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Breast cancer (BC) represents the most common form of malignant tumors in women. However, the effectiveness of BC
immunotherapy remains very low. Ferroptosis is a recently described form of programmed cell death which has unique
characteristics, and associated long-chain noncoding RNAs (lncRNA) are thought to influence the occurrence and
development of a variety of tumors. We identified 1,636 lncRNAs associated with ferroptosis in BC patients. 299 differentially
expressed ferroptosis-related lncRNAs were subjected to univariate, LASSO regression, and multivariate Cox regression
analyses to construct a ten ferroptosis-related lncRNA signature. This ten ferroptosis-related lncRNA signature performed very
well in predicting survival of BC patients, and the risk score of the mRNA signature was identified as an independent
prognostic factor in this cancer entity. In addition, the signature could be used to predict the immune landscape of BC
patients. Low-risk patients had enriched immune-related pathways and more infiltration of most types of immune cells. The
signature was also associated with the tumor mutation burden in BC. The results have allowed us to assess the potential for
immunotherapy targets exposed by this model. The ferroptosis-related lncRNA risk model reported in the current study has
clinical utility in BC prognosis and predicted immunotherapy response.

1. Introduction

The highest incidence of malignant tumors in women is due
to breast cancer (BC), and this is also the cancer responsible
for the largest number of female deaths [1]. Data released by
the International Agency for Research on Cancer (IARC)
recorded 2.26 million new cases of BC in 2020, an incidence
which replaces lung cancer as the leading form of cancer
throughout the world [2]. Early BC diagnosis in combina-
tion with improved treatment options, such as surgery, che-
motherapy, endocrine therapy, and targeted therapy, has
reduced the mortality rate by 30% compared with 1990 [3].
However, conventional treatment regimens remain largely
ineffective for patients with advanced or metastatic forms
of the disease, and most of these patients will still die from
their tumors. Clearly, deficiencies remain in terms of clinico-
pathological indicators, and there is a pressing need to
improve prognostic techniques.

Ferroptosis represents a form of programmed cell death
which depends on iron-mediated oxidative damage of cell
membranes [4, 5]. Recent studies have demonstrated the
involvement of ferroptosis regulation in the occurrence
and response to treatment of various tumor types [6–8].
Many proteins have been identified, such as HRAS, NRAS,
KRAS, TP53, NFE2L2, and HIF, which affect proliferation
and migration of tumor cells and are associated with ferrop-
tosis [9]. Meanwhile, as a subset of RNA molecules, long
noncoding RNA (lncRNA) regulates gene expression [10,
11]. The expression of such proteins may be subject to regu-
lation by lncRNA, identification of which would improve
our understanding of tumor progression. Tang et al. [12]
indicated the utility of ferroptosis-related lncRNA for the
prognosis of head and neck squamous cell carcinoma. More-
over, Zheng et al. [13] described the regulatory effects of
ferroptosis-related lncRNA on the glioma microenviron-
ment and its relationship to radiotherapy response and
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immunity. However, specific roles for ferroptosis-related
lncRNA are still unclear. Few studies have taken a systematic
approach to relating lncRNA sequence information to
immunotherapy responses and BC patient survival.

During the current study, we used BC gene expression
profile data from The Cancer Genome Atlas (TCGA) to
construct a novel prognostic risk signature based on ten
differentially expressed ferroptosis-related lncRNAs. We
explored the relationship between the model and immuno-
therapy response and tumor mutation burden (TMB). Our
findings have allowed us to construct a nomogram to predict
the overall survival (OS) of BC patients.

2. Results

2.1. Identification of Differentially Expressed Ferroptosis-
Related lncRNA. Ferroptosis-related genes (Table S1) were
identified from FerDb, and an expression matrix of 246 genes
and 14,086 lncRNAs was extracted from the TCGA-BRCA
set. In order to identify differentially expressed lncRNA, 1,636
ferroptosis-related lncRNAs were screened and expression
compared by Pearson’s correlation (∣R2 ∣ >0:4 and p < 0:001).
The analysis revealed that 299 ferroptosis-related lncRNAs
were differentially expressed (196 upregulated and 103
downregulated) (Table S2). The experimental scheme is
illustrated by the flow diagram shown in Figure S1.

