
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18874  | https://doi.org/10.1038/s41598-021-98053-1

www.nature.com/scientificreports

Identification of early 
and intermediate biomarkers 
for ARDS mortality by multi‑omic 
approaches
S. Y. Liao1, N. G. Casanova2, C. Bime2, S. M. Camp2, H. Lynn3 & Joe G. N. Garcia2*

The lack of successful clinical trials in acute respiratory distress syndrome (ARDS) has highlighted the 
unmet need for biomarkers predicting ARDS mortality and for novel therapeutics to reduce ARDS 
mortality. We utilized a systems biology multi-“omics” approach to identify predictive biomarkers 
for ARDS mortality. Integrating analyses were designed to differentiate ARDS non-survivors and 
survivors (568 subjects, 27% overall 28-day mortality) using datasets derived from multiple ‘omics’ 
studies in a multi-institution ARDS cohort (54% European descent, 40% African descent). ‘Omics’ 
data was available for each subject and included genome-wide association studies (GWAS, n = 297), 
RNA sequencing (n = 93), DNA methylation data (n = 61), and selective proteomic network analysis 
(n = 240). Integration of available “omic” data identified a 9-gene set (TNPO1, NUP214, HDAC1, 
HNRNPA1, GATAD2A, FOSB, DDX17, PHF20, CREBBP) that differentiated ARDS survivors/non-
survivors, results that were validated utilizing a longitudinal transcription dataset. Pathway analysis 
identified TP53-, HDAC1-, TGF-β-, and IL-6-signaling pathways to be associated with ARDS mortality. 
Predictive biomarker discovery identified transcription levels of the 9-gene set (AUC-0.83) and Day 7 
angiopoietin 2 protein levels as potential candidate predictors of ARDS mortality (AUC-0.70). These 
results underscore the value of utilizing integrated “multi-omics” approaches in underpowered 
datasets from racially diverse ARDS subjects.

Acute respiratory distress syndrome (ARDS) is a systemic disease which despite increasing health care improve-
ments continues to exhibit an excessive mortality rate of 30–40%1. The pathogenesis of ARDS is extremely het-
erogeneous, involves multiple inciting stimuli, and is influenced by multiple comorbidities and genetic factors. 
The clinical and biological ARDS heterogeneity contributes to the inability of current clinical severity scoring 
systems such as the APACHE II score2 or the lung injury severity score3 to accurately predict ARDS mortality4. 
As clinical factors alone are recognized to poorly predict ARDS outcomes, omics-based biomarkers5 offer a 
potentially unbiased tool for ARDS mortality prediction and may potentially identify specific endotypes and 
potential therapeutic targets worthy of further investigation. Previous genome-wide association studies (GWAS) 
identified single nucleotide polymorphisms (SNPs) associated with ARDS susceptibility and mortality which 
have been summarized in several reviews5,6. Multiple transcriptomic, methylation or proteomic studies related 
to ARDS have been recently summarized7,8, however, these studies have largely focused on ARDS suscepti-
bility and a single ‘omics’ approach. In contrast, the potential exists for a multi-omics approach to elucidate 
pathogenic pathways that enhance understanding of biological pathways and therapeutic target discovery9. 
Systems biology approaches provide a global map of the functional relationships between cellular entities such 
as genetics, genomics, methylation, and proteomics, and, in the specific case of ARDS, a framework to develop 
a comprehensive algorithm to identify the molecular patterns associated with ARDS mortality. These findings 
may guide the utilization of molecular signatures to inform clinical decision-making in ARDS and ultimately 
identify novel therapeutic targets.

To address the unmet need for novel ARDS biomarkers, an integrated “multi-omics” approach was utilized 
in a racially-diverse ARDS cohort encompassing individually- underpowered ARDS GWAS, RNA transcrip-
tion, and DNA methylation datasets with a goal to identify early and intermediate predictive biomarkers of 
ARDS mortality. These analyses yielded a 9-gene set that differentiated ARDS survivors from non-survivors 
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and prioritized a biologic pathway list which included the p53-, HDAC-, TGF-β-, and IL-6-signaling pathways, 
results validated utilizing a longitudinal transcription dataset. Predictive biomarker discovery revealed that 
both transcription levels of the 9-gene set (TNPO1, NUP214, HDAC1, HNRNPA1, GATAD2A, FOSB, DDX17, 
PHF20, CREBBP) and Day 7 angiopoietin-2 protein levels significantly predict ARDS mortality. The application 
of a multi-omics integrated prediction model for ARDS mortality may be of substantial utility in the design of 
future ARDS clinical trials.

