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Abstract: The distribution of organisms is governed by their habitat condition. We analyzed bacterial
communities in the gut of the blackworm Lumbriculus variegatus by pyrosequencing of the extracted
intestinal metagenomic DNA. Blackworms were collected from two sampling sites with differences
in irradiance and riparian vegetation, where site GP7 was covered by riparian vegetation and site
GP8 was exposed to sunlight. We obtained the filtered 6414 reads from three samples of each site. At
GP7, 271 OTUs were identified, including 32 OTUs unique to the site, whereas at GP8, 238 OTUs
were identified, including 22 unique OTUs. Among them, 18 OTUs were shared between both sites.
The phylum Proteobacteria was a major component contributing 67.84% and 64.05% of sequences
at sites GP7 and GP8, respectively, while each remaining phylum contributed less than 10% at both
sites. The two sites differed in microbial community composition and KEGG-indicated biochemical
pathways. Community indices such as species richness and Shannon diversity were higher at site
GP7 than at GP8. Meanwhile, the abundance of Cyanobacteria was significantly higher at site GP8,
while site GP7 showed a greater proportion of genes for membrane transport and carbohydrate
metabolism, reflecting differences in food resources.

Keywords: blackworm; Lumbriculus variegatus; intestine microbiota; pyrosequencing; bacterial com-
munity

1. Introduction

Distribution and abundance of organisms are governed by their environmental con-
dition [1]. In particular, the distribution of animal gut microorganisms is dependent on
intestinal conditions and habitats of their hosts [2]. Host–gut microbial interactions confer
benefits including nutritional support, host physiological fitness, or protection against
pathogenic colonization [3–5]. Earthworms and microorganisms are interdependent and
their interactions affect the ingestion of diets, alteration of habitat, and the biogeochem-
istry of ecosystems [6,7]. Microbiomes are changed during passage through the gut of
earthworms [8], and affect earthworms’ vitality. The association of earthworms and mi-
crobes takes place in a process of vermicomposting, which is a biological organic waste
decomposition process [6].

Many studies have been conducted on the unique intestinal microbiota in naturally
or artificially fed insect larvae and adults [9–11]. Industrially applicable enzymes and
genomic or metabolomic resources have been sourced from gut microbial species, including
free-living bacteria, archaea, and eukaryotic microorganisms [12]. Reports have also
identified the importance of the gut microbiome in organisms ranging from nematodes
to humans [13–15]. In insects, gut bacterial diversity is determined by environmental
conditions and host diets [16,17].

Int. J. Environ. Res. Public Health 2021, 18, 10298. https://doi.org/10.3390/ijerph181910298 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-2573-5922
https://orcid.org/0000-0001-7025-8945
https://doi.org/10.3390/ijerph181910298
https://doi.org/10.3390/ijerph181910298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph181910298
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph181910298?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 10298 2 of 11

Aquatic oligochaetes are deposit feeders which consume organic materials and in-
habit various environments [18,19]. As decomposers, they contribute to the restoration of
organic pollutants and improvement of water quality [20,21], and are tolerant of oxygen
depletion [22]. Their distribution and occurrence are influenced by factors such as turbid-
ity and suspended solids [22,23], water mineralization [24], and the presence of organic
material [23,25]. Three particular freshwater oligochaetes (Lumbriculus variegatus, or black-
worms, Tubifex tubifex, and Limnodrilus hoffmeisteri) are used frequently in ecotoxicology
and treatment of organic pollution [26]. Blackworms as bioturbating oligochaetes enhance
decomposition and nitrogen cycling in urban ponds [27], and mutualistic interactions
occur between oligochaete species as a result of fecal pellets of other species containing
bacteria [28].

There have been no studies of gut microbial communities relating to oligochaete
habitat conditions. In this study, we tested a hypothesis that community composition and
diversity of the intestinal bacteria of blackworms vary depending on host specificity and
host habitat. We used pyrosequencing to identify 16S rRNA in metagenomic DNA samples
isolated from full intestines of blackworms collected from a stream.