2.2. Construction and Verification of BC Risk Model Based on
Ferroptosis-Related lncRNA. Nineteen differentially expressed
ferroptosis-related lncRNAs associated with prognosis were
identified from the TCGA-BRCA training set by univariate
Cox regression analysis (Figure 1(a)). Use of LASSO Cox
regression to prevent overfitting of the model revealed 13
ferroptosis-related lncRNAs for subsequent multivariate anal-
ysis (Figures 1(b) and 1(c)). Of these, 10 ferroptosis-related
lncRNAs related to BC OS emerged from multivariate Cox
regression (Figure 1(d)) (Table S3). The 10 ferroptosis-
related lncRNAs constitute a prognosis independently
related to OS in the training cohort and were used to build a
risk model. The coexpression relationship between the
ferroptosis-related genes and the lncRNAs used to construct
the model is shown in the Sankey diagram (Figure 1(e)).
Using the median score of the risk signature, patients were
divided into two subgroups, high and low risk (Figure 2(a)).
Survival status and survival times of patients in the two risk
groups are shown in Figure 2(b) with relative expression
standards of lncRNAs for each patient in Figure 2(c).
Kaplan-Meier analyses revealed that high-risk patients
showed poorer OS (p < 0:001) (Figure 2(d)). The area under
the ROC curve (AUC) of the 1-year, 3-year, and 5-year
survival of BC patients was assessed to be 0.755, 0.731, and
0.721 (Figure 2(e)). It demonstrated that the model has
excellent precision to predict survival.

A unified formula was used to calculate the risk score for
each patient in the test set and in the entire cohort. Risk dis-
tributions, survival status, and survival time together with
expression of ferroptosis-related lncRNAs in the TCGA-
BRCA cohort and test set are shown in Figure 3. OS among
members of the low-risk group was higher than that of the

high-risk group for both the test set and the entire cohort
(Figures 3(d) and 3(h)). We conclude that expression levels
of ferroptosis-related lncRNA can be correlated with prog-
nosis for BC patients.

Differences in OS, together with clinicopathological
characteristics, were analyzed according to the low-risk and
high-risk groups in the entire TCGA-BRCA cohort. Patients
were assigned to subgroups according to age, TNM stage, N
stage, and progesterone receptor (PR) status. The OS of the
low-risk group was found to be consistently better than that
of the high-risk group (Figure 4).

2.3. Verification of the Model by PCA. A PCA was performed
for the total gene expression profile, 246 ferroptosis-related
genes, 1,636 ferroptosis-related lncRNAs, and risk signature
classified by expression profiles of the 10 ferroptosis-related
lncRNAs to assess differences between the low-risk and
high-risk groups (Figures S2A-S2C). The results show
different distributions for the low-risk and high-risk groups
(Figure S2D), indicating that the prognostic model
distinguishes between the two groups.

2.4. Distinction between Groups by Gene Set Enrichment
Analysis. Gene set enrichment analysis (GSEA) revealed that
immune and tumor-related pathways, such as primary
immunodeficiency, T cell receptor signaling pathway, intes-
tinal immune network for IgA production, hematopoietic
cell lineage, type I diabetes mellitus, allograft rejection,
cytokine-cytokine receptor interaction, antigen processing
and presentation, graft-versus-host disease, chemokine sig-
naling pathway, and natural killer cell-mediated cytotoxicity,
showed appropriate hallmarks of regulation in the low-risk
group (Figure S3 and Table S4).

2.5. Correlation of Tumor-Infiltrating Immune Cells,
Immunosuppressive Molecules, and Immunotherapy Score
with Risk Assessment Model. Expression levels and activities
of immune cells, pathways, or functions were assessed by
GSEA and correlated with our lncRNA risk model in the
1,027 TCGA-BRCA samples. The results reveal differences
in the immune index between the low-risk and high-risk
groups with immune cells, such as CD4 and CD8T cells, show-
ing greater infiltration in the former group (Figures 5(a) and
5(b)). Immune pathways, such as checkpoint, cytolytic activity,
HLA, inflammation, MHC, T cell functions, and IFN response,
all show lower activity levels in the high-risk group, compared
with the low-risk group (p < 0:01) (Figure 5(c)). The correla-
tion between the risk group and immunotherapy biomarkers,
such as CTLA4, PDCD1, CD274, and LAG3, revealed higher
levels of expression in the low-risk group (p < 0:001)
(Figure 5(d)). The low-risk group showed higher immunophe-
noscores (p < 0:001) for the four categories of immunotherapy,
indicating the utility of lncRNA classification as a predictor of
immunotherapy efficacy (Figures 5(e)–5(h)).