Results
Study population characteristics.  A diverse cohort of 568 subjects (mean age of 53 ± 15  years, male 
55%, 40% self-reported Blacks) with an overall day 28 mortality rate of 27% was included in the analysis (Fig. 1). 
Table 1 contains the basic cohort characteristics stratified by each ‘omic’ approach utilized (with overlap). Sup-
plemental Figure S1 depicts the Venn diagram of overlapping ‘omics’ data from the study population. The major-
ity of cohort subjects had genotyping and protein data available.

Genome‑wide SNP analysis and identification of genes associated with ARDS mortal‑
ity.  GWAS association analysis of SNPs failed to identify a SNP that passed genome wide multiple testing cor-

Figure 1.   Flowchart of total study enrollment and subjects included in each of the “omics” platforms.

Table 1.   Basic characteristics for the study population stratified by each ‘omics’ type. SD standard deviation, 
ICU intensive care unit. a Transcriptions including RNA microarray and RNA-sequencing data.

Basic characteristics
Overall
N = 568

Genetics
N = 297

Transcriptionsa

N = 93
Methylations
N = 61

Protein
N = 240

Age: years, mean ± SD 52.5 ± 15.6 54.3 ± 16.3 50.1 ± 14.5 53.2 ± 16.1 50.4 ± 14.3

Gender: male, n (%) 312 (54.9) 181 (60.9 46 (49.5) 35 (57.4) 124 (51.7)

Race: White 305 (53.7) 77 (25.9) 64 (68.8) 31 (50.8) 175 (72.9)

Race: Black 227 (40.0) 217 (73.1) 6 (6.5) 22 (36.1) 40 (16.7)

Race: Other 36 (6.3) 3 (1.0) 23 (24.7) 8 (13.1) 25 (10.4)

Pneumonia, n (%) 150 (26.4) 24 (8.1) 45 (48.4) 9 (14.8) 126 (52.5)

Death, n (%) 152 (26.8) 86 (29.0) 35 (37.6) 26 (42.6) 53 (22.1)

ICU stay length, days, mean ± SD 29.0 ± 21.7 30.6 ± 21.5 31.0 ± 19.5 25.2 ± 21.0 26.9 ± 21.8
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rection threshold (p < 5 × 10–8) associated with ARDS mortality in either study population (African or European 
descent). In addition, gene-based analysis (VEGAS2, total of 23,678 genes), also failed to genes significantly 
associated with ARDS mortality i.e. p < 2.11 × 10–6. The top genes (ASB3, GPR75, MIR3682, ERLEC1) were each 
located on chromosome 2 with p < 5 × 10–4, 28 genes exhibited a p < 5 × 10–3 and 601 genes a p < 5 × 10–2 (Sup-
plemental Table S1).

Genome‑wide RNA transcriptome analysis of genes associated with ARDS mortality.  RNA 
sequencing data from ARDS survivors and non-survivors (n = 48) failed to identify a significant DEG (Sup-
plemental Table  S2) with the top 3 genes in non-survivors (upregulated PLK5, ARHGEF33, downregulated 
ACO092329.3) exhibiting p < 10–4.

Genome‑wide gene methylation analysis associated with ARDS mortality.  We next analyzed 
genome-wide DNA methylation from ARDS survivors and non-survivors (n = 60) utilizing the combined 450 k 
and 850 k CpG EPIC array datasets. With an FDR of 0.05, no significant CpG site was identified through the 
probe-wised differential analysis. The top two probes were cg19741456 in FBXO6 and cg25191743 in MAP3K14 
(raw p < 5 × 10–5). The top results are shown in Supplemental Table S3.

Analysis of potential ARDS plasma biomarkers.  We interrogated 11 plasma proteins previously 
implicated as potential ARDS biomarkers6 with levels measured on entry to ICU (baseline at Day 0) and at Day 
7 for survivors. No baseline protein level was associated with ARDS mortality whereas Day 7 plasma measure-
ments of Ang2 protein were significantly associated with ARDS mortality. Each 1 ng/mL increase in plasma 
Ang2 protein at Day 7, produced an 8% increase in odds of mortality (p = 4.7 × 10–6). We included analysis for 
protein measured on baseline and Day 7 individually to avoid the correlation between measurements on the 
same subject. A full result of the logistic regression is shown in Supplemental Table S4.

