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Abstract: A k-carrageenan–iron complex (KC–Fe) was synthesized by complexation between degraded
KC and FeCl3. Furthermore, KC–Fe and ammonium polyphosphate (APP) were simultaneously added
into waterborne epoxy (EP) to improve its flame retardancy and smoke suppression performance.
The structure and properties of KC–Fe were assessed using Fourier transform infrared spectroscopy
(FTIR), ultraviolet (UV) spectroscopy, thermo gravimetric analysis (TGA), and X-ray powder diffraction
analysis (XRD). The analysis showed that KC–Fe was successfully synthesized and exhibited good
thermal properties with a 49% char residue at 800 ◦C. The enhanced flame retardancy and smoke
suppression performance of waterborne epoxy were evaluated using a limiting oxygen index (LOI)
and UL-94. Moreover, the flame retardancy of waterborne epoxy coated on a steel plate was also
investigated using cone calorimetry. The results showed that the flame-retardant waterborne epoxy
blend exhibited the best flame retardancy when the mass ratio of APP and KC–Fe was 2:1. The total
heat release (THR) and total smoke production (TSP) was decreased by 44% and 45%, respectively,
which indicated good fire safety performance and smoke suppression properties. Analysis of the
residual char using FTIR, SEM, and elemental analysis (EDS) indicated that the action of KC–Fe
was promoted by the presence of APP. The formation of a dense thermal stable char layer from an
intumescent coating was essential to protect the underlying materials.
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1. Introduction

Waterborne epoxy has been used in various fields, such as adhesives, surface coatings, and
composites, because of its superior chemical and physical properties [1–3]. However, the flammability
of waterborne epoxy limits its application in some areas [4–7]. Moreover, waterborne epoxy contains
a high level of aromatic ring structures, which can generate a large amount of heat and toxic fumes
when undergoing combustion. The inhalation of lethal smoke is a major cause of death when a large
fire occurs [8–11]. Therefore, it is of great practical significance to improve the flame retardancy of
waterborne epoxy and to reduce the amount of released smoke from the burning of waterborne epoxy.

In recent years, it has been found that the addition of metal oxides and flame-retardants
simultaneously into polymer composites can not only significantly improve the flame-retardant
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properties of the composites, but also improve their smoke suppression properties [12–16]. Recently,
it was reported that Fe2O3 readily forms a stable Fe–O–P cross-linked network structure with
phosphoric acid, thereby increasing the char residue for a flame-retardant coating at high a temperature.
Fe2O3 promoted the transformation of the char layer with high graphitization, thereby effectively
improving the flame-retardant properties of the coating [17]. The preparation of intumescent
flame-retardant materials using molybdenum trioxide and antimony trioxide as promotes has been
reported [18–20]. Studies have shown that the presence of molybdenum trioxide delayed the ignition
time of flame-retardant coatings due to the cross-linking reaction of small molecules during combustion.
The molybdenum trioxide and antimony trioxide further exhibit a catalytic effect that promotes the
formation of a more dense foamed char layer, thereby reducing the volatilization of combustibles and
achieving the suppression of smoke. However, the use of metal oxides in combination with flame
retardants is not sufficient to achieve a highly efficient cooperative effect for polymers [21–24]. Instead,
a metal-species-modified material with an in-situ method has been reported as an effective way of
providing polymers with enhanced flame retardancy [25,26].

In the preliminary work of our group, it was found that the bio-based material k-carrageenan
was an excellent flame retardant [27,28]. Therefore, in order to further improve its smoke suppression
performance, the k-carrageenan–iron complex (KC–Fe) was obtained by grafting a carrageenan
molecule with the transition metal element Fe through a complexation reaction. The structure and
thermal stability of the KC–Fe was characterized using Fourier transform infrared spectroscopy (FTIR),
ultraviolet spectroscopy (UV), and thermogravimetric analysis (TGA). The crystal plane structure of
the KC–Fe after combustion was characterized using X-ray powder diffraction (XRD). The effects of
KC–Fe and APP on the flame retardancy, smoke suppression performance, and thermal decomposition
behavior of waterborne epoxy (EP) were studied under different mixing ratios. The corresponding
mechanism study in the condensed phase was also applied to explain the formation of thermal stable
residue and compact char residue, which is crucial in the flame-retardant coating system.