2.6. Correlation of TMB with Risk Model. Recent studies
have demonstrated the relationship between TMB and OS
for multiple cancer types after immunotherapy [14, 15].
The mutation data of the TGCA set was analyzed using
the R package maftools. Figure 6(a) shows the TMB score
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Figure 1: Continued.
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in the high-risk group exceeded that in the low-risk group
(p < 0:001). Figure 6(b) shows a significant positive correla-
tion between the model risk grouping and the TMB
(p < 0:001, R = 0:15). The top 20 driver genes with the high-
est frequency of change between the high-risk and low-risk
groups are shown in Figures 6(c) and 6(d). TMB scores for
each group were calculated using TGCA-BRCA somatic
mutation data, revealing significant differences between the
two groups. Patients in the high-risk group had higher
TMB scores. Using the best cutoff value according to the
mutation effect predictor, the total samples were divided into
two groups according to TMB. Survival times for patients in
the low TMB group were significantly higher than that for
the high TMB group (p < 0:001) (Figure 6(e)). Combining
survival analysis for the risk model and TMB groups
revealed that the low-risk group with low TMB had the
highest survival rate, while the high-risk group with high
TMB had the worst survival rate (p < 0:001) (Figure 6(f)).

We conclude that the ferroptosis-related lncRNA risk model
may have a greater prognostic value than TMB status alone.

2.7. Identification of Novel Candidate Compounds Targeting
Ferroptosis-Related lncRNA Models. In order to discover
the potency of the ferroptosis-related risk model as a
biomarker for predicting the response of BC patients to
drugs (including chemotherapy and targeted therapies), we
inferred the IC50 values of 137 drugs in TCGA-BRCA patients.
We found that patients in the low-risk groupmay be more sen-
sitive to olaparib (AZD.2281), veliparib (ABT-888), gefitinib,
metformin, methotrexate, etc., while patients in the high-risk
group may be more sensitive to erlotinib, lapatinib, imatinib,
pazopanib, etc. (Figure S4).

2.8. Comparison of Risk Model with Clinical Characteristics
of Breast Cancer. Univariate and multivariate Cox regression
analyses were used to analyze established clinicopathological
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Figure 1: Risk model for BC patients based on ferroptosis-related lncRNAs. (a) Univariate Cox regression analysis showed that the included
ferroptosis-related lncRNAs were significantly associated with clinical survival prognosis. (b) The tuning parameters (log l) of OS-related
proteins were selected to cross-verify the error curve. According to the minimal criterion and 1-se criterion, perpendicular imaginary
lines were drawn at the optimal value. (c) The LASSO coefficient profile of 13 OS-related lncRNAs and perpendicular imaginary line
were drawn at the value chosen by 10-fold cross-validation. (d) Ten ferroptosis-related lncRNAs with independent prognosis and
survival correlation were shown by multivariate Cox regression analysis. (e) Sankey relational diagram for the ferroptosis-related genes
and the lncRNAs used to construct the risk model.
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Figure 2: Prognostic value of the risk patterns of the 10 ferroptosis-related lncRNAs in the TCGA-BRCA training set. (a) Distribution of
ferroptosis-related lncRNA model-based risk score. (b) Different patterns of survival status and survival time between the high- and low-risk
groups. (c) Clustering analysis heat map shows the expression standards of the 10 prognostic lncRNAs for each patient. (d) Kaplan-Meier
survival curves of the OS of patients in the high- and low-risk groups. (e) The AUC values of the patients’ 1-, 3-, and 5-year survival rate.
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BC characteristics in the context of our risk model. Single-
factor regression analysis shows that the HR of the risk score
was 1.075 with a 95% confidence interval (CI) of 1.046
−1.104 (p < 0:001) (Figure 7(a)). Multivariate regression
analysis produced a HR of the risk score and 95% confidence
interval (CI) of 1.069 and 1.036−1.103 (p < 0:001)
(Figure 7(b)), respectively. The above results indicate that
our risk model has no correlation with established clinico-
pathological parameters, such as age, tumor grade, TNM
staging system, or molecular BC classification, and is an
appropriate independent prognostic tool for BC patients.
An additional evaluation was performed to compare the