Candidate gene analyses.  While no candidate gene reached the statistical threshold defined by FDR 
adjusted p-value < 0.05 in any ‘omics’ analysis, several candidate genes exhibited raw p-values < 0.05. This 
included differential methylation of cg18537894 in ADIPOQ (raw p-value = 0.02), upregulated NAMPT gene 
expression in non-survivors compared to the survivors (log fold change = 1.41, raw p = 0.01) and upregulated 
EGLN1 gene expression in non-survivors compared to survivors (log fold change = 0.65, raw p = 0.03) with sig-
nificant differential EGLN1 methylations (cg20682143; cg21875980; cg18979762, raw p = 0.02). No significant 
associations of FER, IL1B, or TNF were found in any ‘omics’ types. The results were summarized in Table 2.

Multi‑omic integration and pathway analysis.  Using the Network approach and the dense module 
search method10, 9082 nodes (genes) and 51,871 edges (protein–protein interactions or PPIs) were included in 
the final network resulting in a total of 5854 modules identified. The top 0.1% of modules included six mod-

Table 2.   Summary of the results from the candidate gene analysis. GWAS genome-wide association study, Chr 
chromosome, LogFC log of the fold change. Bold: significant after corrected for multiple comparisons. *Only 
reported the methylation results with raw p-values < 0.05.

Data GWAS data RNA sequencing
Methylation data from 450 and 
850 k EPIC platforms Protein level on baseline and Day 7

Analysis
Gene-based 
analysis

Differential 
expression analysis Differential methylation analysis Logistic regression

Gene name p-value LogFC p-value Probe Log FC p-value*
Estimate (p-value)
Day 0

Estimate (p-value)
Day 7

ANGPT2 0.98 −0.04 0.78 −0.01 (0.32) 0.08 (4.7e−06)

IL1R2 0.91 1.50 0.11 −9.33e−07 (0.84) 1.62e−05 (0.16)

ADIPOQ 0.75 cg18537894 0.17 0.02

NAMPT 0.66 1.41 0.01 4.09e−04 (0.79) −3.1e−04 (0.81)

FER 0.44 −0.03 0.88

TNF 0.46 0.16 0.67

IL1B 0.92 0.59 0.30 2.21e−03 (0.32) −2.5e−03 (0.48)

EGLN1 0.34 0.65 0.03
cg20682143
cg21875980
cg18979762

0.25
−0.65
0.11

0.02
0.02
0.05

IL-6 0.92 −0.60 0.07 −4.51e−05 (0.65) 0.001 (0.35)

IL-8 0.73 0.06 0.93 −0.00021 (0.35) 0.0008 (0.06)

VEGF 0.44 −0.01 0.96 cg08826863 −0.21 0.04 −0.00015 (0.93) 0.00017 (0.53)

MIF 0.04 −0.26 0.06 −6.12e−05 (0.32) 0.0023 (0.17)

S1PR3  < 0.01 −0.24 0.35 0.00017 (0.18) 4.7e−05 (0.20)

HMGB1 0.73 −0.32 0.01 −0.00071 (0.23) −5.11e−05 (0.80)
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ules and 25 unique genes with 9 of 25 unique genes also differentially methylated (raw p-value < 0.05): TNPO1, 
NUP214, HDAC1, HNRNPA1, GATAD2A, FOSB, DDX17, PHF20, and CREBBP. The results of these 9 genes 
in each omic type are shown in Supplemental Table S5. Further evaluation of this 9 differentiating gene-set, 
revealed 87 pathways with a q-value < 0.05 with the top unique pathways consisting of ‘HDAC class I sign-
aling’, ‘TGF-β signaling pathway’, ‘IL-6 signaling pathway’, ‘Chromatin-modifying enzymes’, ‘Sumoylation by 
ranbp2 regulates transcriptional repression’ and ‘Transcriptional regulation by TP53’. These pathways are listed 
in Table 3 and Fig. 2 and the full list is provided in Supplemental Table S6.