2. Materials and Methods

2.1. Materials

Degraded k-carrageenan was made by our laboratory. Anhydrous ethanol and potassium chloride
were obtained from Tianjin Yongda Chemical Reagent Co., Ltd. (Tianjin, China). Hydrogen peroxide
was obtained from Liaoning Jiacheng Fine Chemicals Co., Ltd. (Fuxin, China). Ferric chloride and
sodium citrate were obtained from Tianjin Damao Chemical Reagent Factory (Tianjin, China). Sodium
hydroxide was obtained from Tianjin Ruijinte Chemical Co., Ltd. (Tianjin, China). Waterborne epoxy
resin was obtained from Hexion Specialty Chemicals, Inc. (Columbus, Ohio, USA).

2.2. Methods

2.2.1. Synthesis of KC–Fe

The reaction process of KC–Fe is shown in Figure 1. A total of 2.0 g of degraded KC, 0.5 g of
sodium citrate, and 60 mL of distilled water were added to a three-necked flask, and the solution was
stirred in a 70 ◦C water bath until completely dissolved. Next, 2 mol/L of ferric chloride solution and a
20% sodium hydroxide solution were slowly added dropwise. The pH of the control solution was
in the range of 8.0–8.5. When a brown-red insoluble precipitate appeared in the solution, the further
addition of ferric chloride and sodium hydroxide solution was immediately stopped. We continued to
stir the solution in a hot water bath for 1 h. After the reaction solution was cooled, centrifuge was
applied at 3500 rpm for 15 min to separate materials. Triple volumes of absolute ethanol (98%) were
added into the upper layer of centrifuged liquid with the appearance of a dark reddish brown liquid.
Afterward, a reddish brown precipitate appeared in the solution. After completing the precipitation,
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the solution was centrifuged, and the precipitate was further washed with 95% ethanol and absolute
ethanol, and dried under vacuum to obtain KC–Fe.
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Figure 1. Preparation of the k-carrageenan–iron complex (KC–Fe) sample.

2.2.2. Preparation of Flame-Retardant EP

Based on extensive research by our lab on flame retardants in polymers, this paper mainly
explores the effect of different mass ratios of KC–Fe and APP on the flame retardancy and smoke
suppression performance of waterborne epoxy resin with the total weight fraction at 30 wt%. A series of
flame-retardant coatings with different fillers were prepared; the formulation is listed in Table 1. Taking
the flame-retardant coating with 30 wt% KC–Fe as an example, KC–Fe (4.50 g) was first blended with
waterborne epoxy resin (7.50 g) using a pearl mill for 30 min. The curing agent (3.00 g) and deionized
water were added into the compound and stirred at room temperature for 30 min. The coating was
scraped onto one side of a 100 × 100 × 1 mm3 steel plate, and the sample was cured at room temperature
for one week before the test. Similarly, other flame-retardant coatings in Table 1 were prepared in the
same way.

Table 1. Formulation of coatings.

Sample Waterborne Epoxy Resin/g Curing Agent/g KC–Fe/g APP/g

Pure EP 10.71 4.29 - -
EP/30APP 7.50 3.00 - 4.50

EP/30KC–Fe 7.50 3.00 4.50 -
EP/30APP–KC–Fe (5:1) 7.50 3.00 0.75 3.75
EP/30 APP–KC–Fe (2:1) 7.50 3.00 1.50 3.00
EP/30 APP–KC–Fe (1:1) 7.50 3.00 2.25 2.25