prognostic utility of our model with established clinicopath-
ological indicators by means of the ROC curve (Figure 7(c)).
Our risk model produced a larger area under the curve than
other clinicopathological indicators (Figures 7(d) and 7(e)).
We conclude that our model, based on 10 ferroptosis-related
lncRNAs, has advantages over established clinicopathological
characteristics, such as tumor grade, TNM staging system,
and molecular BC classification and also shows robust
reliability.

2.9. Construction and Evaluation of Risk Model Nomogram.
A nomogram with integrated prognostic tools, including risk

1.00

0.00

0.25

0.50

0.75

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 1.355e–05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time (years)

4 2 1 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time (years)

High risk

Low risk

Ri
sk

Risk
Hight risk
Low risk

1 1 1 0 0

514 443 280 211 156 120 96 67 51 29 19 13 9 8 7

7

7 6 6 5 5 4

2345551010162129516998126168216307457513

(h)

Figure 3: Prognostic value of the risk model of the 10 ferroptosis-related lncRNAs in the TCGA-BRCA testing and entire sets. (a)
Distribution of ferroptosis-related lncRNA model-based risk score for the testing set. (b) Patterns of the survival time and survival status
between the high- and low-risk groups for the testing set. (c) Clustering analysis heat map shows the display levels of the 10 prognostic
lncRNAs for each patient in the testing set. (d) Kaplan-Meier survival curves of the OS of patients in the high- and low-risk groups for
the testing set. (e) Distribution of the ferroptosis-related lncRNA model-based risk score for the entire set. (f) Patterns of the survival
time and survival status between the high- and low-risk groups for the entire set. (g) Clustering analysis heat map shows the expression levels
of the 10 prognostic lncRNAs for each patient for the entire set. (h) Kaplan-Meier survival curves of OS of patients in the low- and high-risk
groups for the entire set.
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model and clinicopathological characteristics, was con-
structed in order to predict the 1-, 3-, and 5-year OS of BC
patients (Figure 8(a)). The relevant calibration curve shows
excellent agreement between OS at 1, 3, and 5 years and pre-
dicted OS rates (Figures 8(b)–8(d)).

2.10. Validation of the Expression Levels of Ten of the
Ferroptosis-Related lncRNAs in Breast Cancer Cell Lines
and Normal Human Breast Epithelial Cell Line. For validat-
ing the expression levels of the ferroptosis-related prognostic
lncRNAs, we detected ten ferroptosis-related prognostic
lncRNA expression levels in breast cancer cell lines (MCF7,
SKBR3, and MDA-MB-231) and a normal human breast epi-
thelial cell line (MCF10A) by using the RT-qPCR assay. Our
results showed that CYTOR, LMNTD2-AS1, LYPLAL1-AS1,
USP30-AS1, RHPN1, LINC01655, AP005131.2, AC004988.1,
and AC079289.3 were upregulated in breast cancer cell lines
(SKBR3) compared with the normal human breast epithelial
cell line (MCF10A), and HSD11B1-AS1 was downregulated
in breast cancer cell lines (MCF7, SKBR3, and MDA-MB-
231) (Figure S5).