Table 3.   Significant pathways associated with ARDS mortality using the Network approach. a Numbers of 
genes in the pathway are from the 9 genes identified through the Network approach.

Pathway name Set size Candidatea q-value Source

Signaling events mediated by HDAC class I 56 4 (7.1%) 3.45E−06 PID

TGF-beta signaling pathway 132 4 (3.0%) 5.55E−05 Wikipathways

IL-6 pathway 74 3 (4.1%) 0.000327 NetPath

Chromatin modifying enzymes 272 4 (1.5%) 0.000327 Reactome

Sumoylation by ranbp2 regulates transcriptional repression 14 2 (14.3%) 0.000497 BioCarta

Transcriptional regulation by TP53 374 4 (1.1%) 0.000602 Reactome

Figure 2.   Relationship between top identified pathways associated with ARDS mortality using the Network 
approach and ConsensusPathDB26.
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Using the Overlap gene approach, we identified an overlap gene list consisting of ten genes (OCIAD2, MLST8, 
TOP3A, ZC3H8, C4orf3, PIP5K1A, PLD5, TNFRSF19, C14orf93, RUNX3) with the seven most significant path-
ways (q-value < 0.05) being ‘RNA polymerase II transcription’, ‘Regulation of TP53 activity’, ‘PIP3 activates AKT 
signaling’, ‘Intracellular signaling by second messengers’, ‘Generic transcription pathway’, and ‘Transcriptional 
regulation by TP53’ (Table 4). Thus, there was a significant overlap between pathways (but not genes) identified 
utilizing both the Overlap and Network pathway approaches.

Validation using longitudinal transcription analysis.  Temporal gene/pathway expression was signifi-
cantly different between ARDS survivors and non-survivors in five out of the six tested pathways (“sumoylation 
by ranbp2 regulates transcriptional repression” the exception). The Transcriptional Regulation by TP53 pathway 
was the most significant pathway (adjusted p-value = 6.84e−20) with median gene set expression (median of 
standardized gene expression) elevated at baseline, remaining elevated at Day 14 in non-survivors. In ARDS sur-
vivors, the median gene set expression was lower than non-survivors at baseline, elevated at Day 7 but returned 
to baseline values by Day 14. In addition, the patterns of pathway expression were reproducibly homogeneous in 
ARDS survivors when compared to non-survivors. Statistical differences in survivor and non-survivor patterns 
and in median gene expression changes over time are shown in Fig. 3.

Mortality prediction model development.  Supplemental Table S5 and Table 2 summarize the overall 
results (detail result in each molecular level) for the multi-omics analysis with p-values for novel genes identified 
through the multi-omics approach and for candidate genes selected from the publicly available literature. The 
transcription prediction model included the nine genes in the logistic regression model with the derived AUC 
from the testing set (baseline RNA microarray) at 0.83 (90% C.I. 0.62–1.00). For the protein prediction model, 
the AUC of the prediction model, using baseline protein levels as predictors, was poor (< 0.5). However, when 
Day 7 proteins were used as candidate predictors, Ang-2 and IL-1R2 were predictors for ARDS mortality through 
the stepwise method with derived AUC of 0.72 (90% C.I. 0.52–0.91). We next focused on 172 subjects with both 
Day 7 Ang2 and IL-1R2 protein measurements and assessed AUCs of Ang2 and IL-1R2 which demonstrated 
that Ang2 alone (AUC 0.71, 90% C.I. 0.51–0.91) exhibited a higher AUC compared to IL-1R2 alone and was 
comparable to both Ang2 and IL-1R2 as predictors (Fig. 4A). Figure 4B shows the trend of Ang2 protein level 
changes in survivor and non-survivor groups with median Ang2 concentrations similar at baseline between the 
two groups. In contrast, Day 7 Ang2 levels decreased in survivors but remained elevated in non-survivors with 
the optimized cutoff point for ARDS mortality prediction shown in Fig. 4C. Using a cutoff point of 12.1 ng/ml, 
the sensitivity and specificity of Ang2 as a test for ARDS mortality were 0.45 and 0.89, respectively. The AUC of 
the validation cohort (Fig. 4D) consisting of 93 subjects with Ang2 measurement was 0.70 (90% C.I. 0.57–0.83).