2.2.3. Characterization

Fourier transform infrared spectroscopy (FTIR) was recorded on a Nicolet MNGNA-IR560 (Artisan
Technology Group, Austin, TX, USA) with a transition mode and a wave-number range between
400 and 4000 cm−1. The ultraviolet spectrum was recorded on a UV-2550 UV-Vis Spectrophotometer
(Shimadzu Corporation, Tokyo, Japan). The 0.05% concentration of KC, FeCl3, and KC–Fe aqueous
solutions were prepared for the UV test with a spectral region wave-number range from 200 to 700 nm.
Thermogravimetric analyses (TGA) were tested on an STA 449C thermal analyzer (Selb, Germany)
from 40 to 800 ◦C at a heating rate of 10 ◦C/min under a nitrogen atmosphere. X-ray diffraction
patterns (XRD) of the residue of KC–Fe, after burning at 500 ◦C, were recorded on a D8 Advance
X-ray diffractometer (Bruker, Germany) with Cu Kα radiation (λ = 0.154) and a scanning speed of
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5◦/min. Limited oxygen index (LOI) data were obtained using an oxygen index instrument (JF-3)
(Jiangning Analysis Instrument Company, Nanjing, China) according to the GB/T 2406-2009 standard.
The dimensions of the specimens were 126 × 6.5 × 3 mm3. The vertical burning test was carried out
on a CZF-3-type instrument (Jiangning Analysis Instrument Company, Nanjing, China) according to
the ASTM D3801-2010 standard. The dimensions of the specimens were 130 × 13 × 3 mm3. The cone
calorimeter tests were carried out on a fire testing technology (FTT, England, UK) cone calorimeter.
The specimens were irradiated at a heat flux of 50 kW/m2 according to ISO 5660-1 standard procedures.
The SEM images of the burned samples were carried out on an SEM JEOL JSM-6360LV (Japan),
equipped with energy dispersive X-ray spectroscopy (EDS). The burnt samples from the LOI analysis
were used for testing. The complete burning of the samples was ensured.

3. Results

3.1. Characterization of KC–Fe

After modifying KC with iron ions, the product became a reddish brown powder, which was
different to the white color of the original KC. As shown in Figure 2a, the hydroxyl groups from the IR
spectrum of the KC sample exhibited a peak at 3450.40 cm−1. However, the hydroxyl group of the
Fe–KC sample shifted to a lower wavenumber (3437.37 cm−1). In addition, the stretching vibration
of C–OH also changed from the original 1068.22 to 1061.45 cm−1, which indicated a coordination
reaction between the hydroxyl group on KC and the Fe ion. The typical characteristic peaks resulting
from the KC were observed in both KC and KC–Fe samples, including the symmetric stretching
vibration peak of O–S–O at 1262.21 cm−1, the stretching vibration peak of C–O–S at 841.03 cm−1,
and the stretching vibration peak of C–O–C at 930.62 cm−1. This demonstrated that the structure of KC
was not destroyed during the synthesis process. The UV absorption results for KC, FeCl3, and KC–Fe
samples further confirm the above conclusion. FeCl3 showed a characteristic UV absorption peak at
293 nm, but no characteristic absorption peak appeared for the KC sample. This is consistent with the
general structural characteristics of carbohydrates. A significant blue shift (280 nm) was observed on
the UV spectrum for the KC–Fe sample. This is due to the coordination reaction between the hydroxyl
groups contained in the carrageenan with Fe3+. The degree of delocalization of electrons in the whole
molecule increased, and the energy required for the electron transition decreased. Combined with the
FTIR and UV results, it can be concluded that the carrageenan reacts with Fe3+ through coordination
bonds [29].