3. Discussion

Malignant BC tumors pose one of the greatest threats to
women’s health with resistance to chemotherapy drugs
being an increasing problem [16]. Many chemotherapeutic
drugs act by inducing tumor cell death by activation of apo-
ptosis pathways [17]. If the tumor cells evade apoptosis, then
resistance to chemotherapy is a potential consequence. Thus,
strategies to overcome chemotherapy resistance are urgently
required. The more recently discovered ferroptosis pathway
of programmed cell death has some characteristics, which
distinguishes it from better-known apoptosis pathways.
The use of ferroptosis inducers has shown great potential
in activating programmed cell death in tumor cells and also

in enhancing sensitivity to well-established tumor cytotoxic
drugs [18]. For example, the chemotherapeutic drug, cis-
platin, shows significantly increased antitumor activity when
administered in combination with a ferroptosis inducer [19].
Such studies demonstrate the suitability of the ferroptosis
pathway as a target for anticancer drugs and herald a new
era in clinical tumor treatment [18, 20].

lncRNAs are more than 200 nucleotides in length and
lack an open reading frame [21]. They are known to have
signaling roles, including regulation of the tumor cell ferrop-
tosis pathway in which a dual role has been suggested. Some
studies have linked inhibition of tumor cell ferroptosis with
the promotion of cancer growth. For example, upregulation
of the lncRNA, LINC00336, in lung cancer cells has been
shown to activate the LSH/ELAVL1/LINC00336 axis, result-
ing in inhibition of ferroptosis and increased tumor forma-
tion [22]. By contrast, the findings of Mao et al. [23]
demonstrated that the lncRNA, P53RRA, has an impact on
the regulation of the p53 pathway, resulting in cell cycle arrest,
apoptosis, and ferroptosis. Thus, P53RRA acts as a tumor sup-
pressor. Thus, the balance between stimulatory and inhibitory
effects of lncRNA on ferroptosis may have great significance
for whole-body homeostasis. To date, few studies have investi-
gated the correlation between ferroptosis-related lncRNA and
BC. The current study is aimed at extending such knowledge
by constructing a prognostic model based on ferroptosis-
related lncRNA.

The current study used differentially expressed
ferroptosis-related lncRNAs identified in the TCGA-BRCA
cohort. Prognosis-related lncRNAs were selected and used
to construct a novel risk signature to predict the OS of BC
patients. Among the lncRNAs investigated, CYTOR was
upregulated in colorectal cancer samples and associated with
poor prognosis, having a role in proliferation and metastasis
[24]. Moreover, in vivo and in vitro experiments have asso-
ciated a longer OS in cervical cancer patients with low
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Figure 4: Kaplan-Meier curves of OS differences stratified by age, TNM stage, N stage, and progesterone receptor (PR) status between the
high- and low-risk groups in the TCGA-BRCA entire set.
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Figure 5: Continued.
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expression of the lncRNA, USP30-AS1 [25]. The current
study reveals the involvement of further novel lncRNAs in
BC. In our cell line experiment, these two lncRNAs were also
detected to be significantly upregulated in breast cancer cell
lines, which may be closely linked to tumor formation, and
specific biological behaviour still needs additional research
and verification. We divided BC patients into the high-
and low-risk groups, depending on the median value of the
risk model. Clinical outcomes were consistently better for
the low-risk group. Multivariate Cox regression analysis
demonstrated that the ferroptosis-related lncRNA model is
an independent prognosis of OS. ROC analysis demon-
strated the superiority of our risk model in predicting OS
of BC patients by comparison with established clinicopatho-
logical characteristics. We extended our model to build a

hybrid nomogram predicting 1-year, 3-year, and 5-year
OS. The calibration curve shows excellent agreement
between model predictions and ensuing OS. We conclude
that our risk model, based on ten ferroptosis-related
lncRNAs, has a high degree of accuracy and may contribute
to the search for new biomarkers.

