorder �0.09 �0.12 �0.07 �0.03 �0.16 0.11 0.34

Schizophrenia �0.25 �0.29 �0.22 �0.32 �0.51 �0.14 0.47

Alcohol misuse �0.80 �0.92 �0.68 0.14 �0.41 0.70 6.64E-04

Probable self-harm 0.00 �0.01 0.00 0.00 �0.03 0.03 0.90

Drug misuse �0.24 �0.29 �0.18 �0.22 �0.47 0.02 0.90

Fractures �0.54 �0.67 �0.41 �0.30 �0.87 0.28 0.39

Any psychiatric illness �4.23 �4.54 �3.92 �1.51 �2.89 �0.13 5.00E-05

Chronic disease �3.50 �3.85 �3.16 0.60 �0.87 2.07 6.50E-09

Prescriptions in the previous year

Antidepressant �9.68 �10.17 �9.20 �3.15 �5.15 �1.16 1.06E-11

Antipsychotic �3.54 �3.76 �3.32 �1.52 �2.55 �0.49 7.78E-05

CNS stimulant �0.05 �0.08 �0.02 0.01 �0.12 0.13 0.39

Dementia medication �0.04 �0.06 �0.03 �0.01 �0.09 0.07 0.37

Hypnotic anxiolytic �2.34 �2.60 �2.08 �0.99 �2.13 0.14 0.01

Lithium �0.32 �0.37 �0.28 �0.37 �0.60 �0.15 0.64

*Mean differences reported. Robust standard errors allowing for general form heteroskedasticity clustered on physician.

bTest for differences between the conventional regression and instrumental variable regression bias is ðb̂ iv � b̂olsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vârðb̂ iv � b̂olsÞ:

q
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evidence that the proposed instrument was associated with

a range of outcomes in this population (Table 2). As there

is little evidence that physicians’ preferences for prescribing

varenicline directly affected their patients’ outcomes, this

provides reassurance that they are potentially valid instru-

ments (i.e. unconfounded).

The differences in baseline confounders for the actual

exposure (prescription of varenicline rather than nicotine

replacement therapy) and the proposed instrument (GP’s

prescribing preference for varenicline versus nicotine re-

placement therapy) are shown in Table 3 and are presented

in Figures 7–9. These results suggest that the instrumental

Figure 7. Bias component plots: difference in patient’s age and the

number of consultations in the previous year by actual exposure (�)

and proposed instrument ( ). The figures for the instrumental variable

results account for the strength of the instrument as described in

Jackson and Swanson (2015).27

The horizontal lines indicate robust confidence intervals for each pre-

scription. There is little evidence of differences in the prescribing history

when the confidence intervals span zero on the axis.

Figure 8. Bias component plots: difference in patients’ diagnoses in the previous year by actual exposure (�) and proposed instrument ( ). The fig-

ures for the instrumental variable results account for the strength of the instrument as described in Jackson and Swanson (2015).27 The horizontal

lines indicate robust confidence intervals for each prescription. There is little evidence of differences in the prescribing history when the confidence

intervals span zero on the axis.

Figure 9. Bias component plots: difference in patients’ prescriptions

received in the previous year by actual prescription (�) and proposed

instrument ( ). The figures for the instrumental variable results account

for the strength of the instrument as described in Jackson and Swanson

(2015).27

The horizontal lines indicate robust confidence intervals for each pre-

scription. There is little evidence of differences in the prescribing history

when the confidence intervals span zero on the axis.
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variable ( ) analysis would be less biased from these observed

confounders than the conventional regression analysis (�).

This is because the instrumental variable bias terms are

smaller than the conventional regression bias terms for num-

ber of consultations, age, diagnosis of a neurotic disorder, al-

cohol misuse, any psychiatric illness, chronic disease,

prescription of antidepressants, antipsychotics and hypnotics.

There are some caveats to these approaches. First, we

cannot directly measure all confounders so must be cau-

tious in assuming that the approaches provide conclusive

proof that the instrument is valid. Second, using these

approaches for one exposure-outcome association may not

generalize to the instruments for other treatments. Third,

the bias component terms assume a constant treatment ef-

fect. This means it is unclear whether these bias terms pro-

vide valid inferences about the relative bias when there are

binary outcomes or heterogeneous treatment effects.

Conclusion

We have demonstrated how negative control populations,

negative control outcomes and covariate balance tests,

when appropriately applied, can be used to investigate the

relative biases of instrumental variable analysis and con-

ventional regression. These approaches could be useful to

researchers for interpreting evidence from studies reporting

and comparing conventional and instrumental variable

analysis, and ultimately improve the strength of the evi-

dence provided to clinicians and policy makers.
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Glossary

• Instrumental variable: a variable associated with the treatment of interest, but independent of confounding factors

and having no direct effect on the outcome.

• Physicians’ prescribing preferences: the physicians’ preferences for prescribing one medication over another. It is not

normally possible to directly measure physicians’ preferences, so most studies use the prescription they issued to

their previous patients as a proxy.

• Negative control outcome: an outcome which the researcher believes should not be affected by the exposure or the

proposed instrumental variable.

• Negative control population: a population in which the researcher believes the exposure or instrumental variable will

not affect or be related to the outcome.

• Bias component plot: a graph depicting the relative bias of conventional regression and instrumental variable regres-

sion using observed covariates.

• Latent variable: a variable in a statistical model which is unobserved.

• Collider bias: if a variable, ‘a collider’, is caused by both the exposure and the outcome and is conditioned or selected

on, then the conditional exposure-outcome association will be biased. This bias is referred to as collider bias.

• Confounding by indication: indications for treatment, such as blood pressure or cholesterol level, affect the likelihood

of treatment with specific medications and can also affect the likelihood of an outcome. Thus indications confound

the observed association of the treatment and outcomes, and hence this association is likely to be a biased estimate

of the causal effects of treatment.

• Hausman test for endogeneity: test for differences between the conventional regression and instrumental variable

results.

• Partial F-test: test used to evaluate the strength of the association between the instrumental variable(s) and the ex-

posure, analogous to sample size in a randomized trial.
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