Figure 3 presents the TG and DTG curves of KC and KC–Fe under N2. As shown in the figure,
the mass loss of KC before 150 ◦C was due to the thermal evaporation of intramolecular bound
water [27]. KC decomposed in two steps between 150 and 800 ◦C and the two peaks related to the
maximum degradation rate exhibited on the DTG curve appeared at 154 and 708 ◦C, respectively.
The decomposition at 154 ◦C was mainly caused by the decomposition of glycogenic bonds, by the
six-membered ring, and by decarboxylation, leading to the release of small molecular compounds such
as H2O, CO2, CO, etc. The second maximum degradation temperature appeared at 708 ◦C, which was
due to decomposition of an unstable char layer [30]. The final residual char mass was 42% at 800 ◦C.
The complex KC–Fe exhibited a higher thermal stability. The first decomposition step was significantly
increased to around 277 ◦C, and the weight loss at this temperature was also reduced [31]. The weight
loss at a higher temperature (633 ◦C) was due to the formation of a barrier char layer. This barrier
char hindered the release of gas from the oxidation of the internal carbide, indicating a potential flame
retardancy property. With the continuous accumulation of internal gases and the decomposition of
surface carbides, the gas broke through the barrier layer, and the weight loss was observed at this
temperature. The final amount of char residue (49%) was higher than that of KC (42%).
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In order to determine the structural composition of KC–Fe after combustion, XRD analysis was
carried out for the residual material of KC–Fe after being treated in a muffle furnace at 500 ◦C. As shown
in Figure 4, the diffraction peaks located at 30.10◦, 35.42◦, 43.05◦, 56.94◦, 62.52◦, and 73.95◦ corresponded
to Fe3O4 crystal faces (220), (311), (400), (511), (440), and (533), according to the standard PDF #19-0629
card [31]. Based on this result, it is clear that iron oxides, which exhibit a good catalytic charring effect
by changing flammable small molecules into macromolecules, can be formed from KC–Fe. This may
provide polymers with enhanced smoke suppression properties.
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combustion of KC–Fe.

3.2. Thermal Stability of Flame-Retardant EP

The thermal stability and char forming ability of the flame-retardant EP were investigated
by TGA, and the data are shown in Table 2 and Figure 5. In Figure 5a, the initial decomposition
temperature of all flame-retardant EP was lower than that of pure EP [32], especially for the EP/30KC–Fe
components. This is due to the catalytic decomposition effect of a metal-based flame retardant [33].
When the temperature was raised to 390 ◦C, the flame-retardant EP exhibited improved stability
without significant weight loss compared with pure EP. This was ascribed to the decomposition of the
flame retardant to produce a stable char layer structure, thereby protecting the matrix from thermal
decomposition. With the addition of APP alone, the char residue at 800 ◦C increased significantly
from 11.3% to 30.6%. It can be seen from Figure 5a that the maximum degradation rate of EP/30APP
was greatly reduced compared with pure EP, which was due to the partial decomposition of APP.
The formation of phosphoric acid and polyphosphate acid promoted the formation of a more stable
char layer structure and inhibited further decomposition of the matrix [34]. When KC–Fe was added
alone, the thermal stability of EP was enhanced after 387 ◦C, compared with pure EP. However,
there was a slight weight loss at 632 ◦C, indicating that the char layer formed by metal catalysis was
unstable at high temperatures. However, the amount of char residue at 800 ◦C was still improved,
compared to pure EP, reaching 28.6%. With the addition of APP and KC–Fe with a mass ratio of 5:1,
the amount of char residue of EP/30APP–KC–Fe (5:1) at 800 ◦C reached 32.1%, which was higher than
it was with the addition of the single flame retardants separately. This result indicates that APP and
KC–Fe have significant synergistic charcoal effects. The KC–Fe-derived iron oxides can effectively
catalyze the thermal generation of APP to produce metaphosphoric acid and polyphosphoric acid
due to the principle of free radical trapping. Thereby, the EP matrix and the KC–Fe can form a char
layer structure through an esterification reaction. On the other hand, iron oxides can also adsorb
small molecules with poor thermal stability to form macromolecules with improved thermal stability,
thereby forming a char layer structure that can effectively isolate the matrix from oxygen and flame
contact stability [35]. Furthermore, the optimal ratio of APP to KC–Fe was explored, and all three
EP composites with different ratios showed an enhanced char residue and a reduced maximum
degradation rate. The enhanced thermal stable char residue can protect the underlying steel when it is
used as a flame-retardant coating to insulate the transfer of heat.
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Table 2. Thermo-gravimetric analysis (TGA) and DTG data of FR-EP in an N2 atmosphere.