2. Materials and Methods
2.1. Field Sampling

Specimens of L. variegatus were collected at two sampling sites (GP7 and GP8) with
7 km distance from one another at the Gapyeong stream (Table 1, Figure 1) in South Korea
in November 2013. The riparian vegetation at GP7 was dominated by dense stands of Salix
gracilistyla Miq. and Phragmites japonica Steud., whereas GP8 had partial cover of Phragmites
japonica and Artemisia selengensis growing on a sandy plain exposed to sunlight (Figure 1).
Both areas were slightly polluted with 70–80 µS/cm of water electric conductivity and
12.5 mg/L of dissolved oxygen (Table 1).

Table 1. Environmental characteristics (mean ± standard error) at sampling sites.

Environmental Variable
Sampling Site

GP7 GP8

Location (latitude, longitude) 37◦52′27′′ N, 127◦31′34′′ E 37◦50′03′′ N, 127◦30′57′′ E
Water velocity (m/s) 0.3 ± 0.1 0.2 ± 0.0

Water depth (cm) 46.9 ± 9.3 48.2 ± 10.9
Water width (m) 47.8 ± 2.5 77.5 ± 19.3
Turbidity (NTU) 1.3 ± 0.4 1.6 ± 0.3

Electric conductivity (µS/cm) 69.8 ± 3.2 79.7 ± 4.5
pH 7.5 ± 0.1 7.7 ± 0.2

Dissolved oxygen (mg/L) 12.6 ± 0.5 12.4 ± 0.5
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A D-frame net sampler (38 cm diameter) with a mesh size of 300 µm was placed
along the streambed, and the substrate was disturbed by kicking or dug by hand to
dislodge blackworms living within the sediments. Collected L. variegatus were black,
3–4 cm long, and 1 mm in width. Three replicate samples from each site were placed in a
bottle with water from the stream and chilled on ice prior to transport to the laboratory. Five
individuals were randomly selected from each sample, and pooled together at each sample
for gut microbial examination because the body of the specimen was small. Therefore, six
pooled samples (=three samples from two sites) were used in the analyses.

2.2. DNA Extraction

To identify the species name of the specimens using 18S rRNA, PCR amplification was
performed with purified genomic DNA, which was extracted by a PowerSoil DNA Isolation
Kit (MOBIO Laboratories, Carlsbad, CA, USA). The sequence analysis was performed
by Macrogen, South Korea, and the species name Lumbriculus variegatus was determined
based on NCBI blast with a sequence showing the highest identity (97%).

Whole L. variegatus individuals were rinsed several times with sterile water and
ethanol (70%, v/v) to exclude transient bacteria derived from the environment. Each
sample was then homogenized by shaking in a sterile tube containing zirconia and glass
beads of various size with 750 mL lysis buffer (500 mM NaCl, 50 mM Tris-HCl, pH 8.0,
50 mM EDTA, and 4% sodium dodecyl sulfate) for 50 s, using FastPrep-24 (MP Biomedicals,
Irvine, CA, USA). Genomic DNA from the homogenized samples was extracted using
phenol-chloroform precipitation and the extracted DNA was purified using an UltraClean
Microbial DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA, USA) for genomic DNA
purification.