Recent findings on immune checkpoints have opened a
new era in the treatment of malignant tumors [26, 27].
The suggestion has been made that expression of TILs has
predictive value for immunotherapy response and prognosis
of melanoma, BC, and colorectal cancer [28]. Functional
enrichment analysis performed during the current study
showed a higher degree of enrichment for immune-related
pathways for the low-risk group and that CD4+ and CD8+ T
cells are more abundant in tumor infiltration. Together with
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Figure 5: Estimation of the tumor-infiltrating immune cells, immunosuppressive molecules, and cancer immunotherapy response using the
ferroptosis-related lncRNA model in the TCGA-BRCA entire set. (a) Patients in the low-risk group were more positively associated with
tumor-infiltrating immune cells such as B cells, CD8+ T cells, and CD4+ T cells as shown by Spearman correlation analysis. (b) The
heat map of immune responses among the high-risk and low-risk groups based on ferroptosis-related lncRNA signatures. (c) ssGSEA for
the association between immune cell subpopulations and related functions. (d) Expression of immune checkpoints among the high and
low BC risk groups. (e–h) IPS comparison between the low-risk groups and the high-risk groups in the TCGA-BRCA entire set in the
CTLA4 negative/positive or PD-1 negative/positive groups. CTLA4_positive or PD1_positive represented anti-CTLA4 or anti-PD-1/PD-L1
therapy, respectively (all p < 0:001).
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immune function analysis, these results indicate a better
immune function for the low-risk group compared with the
high-risk group. Clinical studies of neoadjuvant therapy have
found that higher expression of PD-L1 mRNA or protein con-
stitutes an independent positive predictor of pathological
response [29, 30]. PD-L1 expression is also used by researchers
as an indicator of BC prognosis and predicted survival. How-
ever, many controversies remain. In a study of 870 BC patients,
Qin et al. [31] associated disease-free survival (DFS),
metastasis-free survival (MFS), and OS negatively with high
PD-L1 expression, suggesting that high PD-L1 expression is
an indicator of poor prognosis in BC patients. The current
study reveals higher expression of immune suppression check-
point proteins, CD274, PDCD1, CTLA4, and LAG3, in the
low-risk group. Moreover, the low-risk group showed higher
values for all four immunotherapy scores than the high-risk
group. TMB is the total number of somatic mutations found
in a tumor sample, a score which can influence activation of

the body’s antitumor response [14]. The findings of the current
study indicate a negative association between TMB and OS.
The correlation of TMB and model grouping revealed that
the low-risk group combined with low TMB scores had the best
survival whereas the high-risk group combined with high TMB
scores had the worst survival. To date, few studies link TMB to
predictions of the efficacy of ICI drugs in BC, although TMB is
closely related to BC prognosis and can be used as a prognostic
indicator. In ER+ BC, high TMB is usually associated with a
poor prognosis [32]. Thus, we infer that our prediction model
may reveal reliable immune biomarkers for BC treatment, in
addition to providing insights into molecular mechanisms of
ferroptosis-related lncRNA in BC.

Although pathological staging and the molecular classifi-
cation of cancer are widely used in a clinical context for the
prognosis of BC, patients at the same stage or with the same
molecular classification frequently have different clinical
outcomes, indicating a lack of reliability of this system
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Figure 6: Correlation of tumor mutation burden with the ferroptosis-related lncRNA risk model. (a) Differences in TMB scores between the
high-risk and low-risk groups (p < 0:001). (b) Association between TMB score and their distribution in the low- and the high-risk groups. (c,
d) Waterfall plot displays mutation information of the genes with high mutation frequencies in the low-risk group (c) and the high-risk
group (d). (e) Kaplan-Meier curve analysis of OS is shown for patients classified according to the TMB score. (f) Kaplan-Meier curve
analysis of OS is shown for patients classified according to the TMB score and ferroptosis-related lncRNA model.
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[33]. Therefore, further work is necessary to identify new
potential predictive and therapeutic biomarkers. The
ferroptosis-related lncRNA model that we have described
addresses this need and also reveals insights into molecular
mechanisms of ferroptosis. Although we have verified our
model using a variety of methods, we are aware that short-
comings and limitations remain. The lack of verification
using external databases and the absence of stratification
analysis according to the molecular type of BC may lead to
bias in the results. In future studies, we plan to collect fur-
ther clinical samples and integrate multicenter studies to
verify the accuracy of our model while continuing to explore
the role of lncRNA and its interaction with ferroptosis.

In conclusion, the specific ferroptosis-related lncRNAs
identified in the current study have utility in assessing BC prog-
nosis and may illuminate the roles of lncRNA in ferroptosis
mechanisms. Our predictive model shows great promise as a
sensitive predictor of BC patient response to immunotherapy.