Sample T20wt% (◦C) Tmax (◦C) C800 (%)

EP 352 389 11.3
EP/30APP 317 325 30.6

EP/30KC–Fe 306 337 28.6
EP/30APP–KC–Fe (1:1) 304 335 36.1
EP/30APP–KC–Fe (2:1) 308 327 35.1
EP/30APP–P–KC (5:1) 317 326 32.1

3.3. Intrinsic Fire Behavior of Waterborne Epoxy

In order to evaluate the intrinsic flame retardancy of the waterborne epoxy, the prepared waterborne
epoxy and its composites were tested by LOI and UL-94, and the relevant data are given in Table 3.
As can be seen from Table 3, pure EP showed a high flammability level. During the test, a vigorous
flame, accompanied with the generation of smoke generation and droplet dripping, was observed.
Its LOI value was only 18.6% and did not achieve any rating in the UL-94 test. For the EP/30APP
sample, the LOI value increased rapidly, reaching 30.2%. This is because the APP was heated to
generate non-combustible gas to dilute the surrounding oxygen, thereby increasing the LOI value of
the sample. After adding KC–Fe alone, the flame retardancy was not improved, and the LOI value
was only 22.8%, but the amount of smoke was significantly reduced during the combustion of the
sample. By simultaneously filling APP and KC–Fe (1:1) in EP, the LOI value was increased, and the
vertical burning test was also V-2. The above results show that APP and KC–Fe exhibited an excellent
synergistic effect to improve the flame-retardant properties of EP. By adjusting the ratio of APP and
KC–Fe to 2/1 and 5/1, both EP composites showed improved flame retardancy, passing the UL-94 V-1
rating with LOI values of 29.5 and 27.3, respectively.

Table 3. Limited oxygen index (LOI) and UL-94 test results of different samples.

Sample LOI/% UL-94

EP 18.6 No rating
EP/30APP 30.2 No rating

EP/30KC–Fe 22.8 No rating
EP/30 APP–KC–Fe (1:1) 24.3 V-2
EP/30 APP–KC–Fe (2:1) 29.5 V-1
EP/30 APP–KC–Fe (5:1) 27.3 V-1
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In order to further study the effects of the addition of KC–Fe and APP on the flame-retardant
and the fire safety of the coating material, we performed a cone calorimetry test on the EP coating
containing KC–Fe and APP on the steel plate. The cone test was a bench scale fire test that could
simulate the actual combustion of the material in the fire. The test data obtained could be used to
evaluate the combustion behavior of the material in the fire. Many important combustion parameters,
such as peak heat release rate (pHRR), total heat release (THR), smoke release rate (SPR), total smoke
production (TSP), carbon monoxide production (COP), and carbon dioxide production (CO2P), can be
used to determine the potential fire hazard of polymer materials.

The heat release rate (HRR), especially the pHRR value, has been shown to be an important
parameter for assessing the fire safety of materials. The HRR and THR data for pure EP and
its composites are shown in Figure 6a,b. The pure EP coating quickly burned and released heat
after ignition. The pHRR value quickly reached 434.5 kW/m2, and the THR value was as high as
19.3 MJ/m2. When adding either APP or KC into EP coating, the pHRR value and the THR value of
the flame-retardant coating were reduced, compared with that of pure EP. The pHRR and THR value
of the EP/30APP sample decreased by 31% and 41%, respectively. A 31% decrease in pHRR and a
38% decrease in THR were obtained for the EP/30KC sample. This indicated that the addition of APP
or KC–Fe could improve the flame retardancy of the coating. With the addition of APP and KC–Fe
simultaneously in EP, the THR and pHRR values of all EP/30APP-KC–Fe composites further decreased
significantly, compared with EP, EP/30APP and EP/30KC–Fe, indicating that APP and KC–Fe have
synergistic effects. The influence of the ratio between APP and KC–Fe on the flame retardancy of
EP was shown in Figure 6a,b. The sample EP/30APP-KC–Fe (2:1) exhibited the best property with
a 51% (213.2 kW/m2) and 44% (10.9 MJ/m2) decrease in pHRR and THR, respectively (as shown in
Table 4). The results showed that the EP/30APP–KC–Fe (2:1) composite had excellent flame-retardant
properties. The significant decrease in pHRR and THR of EP/30APP–KC–Fe (2:1) composites was
due to the synergistic flame-retardant effect of APP and KC–Fe. APP was thermally decomposed
to produce non-combustible gas, and the oxygen concentration in the combustion zone was diluted.
Meanwhile, the char layer was formed with cross-linked polyphosphoric acid and metaphosphoric
acid. KC–Fe-derived iron oxide may adsorb flammable volatiles and promote the formation of a dense
protective char layer [36,37], which acted as a barrier to the external heat source.