2.3. Pyrosequencing of Bacterial 16S rRNA Genes

Bacterial compositions of blackworm guts were determined by PCR amplification of
purified genomic DNA by use of Ex Taq PreMix (TaKaRa, Kyoto, Japan). PCR amplifica-
tion of the 16S rRNA V1–V3 hypervariable regions was performed using the following
primers, which contain an adapter sequence (A), linker sequences (TC or CA), and an
eight-base sample-specific barcoded sequence (designated X): barcoded 8F (5′-A-X-TC-
AGAGTTTGATCCTGGCTCAG-3′) and 518R (5′-A-X-CA-TGCTGCCTCCCGTAGGAGT-
3′). Each sample was amplified in three technical replicates. PCR followed a sequence of
initial denaturation at 94 ◦C for 3 min, followed by 30 cycles of denaturation at 94 ◦C for
30 s, annealing at 53 ◦C for 45 s, extension at 72 ◦C for 1 min, and a final extension step
of 6 min at 72 ◦C. Potential contamination of buffers and primer sets was checked using
DNA-free samples. PCR products were pooled with three replicates and purified using a
QIAquick PCR purification kit (Qiagen, Germany). Equimolar amplicon quantities were
combined and DNA quality was evaluated using the Quant-it PicoGreen dsDNA Assay Kit
(Life Technologies, Carlsbad, CA, USA) on a Bioanalyzer 2100 with a DNA1000 lab chip
(Agilent, Santa Clara, CA, USA). Pooled DNA samples were then amplified by emulsion
PCR and 454 pyrosequencing was performed by Macrogen, South Korea, using a GS FLX
Titanium system according to the manufacturer’s instructions (Roche 454 Life Sciences,
Basel, Switzerland).

2.4. Data Analysis

We used Quantitative Insights into Microbial Ecology (QIIME; version 1.9.1) to analyze
bacterial 16S rRNA sequences [29]. Raw 16S rRNA amplicon sequences from GS FLX
pyrosequencing runs were filtered by quality score and length distribution. Sequences
with quality score less than 25, and those shorter than 200 bp or longer than 1000 bp in
length, were discarded. Post-filtered sequences were denoised using QIIME denoising
algorithms (denoise_wrapper.py) [30]. Detailed read counts of the crude and filtered
sequences of each sample used in this study were provided in Supplementary Table S1.
These sequences were clustered into operational taxonomic units (OTUs) at 97% sequence
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similarity threshold using UCLUST (v5.2.236) in the QIIME pipeline [31]. The latest released
QIIME-compatible version of SILVA reference database (release version 132) was used for
open-reference OTU selection [32]. The ChimeraSlayer tool was used to check chimeric
sequences in silico [33]. A representative sequence for each OTU was selected and aligned
by Python Nearest Alignment Space Termination (PyNAST) [34]. Taxonomic assignment
of the representative OTUs was carried out using the SILVA database with UCLUST. The
sequence reads assigned to the chloroplast origin (based on SILVA DB) were excluded in
further processes. An even-depth single rarefied OTU table (at minimum retained reads; at
829 read counts) was generated for calculations of various alpha- and beta-diversity indices
and further processing. A phylogenetic tree of the normalized OTU table was constructed
using the QIIME pipeline (make_phylogeny.py).

Bacterial communities were evaluated according to alpha diversity indices, including
the Shannon diversity index, Faith’s phylogenetic diversity, observed OTUs and Chao1
richness. For beta diversity metrics calculation, UniFrac distances for taxonomic features
were generated using the pre-calculated phylogenetic tree, and Bray–Curtis dissimilar-
ity metrics for predicted functional features were generated using the QIIME pipeline
(beta_diversity.py). Principal coordinates analysis (PCoA) plots were drawn using the beta-
diversity metrics (UniFrac distance and Bray–Curtis dissimilarity metrics) in the QIIME
pipeline (beta_diversity_through_plots.py). We used PICRUSt to examine the functional
profiles of the bacterial community [35], where OTU tables were constructed using closed-
reference selection methods against the May 2013 Greengenes database in QIIME [36]. The
constructed OTU table was normalized by 16S rRNA gene copy number for correction of
over- and under-estimation of abundance. The normalized dataset was compared to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) Dataset [37]. Each
predicted functional category was presented as a KO hierarchy level.

2.5. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (v. 8.2.1; GraphPad Soft-
ware, San Diego, CA, USA). Unpaired t-tests were used to compare microbial composition
and alpha diversity between sites. Intra-group and inter-group differences were assessed us-
ing a two-tailed Mann–Whitney U-test. We performed a linear discriminant analysis (LDA)
effect size (LEfSe) analysis to explain differences in relative abundance of bacterial taxa by
coupling standard tests with statistical significance [38] to identify differences between the
two sites’ taxonomy and functional features (http://huttenhower.sph.harvard.edu/galaxy/
(accessed on 2 July 2020)). The α value used for factorial Kruskal–Wallis testing among
classes was 0.05 and the thresholds for logarithmic LDA scores for discriminative features
were 2.0 and 3.0 for taxonomy and functional features, respectively.