4. Materials and Methods

4.1. Data Collection from Patients with Invasive BC. We col-
lated RNA sequence, clinical information, and mutation inci-
dence data from invasive BC patients (112 normal and 1,096
tumor samples) from the TCGA-BRCA project (https://
cancergenome.nih.gov/). We excluded patients whose follow-
up time was less than 30 days.

4.2. Identification of Ferroptosis-Related Genes and lncRNAs.
Data analysis was performed by R software (version 4.0.3),
Perl 5 (version 5.32.1), and GSEA (gene set enrichment anal-
ysis) (version 4.1.0). We used a ferroptosis-related gene list

from FerDb (http://www.zhounan.org/ferrdb/) to identify
ferroptosis-related genes. Using a screening based on Pearson’s
correlation analysis (threshold of ∣R2 ∣ >0:4 ; p < 0:001), we
were able to identify 1,636 ferroptosis-related lncRNAs.

4.3. Differential Expression Analysis of Ferroptosis-Related
lncRNA. We used the R package, limma, to analyze the dif-
ferential expression of ferroptosis-related lncRNAs. The
screening threshold was set at FDR < 0:05, and ∣log 2FC ∣ ≥
1:299 differentially expressed ferroptosis-related lncRNAs
were identified.

4.4. Construction and Verification of Risk Model. We ran-
domly divided the TCGA-BRCA dataset into two equal
groups: a training set and a test set. The training set was used
to construct a ferroptosis-related lncRNA risk model, and
the test set was used to verify the model. Using BC patient
survival information, we related the differential expression
of 299 ferroptosis-related lncRNAs to prognosis (p < 0:05).
We performed univariate, LASSO, and multifactor Cox
regression to construct a risk model [34–36]. We were able
to establish a risk model based on the expression of 10
ferroptosis-related lncRNAs. The risk score could be calcu-
lated according to the following formula:

Risk score =〠coefficient gene ið Þ ∗ expression value gene ið Þ:
ð1Þ

Median risk scores allowed the patients to be divided
into the high- and low-risk groups [37].
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Figure 7: Assessment of the prognostic risk model of the ferroptosis-related lncRNAs and clinical features in BC in the TCGA-BRCA entire
set. (a, b) Univariate (a) and multivariate (b) analyses of the clinical characteristics and risk score with the OS. (c) Concordance indexes of
the risk score and clinical characteristics. (d) ROC curves of the clinical characteristics and risk score. (e) Heat map for ferroptosis-related
lncRNA prognostic signature and clinicopathological manifestations (∗∗∗<0.001, ∗∗∗<0.01, and ∗<0.05).
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4.5. Enrichment Analysis of Ferroptosis-Related Genes and
lncRNAs. We performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of
ferroptosis-related genes using the R package, BiocManager.
The risk model was further enriched and analyzed by GSEA
[38]. The analysis threshold was set according to the
adjusted p value (q value) < 0.05.

4.6. Principal Component and Kaplan-Meier Survival
Analysis. We used principal component analysis (PCA) to
reduce the dimensionality, model identification, and group
visualization of total genes, ferroptosis-related genes, and
ferroptosis-related lncRNAs, including the ten lncRNAs
identified as contributing to the risk model [39]. We used
Kaplan-Meier survival analysis to assess differences in
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Figure 8: Construction and evaluation of a prognostic nomogram. (a) The nomogram predicts the probability of the 1-, 3-, and 5-year OS.
(b–d) The calibration plot of the nomogram predicts the probability of the 1-, 3-, and 5-year OS.
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overall survival (OS) between the high- and low-risk groups.
The R packages used in the above analysis were limma, scat-
terplot3d, survival, and survminer.

4.7. Correlation of the Model with Immune Function. To
assess immune cell infiltration in the high- and low-risk
groups, we applied software (TIMER, CIBERSORT, XCELL,
QUANTISEQ, MCPcounter, EPIC, and CIBERSORT-ABS)
to the TCGA-BRCA database [40]. Single-sample gene set
enrichment analysis (ssGSEA) was used to assess differences
in immune function between patients in the high- and low-
risk groups. In addition, we analyzed relevant immune sup-
pression checkpoints and used immunotherapy antigen to
calculate the four types of immunophenoscore (IPS) for
BC patients [41]. The R packages used were scales, ggplot2,
ggtext, pheatmap, GSVA, GSEABase, ggpubr, and reshape2.