In addition, the smoke release rate (SPR) curve and the total smoke production (TSP) curve of the
EP and EP/APP–KC–Fe composites are shown in Figure 6c,d. With the addition of KC–Fe, the TSP and
SPR of the EP/30KC–Fe sample were significantly reduced by 60% and 34%, respectively. The reason for
the significant reduction in SPR and TSP is attributed to the iron oxide derived from KC–Fe. Iron oxide
has been reported to have an excellent catalytic charring effect to promote the formation of a dense
char layer by changing flammable small molecules into macromolecular char, thus further preventing
the flammable gas from diffusing into the air. This indicated the excellent flame-retardant and smoke
suppression properties of the KC–Fe-based waterborne epoxy. Therefore, the EP coating with the
addition of APP and KC–Fe simultaneously exhibited a lower TSP and COP value, compared with pure
EP, due to the existence of KC–Fe, which also formed a compact char layer in the condensed phase.

Fire performance index (FPI, the ratio of sample ignition time to heat release rate peak) and the
fire development index (FGI, the ratio of the pHRR of a sample to the time required to reach that peak)
are important parameters to evaluate the fire behavior of polymers. As shown in Figure 7, the pure EP
coating has the lowest FPI value (0.0598) and the highest FGI value (10.8624), which indicated that the
pure EP coating will be ignited in a very short time in the fire. The optimal sample EP/30APP–KC–Fe
(2:1) exhibited the highest FPI value (0.0984) and the lowest FGI value (6.0937). Therefore, the EP
intumescent coating showed the lowest fire risk and the highest safety level with the addition of APP
and KC–Fe.
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Table 4. Cone calorimetry data for the pure EP and FR-EP.

Sample pHRR
(kW/m2)

THR
(MJ/m2)

COP
(g/s)

TSP
(m2/kg)

EP 434.5 19.3 0.0146 3.7990
EP/30APP 300.9 11.4 0.0174 2.5270

EP/30KC–Fe 299.4 12.0 0.0039 1.5406
EP/30APP–KC–Fe (1:1) 253.8 11.4 0.0063 2.6448
EP/30 APP–KC–Fe (2:1) 213.2 10.9 0.0058 2.0988
EP/30 APP–KC–Fe (5:1) 215.4 11.1 0.0059 2.3044
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3.4. Analysis of Char Residue

In order to study the flame-retardant mechanism of the EP and the synergistic effect of the APP
and KC–Fe interaction, the residual char produced after the LOI combustion experiment was analyzed
via an FTIR test. It can be seen from Figure 8 that all combustion products have an absorption
peak at 3400 cm−1, indicating that the compound containing hydroxyl groups (–OH) was produced
during combustion [38]. All three samples showed vibration absorption peaks of the aromatic fused
ring skeleton at 1603 cm−1, and this structure can effectively improve the thermal stability of the
flame-retardant EP. However, the two peaks only appeared for the EP/30APP-KC–Fe (2:1) sample at
1266 and 902 cm−1, corresponding to the P=O bond and P–O bond from polyphosphoric acid produced
by the decomposition of APP. This char layer structure can effectively enhance the barrier properties
and high temperature resistance of the char layer. In addition, the intensity of the peaks at 1114 cm−1,
which is attributed to the C–O stretching vibration peak from the EP/30APP and EP/30KC–Fe samples,
was significantly greater than the EP/30APP–KC–Fe (2:1) sample. This indicated that the aliphatic
alcohols were formed in the combustion process. The reduced peak at 1114 cm-1 resulted from the
oxidation of incompletely burned substances by iron oxides.