3. Results
3.1. Gut Microbiome Diversity

Of 8555 total reads, 6414 reads remained after the sequence filtration against with a
low quality and chloroplast origin. Samples from each site showed high fidelity with an
error rate of <0.05% probability. At GP7, 271 OTUs were identified, including 32 OTUs
unique to the site (Figure 2a). At GP8, 238 OTUs were identified, including 22 unique
OTUs. Among them, 18 OTUs were shared between both sites. The shared OTUs were
higher among samples in the same site than between sites (Figure 2b). In keeping with
its greater species richness, community diversity indices were higher at GP7 than at GP8:
Shannon diversity, respectively, with 6.13 and 5.86 (t-test, p < 0.05), Faith’s phylogenetic
diversity with 12.28 and 10.40 (t-test, p > 0.05), and Chao1 richness with 246.89 and 207.12
(t-test, p < 0.05) (Supplementary Table S2).

http://huttenhower.sph.harvard.edu/galaxy/
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comicrobia (2 Chthonibacteraceae, 2 Terrimicrobiaceae, and 2 Verrucomicrobiae), 3 OTUs from 
the phylum Patescibacteria including Saccharimonadales, 4 OTUs from the phylum Proteo-
bacteria of Alphaproteobacteria including Acetobacteraceae and 2 Betaproteobacteria including 
SC_I_84. At GP8, 14 OTUs of the phylum Proteobacteria (5 Alphaproteobacteria, 7 Gammap-
roteobacteria, and 2 Oligoflexaceae OTUs), 5 OTUs from the phylum Cyanobacteria including 

Figure 2. Shared core OTUs between sampling sites (a) and among samples (b).

The bacterial community was dominated by the phylum Proteobacteria at both sam-
pling sites, although its relative abundance varied (67.84% and 64.05% at GP7 and GP8,
respectively; Figure 3). At GP7, Planctomycetes (7.06%) was the second most promi-
nent taxon, followed by Verrucomicrobia (6.80%), Actinobacteria (6.02%), and Firmicutes
(3.99%). At GP8, Planctomycetes (7.19%) and Cyanobacteria (5.23%) were the second most
prominent taxon. Relative abundances of Actinobacteria, Verrucomicrobia, and Chloroflexi
differed significantly between sites (Figure 3 and Supplementary Table S3). There were nine
and six OTU samples with more or less than 95% sequence identity, respectively. Rhodobac-
ter showed the highest abundance (9.90%), followed by Achromobacter (9.48%), Arenimonas
(8.79%), and Pedomicrobium (7.03%) (Supplementary Table S4). The shared or not shared
OTU numbers between two sampling sites were also compared (Supplementary Table S5).
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Figure 3. Bacterial diversity of gut microbiota 16S rRNA from blackworm Lumbriculus variegatus
collected from two different sampling sites.

3.2. Dominant Taxa Specificity

LefSe results indicated that two sampling sites had significantly different dominant
taxa (Figure 4). The dominant 13 OTUs at GP7 included 6 OTUs from the phylum Verru-
comicrobia (2 Chthonibacteraceae, 2 Terrimicrobiaceae, and 2 Verrucomicrobiae), 3 OTUs from the
phylum Patescibacteria including Saccharimonadales, 4 OTUs from the phylum Proteobacteria
of Alphaproteobacteria including Acetobacteraceae and 2 Betaproteobacteria including SC_I_84.
At GP8, 14 OTUs of the phylum Proteobacteria (5 Alphaproteobacteria, 7 Gammaproteobacteria,
and 2 Oligoflexaceae OTUs), 5 OTUs from the phylum Cyanobacteria including Oxyphoto-
bacteria, Nostocales, Phormidiaceae, and Tychonema, and an unclassified OTU 67_14 were
dominant (Figure 4). The dominant bacteria were clustered separately in the phylogenetic
tree, with the exception of OTU SC_I_84 at GP7, which was closer to the cluster of Pro-
teobacteria taxa at GP8 (Figure 4). Therefore, despite the phylum Proteobacteria being a major
component at both GP7 and GP8, the phyla Verrucomicrobia and Patescibacteria, and the
phylum Cyanobacteria are dominant depending on site at GP7 and GP8, respectively.