4.8. Correlation of the Model with TMB.We used the R pack-
age, maftools, to analyze mutation data. Patients with differ-
ent TMB scores were divided into subgroups for survival
analysis. TMB was also correlated with the risk model.

4.9. Prediction of Treatment Sensitivity of Patients with
Different Risk Scores. To derive potential compounds for the
clinical treatment of BC, the IC50 for compounds obtained
from the Genomics of Drug Sensitivity in Cancer (GDSC)
website was calculated for the TCGA-BRCA project. The R
package pRRophetic was used to predict the IC50 of the com-
pound obtained from the GDSC website in BC patients.

4.10. Independent Verification of the Ferroptosis-Related
lncRNA Model. Our risk model was analyzed using single-
and multiple-factor Cox regression analyses to evaluate its
suitability as an independent prognostic factor by comparison
with classic clinicopathological characteristics of BC patients.

4.11. Construction and Verification of Nomogram. A nomo-
gram integrating the prognostic signature was constructed to
predict the 1-, 3-, and 5-year OS of BC patients. In addition,
predictions were calibrated using the Hosmer-Lemeshow
test to evaluate accuracy. The R packages used were regplot,
survival, and rms.

4.12. Cell Lines. Breast cancer cell lines (MCF7, SKBR3, and
MDA-MB-231) and a normal human breast epithelial cell
line (MCF10A) were bought from the Type Culture Collec-
tion of the Chinese Academy of Sciences (Beijing, China).
These cell lines were cultured with DMEM (Gibco) supple-
mented with 10% certified fetal bovine serum (VivaCell,
Shanghai, China).

4.13. RNA Isolation and Quantitative Real-Time PCR (qRT-
PCR). Total RNA was isolated using the TRIzol reagent
following the manufacturer’s protocol (Takara, Japan) and
reversely transcribed into cDNA using PrimeScript RT
Master Mix (Takara), after which expression of the target
gene was evaluated by qRT-PCR using SYBR Green Mix
(Takara) according to the manufacturer’s instructions. The
primers used were listed as follows: CYTOR: 5′-ACAGAC
ACCGAAAATCACGACT-3′ (forward), 5′-CAGGCAGAC

CACCCGCAAA-3′ (reverse); LMNTD2-AS1: 5′-CAGCGC
ACGTTAACCTCGAA-3′ (forward), 5′-TGCCTGTAGTT
TCAGCAAGTCA-3′ (reverse); LYPLAL1-AS1: 5′-AGAGTC
CCCACCAGCAAGAAG-3′ (forward), 5′-CTCCACACAAT
CTGTCCCGAA-3′ (reverse); USP30-AS1: 5′-TTTTCAGAT
TTGCTTAGGCTCCA-3′ (forward), 5′-CTCCCTTCCCC
ACATCGAA-3′ (reverse); RHPN1-AS1: 5′-CTCGCCTCA
GCTCAGAACACA-3′ (forward), 5′-ACAGGCACCAGAAT
GATCCCA-3′ (reverse); HSD11B1-AS1: 5′-CCATACCAA
ATCCAACGCCTA-3′ (forward), 5′-ACACTTCAGCTCTT
TGCACT-3′ (reverse); LINC01655: 5′-TCCTTGTTCTG
TCACCAAGCCTT-3′ (forward), 5′-GTGCAGATCCTGAC
CCCTT-3′ (reverse); AP005131.2: 5′-GTCAGATTGCCAAT
GGTTCCT-3′ (forward), 5′-AGATGATATGCCACAACAC
GAA-3′ (reverse); AC004988.1: 5′-ATGTCTCCCTTTAGTG
CCAGT-3′ (forward), 5′-GCACATTCAGAAATGACCTCG
AA-3′ (reverse); and AC079298.3: 5′-TGAGAGGACCATTT
TCTGACTGT-3′ (forward), 5′-TCCTTTCATCCAGGGT
GGTGTT-3′ (reverse).

Results were normalized using GAPDH, and the 2
−ΔΔCT method was applied to analyze the expression of tar-
get genes.
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