The structure and morphology of the char residue from the LOI test was analyzed by SEM and
EDS, as shown in Figure 9. Pure EP exhibited a droplet structure after combustion, which allowed
for the transmission of heat and oxygen easily. With the presence of only APP in EP, a continuously
expandable and porous residual char can be observed. This is due to the thermal decomposition of APP
accompanied by the release of polyphosphoric acid, which promoted the formation of a continuously
expanding char layer [39,40]. The release of volatiles broke through the layer, leading to the porous
surface structure. With the addition of only KC–Fe into the EP, a loose char layer structure with a
porous structure was formed, which was not sufficient to protect the underlying substrate from the
flame. Interestingly, when APP and KC–Fe were simultaneously added to the EP at a 2:1 addition
ratio, the synergistic effect of the two materials contributed to the formation of a more compact and
continuously expanded char layer structure with the ability to suppress heat and oxygen. Furthermore,
the elemental composition of the char layer analyzed by EDS showed the existence of Fe elements.
This is due to the formation of iron oxides derived from KC–Fe, which is consistent with the XRD
results of combusted KC–Fe. The catalytic effect of metal oxide may promote the formation of a char
layer with a compact structure, according to the FTIR analysis for the char residue. The barrier effect of
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the char layer can slow down further char loss and enhance the stability of the char layer, and this is
consistent with the thermogravimetric test results of the flame-retardant EP. This test indicated that
KC–Fe was thermally decomposed in the condensed phase and that the iron oxide formed by thermal
decomposition was stored in the residual char of the flame-retardant EP. The iron oxide can adsorb and
catalyze the combustion of small molecular substances to form a stable char layer structure, thereby
achieving a smoke suppressing effect [12,41].

Polymers 2019, 11, x FOR PEER REVIEW  11 of 14 

 

 306 

Figure 8. FTIR spectra of char from EP and FR-EP. 307 

The structure and morphology of the char residue from the LOI test was analyzed by SEM and 308 
EDS, as shown in Figure 9. Pure EP exhibited a droplet structure after combustion, which allowed 309 
for the transmission of heat and oxygen easily. With the presence of only APP in EP, a continuously 310 
expandable and porous residual char can be observed. This is due to the thermal decomposition of 311 
APP accompanied by the release of polyphosphoric acid, which promoted the formation of a 312 
continuously expanding char layer [39,40]. The release of volatiles broke through the layer, leading 313 
to the porous surface structure. With the addition of only KC–Fe into the EP, a loose char layer 314 
structure with a porous structure was formed, which was not sufficient to protect the underlying 315 
substrate from the flame. Interestingly, when APP and KC–Fe were simultaneously added to the EP 316 
at a 2:1 addition ratio, the synergistic effect of the two materials contributed to the formation of a 317 
more compact and continuously expanded char layer structure with the ability to suppress heat and 318 
oxygen. Furthermore, the elemental composition of the char layer analyzed by EDS showed the 319 
existence of Fe elements. This is due to the formation of iron oxides derived from KC–Fe, which is 320 
consistent with the XRD results of combusted KC–Fe. The catalytic effect of metal oxide may 321 
promote the formation of a char layer with a compact structure, according to the FTIR analysis for 322 
the char residue. The barrier effect of the char layer can slow down further char loss and enhance the 323 
stability of the char layer, and this is consistent with the thermogravimetric test results of the 324 
flame-retardant EP. This test indicated that KC–Fe was thermally decomposed in the condensed 325 
phase and that the iron oxide formed by thermal decomposition was stored in the residual char of 326 
the flame-retardant EP. The iron oxide can adsorb and catalyze the combustion of small molecular 327 
substances to form a stable char layer structure, thereby achieving a smoke suppressing effect 328 
[12,41]. 329 

Figure 8. FTIR spectra of char from EP and FR-EP.
Polymers 2019, 11, x FOR PEER REVIEW  12 of 14 

 

 330 
Figure 9. Scanning electron microscopy (SEM) micrographs of chars after LOI test. (a) EP; (b) 331 
EP/30APP; (c) EP/30KC–Fe; and (d) EP/30APP–KC–Fe (2:1). 332 