Int. J. Environ. Res. Public Health 2021, 18, 10298 6 of 11

Int. J. Environ. Res. Public Health 2021, 18, 10298 6 of 12 
 

 

Oxyphotobacteria, Nostocales, Phormidiaceae, and Tychonema, and an unclassified OTU 67_14 
were dominant (Figure 4). The dominant bacteria were clustered separately in the phylo-
genetic tree, with the exception of OTU SC_I_84 at GP7, which was closer to the cluster of 
Proteobacteria taxa at GP8 (Figure 4). Therefore, despite the phylum Proteobacteria being a 
major component at both GP7 and GP8, the phyla Verrucomicrobia and Patescibacteria, and 
the phylum Cyanobacteria are dominant depending on site at GP7 and GP8, respectively. 

 
Figure 4. Significantly different bacterial taxa abundances between two sample sites (a) and phylogenetic location of sig-
nificantly dominant taxa (b) according to linear discriminant analysis score over 2 in a LEfSe analysis. 

All samples from both sites showed scattering of the relative composition of bacterial 
OTUs on the PCoA plot (36.4% and 24.7% for PC1 and PC2, respectively), with samples 
clearly separated along PC1 according to site (Figure 5). Two of three samples were closely 
positioned at each site. The inter-diversity of the within-group was significantly lower 
than intra-diversity between groups at both sites (two-tailed Mann–Whitney U-test, p < 
0.001; Figure 5), indicating that gut microbiome diversity has dominant taxa specificity. 

3.3. Functional Significance of Core Microflora 
A comparison of KEGG pathways between sampling sites indicated that at GP7, sig-

nificant genes for membrane transport, carbohydrate transporter, lipid and amino acid 
metabolism, transcription, and cellular motility were remarkably revealed. At GP8, genes 
related to photosynthesis, energy metabolism, replication, and repair were identified (Fig-
ure 6). Sampling sites were scattered according to these differences in KEGG pathways in 
PCoA (Figure 7). 

Figure 4. Significantly different bacterial taxa abundances between two sample sites (a) and phylogenetic location of
significantly dominant taxa (b) according to linear discriminant analysis score over 2 in a LEfSe analysis.

All samples from both sites showed scattering of the relative composition of bacterial
OTUs on the PCoA plot (36.4% and 24.7% for PC1 and PC2, respectively), with samples
clearly separated along PC1 according to site (Figure 5). Two of three samples were closely
positioned at each site. The inter-diversity of the within-group was significantly lower than
intra-diversity between groups at both sites (two-tailed Mann–Whitney U-test, p < 0.001;
Figure 5), indicating that gut microbiome diversity has dominant taxa specificity.
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3.3. Functional Significance of Core Microflora

A comparison of KEGG pathways between sampling sites indicated that at GP7,
significant genes for membrane transport, carbohydrate transporter, lipid and amino acid
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metabolism, transcription, and cellular motility were remarkably revealed. At GP8, genes
related to photosynthesis, energy metabolism, replication, and repair were identified
(Figure 6). Sampling sites were scattered according to these differences in KEGG pathways
in PCoA (Figure 7).
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4. Discussion

We compared gut bacteria associated with the blackworm L. variegatus between two
sampling sites with tiny environmental differences in nutrients and solar irradiance in a
freshwater stream.