4. Conclusions 333 
In this study, the bio-based flame-retardant carrageenan–iron complex was successfully 334 

synthesized through degraded k-carrageenan with FeCl3. The TGA data showed that Fe-modified 335 
KC can improve the high temperature char forming performance and thermal stability of KC–Fe. 336 
Next, KC–Fe and APP were simultaneously added to EP to prepare EP/APP–KC–Fe flame-retardant 337 
samples. Various fire tests, including LOI, UL-94, and the cone calorimeter test, demonstrated that 338 
the EP/30APP–KC–Fe (2:1) sample can achieve the best intrinsic flame-retardant and smoke 339 
suppression properties with a high LOI value (29.5%), a UL-94 V-1 rating, and a significant decrease 340 
in pHRR and TSP. The analysis of the char residue showed that APP and KC–Fe have a synergistic 341 
effect by further improving the quality of the char residue, thus suppressing the release of volatiles. 342 
The KC–Fe-derived iron oxide exhibited a catalytic charring effect with the polyphosphoric acid and 343 
metaphosphoric acid produced by APP. A dense char layer structure with the ability to withstand 344 
heat and oxygen was formed. Therefore, a thermal stable char layer derived from current 345 
flame-retardant intumescent coatings protects the underlying steel in the fire.  346 
Author Contributions: Conceptualization: Na Wang and Haiwei Teng. Data curation: Haiwei Teng. Formal 347 
analysis: Na Wang and Haiwei Teng. Funding acquisition: Na Wang. Investigation: Haiwei Teng. 348 
Methodology: Jing Zhang, Long Li, and Qinghong Fang. Project administration: Na Wang. Resources: Na 349 
Wang: Haiwei Teng and Xinyu Zhang. Writing—original draft: Na Wang, Haiwei Teng, and Jing Zhang. 350 
Writing—review & editing: Na Wang and Haiwei Teng. 351 
Funding: The authors gratefully acknowledge the financial support for her research group by the National 352 
Natural Science Foundation of China (Grant No. [51973124]). The authors were also supported by the Program 353 
for Liaoning Excellent Talents in University (Grant No. [2017]053) and by the SinO–Spanish Advanced 354 
Materials Institute, the Shenyang Municipal Science and Technology Bureau (Grant No:18-005-6-04). 355 
Conflicts of Interest: The authors declare no conflict of interest. 356 

References 357 
1. Raimondo, M.; Guadagno, L.; Speranza, V.; Bonnaud, L.; Dubois, P.; Lafdi, K. Multifunctional 358 

graphene/poss epoxy resin tailored for aircraft lightning strike protection. Compos. Part. B-Eng. 2018, 140, 359 
44–56. 360 

Figure 9. Scanning electron microscopy (SEM) micrographs of chars after LOI test. (a) EP; (b) EP/30APP;
(c) EP/30KC–Fe; and (d) EP/30APP–KC–Fe (2:1).

4. Conclusions

In this study, the bio-based flame-retardant carrageenan–iron complex was successfully synthesized
through degraded k-carrageenan with FeCl3. The TGA data showed that Fe-modified KC can improve
the high temperature char forming performance and thermal stability of KC–Fe. Next, KC–Fe and APP
were simultaneously added to EP to prepare EP/APP–KC–Fe flame-retardant samples. Various fire
tests, including LOI, UL-94, and the cone calorimeter test, demonstrated that the EP/30APP–KC–Fe
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(2:1) sample can achieve the best intrinsic flame-retardant and smoke suppression properties with a
high LOI value (29.5%), a UL-94 V-1 rating, and a significant decrease in pHRR and TSP. The analysis of
the char residue showed that APP and KC–Fe have a synergistic effect by further improving the quality
of the char residue, thus suppressing the release of volatiles. The KC–Fe-derived iron oxide exhibited
a catalytic charring effect with the polyphosphoric acid and metaphosphoric acid produced by APP.
A dense char layer structure with the ability to withstand heat and oxygen was formed. Therefore,
a thermal stable char layer derived from current flame-retardant intumescent coatings protects the
underlying steel in the fire.
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