4.1. Gut Bacterial Community

We detected a core microbiota from all blackworm samples consisting of 6414 reads,
with the phylum Proteobacteria dominating with 67.84% for GP7 and 64.05% for GP8
(Figure 2). Baquiran et al. [39] showed that Proteobacteria and Sphingobacteria were the
predominant taxa in the nematode species Acrobeloides maximus and Caenorhabditis elegans,
which comprised ca. 30% and 60%, and 60% and 20%, respectively. Dubilier et al. [40]
reported endosymbionts of marine oligochaete Inanidrilus leukodermatust and Proteobacteria.
Core microbiota presents an intrinsic symbiont from different environmental habitats. In
this study, the top 15 OTUs mostly contain Proteobacteria such as core microbiota from
18 all-shared organisms (Supplementary Table S4). The Proteobacteria generally dominate
in natural ecosystems including soil (36.5%), leaves (62%), air (77.9%), seawater (57.9%),
and freshwater (61.3%) [41]. Therefore, our results support that the gut microbiome of
freshwater oligochaetes mostly has the phylum Proteobacteria without Sphingobacteria that
dominate other nematode species’ specificity.

4.2. Differences in Gut Microbiome in Distinct Habitat Conditions

Animal gut microbiota can be determined by intestinal shape, food resources, and en-
vironmental conditions [14,16,42]. These factors could explain the variation in host-specific
gut microbiota in blackworms. Our samples were collected at two different sites with
different environmental conditions, specifically nutrients and solar irradiation. The relative
abundance of Cyanobacteria 16S rRNA gene sequences was relatively higher at GP8 than
at GP7 (p = 0.1), with KEGG pathway findings indicating genes related to photosynthesis
and energy metabolism. By contrast, GP7 pathways were related to membrane transport
and carbohydrate metabolism. Although both sampling sites have slightly different abiotic
environmental factors, especially electric conductivity (Table 1), this difference in composi-
tion of these microbiomes may be due to exposure to sunlight at relatively low vegetation
GP8 in the riparian area. Blackworms at this location would have greater opportunity
to consume photosynthesizing organisms. Therefore, this difference in habitat can be
explained by factors such as sunlight, canopy coverage, riparian vegetation, and food
resources, which have an important impact on gut microbial communities.

Balykin [43] isolated symbiotic bacteria from the genus Bacillus in the gut of tubificids,
and demonstrated a relationship between the number of microorganisms in the substrate
and the gut. Symbiotic interactions play an important role in recycling organic materials,
contributing to biochemical and physiological processes of oligochaetes [43,44]. In this
study, we did not determine which bacterial species constitute symbionts and which
constitute prey.

4.3. Limitation and Further Studies

Because the phyla Proteobacteria, Actinobacteria, and Firmicutes are common in freshwa-
ter, we have not been able to distinguish the microbiome inhabiting the intestine from the
environmental bacteria [41,45]. The environmental microbiota as well as food resources
influence the intestinal microbiota [45–47]. Nevertheless, in this study, the two sampling
sites had different environmental conditions and the formation of gut microbiome in black-
worms might be affected. We did not consider the phenotypic differences of blackworms
between the two sampling sites. Differences in phenotype may be related to differences
in blackworm population genetics that potentially affect their gut microbiota. Therefore,
further studies are required (1) to evaluate the relationship between symbiotic microbiota
in the gut, other intestinal microbiota and environmental microbiota of more samples from
various habitat conditions, (2) to define the specific roles of bacterial species identified in the



Int. J. Environ. Res. Public Health 2021, 18, 10298 9 of 11

gut of blackworms using growth phase-dependent monitoring and cross-transplantation
between sampling sites, and (3) to examine the effects of phenotype related to genetics in
different populations in the gut microbiome of oligochaetes.

5. Conclusions

We collected blackworms from two sampling sites with different habitat conditions
in irradiance and riparian vegetation, and analyzed bacterial communities in the gut of
the blackworm. The phylum Proteobacteria was the dominant taxa at both sampling sites.
However, the two sampling sites had different microbial community compositions and
KEGG-indicated biochemical pathways. The abundance of taxa with chloroplasts was
significantly higher at a site exposed to sunlight, while a greater proportion of genes for
membrane transport and carbohydrate metabolism was observed at a site covered by
riparian vegetation. Therefore, our results present a possibility that habitat conditions
modulated the composition of the gut microbiota and their biochemical properties in the
freshwater blackworms.
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