Discussion
The present study utilized multi-omic approaches to identify potential early and intermediate predictive indica-
tors of and contributors to ARDS mortality which include: (i) a 9-gene expression set, (ii) plasma Ang2 protein 
levels, and iii) the p53-, TGFβ-, and IL-6 signaling pathways. Through the integration of genetics, transcriptomics, 
methylation, and protein–protein interaction, we identified novel genetic networks that potentially contribute 
to the pathogenesis of ARDS mortality. These genes and pathways were validated using longitudinal transcrip-
tional data further strengthening the prospects of their involvement in ARDS pathobiology and mortality. A 
strength of our analyses was the utilization of a racially- and gender-diverse ARDS cohort exhibiting multiple 
ARDS-inciting causes. Whereas traditional approaches have individually evaluated each ‘omic” dataset (genotype, 
transcription, methylation, protein), we chose to integrate underpowered genotyping, microarray, and sequencing 
datasets to embrace the relationship between different omics largely lost by traditional approaches. Genotypes 
and methylation data may alter gene transcription and result in altered protein expression and, therefore, may 
miss important biological information. Our systems biology studies indicate that combining several small, albeit 
woefully underpowered ‘omic’ studies, may increase the power of identifying significant and important biological 
pathways and biomarkers that can predict/contribute to ARDS mortality.

At the single gene level, nine genes were associated with ARDS mortality through a systems biology approach 
including HDAC1, encoding a histone deacetylase (HDAC) previously linked to acute inflammatory disorders11–13 
including acute lung injury with HDAC inhibitors shown to prevent endothelial hyperpermeability14, the major 

Table 4.   Significant pathways associated with ARDS mortality using the Overlap gene approach. a Numbers of 
genes in the pathway are from the 10 genes identified through the Overlap gene approach.

Pathway name set size # Candidatesa q-value Source

RNA polymerase II transcription 1236 4 (0.3%) 0.00598 Reactome

Gene expression (transcription) 1373 4 (0.3%) 0.00598 Reactome

Regulation of TP53 activity 162 2 (1.2%) 0.00598 Reactome

PIP3 activates AKT signaling 214 2 (0.9%) 0.00775 Reactome

Intracellular signaling by second messengers 245 2 (0.8%) 0.00808 Reactome

Generic transcription pathway 1107 3 (0.3%) 0.0129 Reactome

Transcriptional regulation by TP53 374 2 (0.5%) 0.0129 Reactome
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pathophysiological defect in acute lung injury15–17. HDAC inhibitors are often included in lists of potential thera-
peutic ARDS approaches18. Another 9-gene set member is HNRNPA1 which encodes heterogeneous nuclear 
ribonucleoprotein A, a recognized regulator of alternative splicing processes including alternate splicing of 
MYLK19, a well-described ARDS candidate gene20 and via its encoded protein, non-muscle myosin light chain 
kinase isoform (nmMLCK), a key regulator of lung vascular integrity21. FOSB is involved in ventilator-induced 
lung injury (VILI) via evoked AP-1 binding and gene expression22, increased ROS burden, and VILI outcomes23. 
Transportin 1 (TNPO1) is a protein involved in importing proteins into the nucleus with prominent targets 
being RNA-binding proteins including HNRNPA1, the same gene identified by our ‘omics’ approach24. The 
PHF20 (PHF20) protein regulates p53 signaling and epigenetic regulation by chromatin regulation/histone 
deacetylases25, as does CREBBP protein a histone acetyltransferase and transcriptional coactivator26, findings 
in sync with the 9-gene set, DNA methylation, and protein datasets we analyzed. Less information is available 
for proteins encoded by GATAD2A, DDX17, NUP214 although they appear to share estrogen and androgen 
receptor regulatory properties27–30.

Ang2 (angiopoietin 2) is a ligand of endothelial receptor Tie2 and a key mediator of pulmonary vascular per-
meability and Day 7 Ang2 protein levels were an intermediate biomarker for ARDS mortality, a finding consistent 
with a recent meta-analysis that higher plasma Ang2 levels are predictive of mortality in both ARDS and at-risk 
patients31–34. Our studies showed that Day 7 Ang2 has a better predictive value compared to baseline Ang2 which 
implies that Ang2 may respond to endothelial damages from ARDS in a later phase. In addition to outlining 
the relationship between mortality and the level of Ang2 at different stages, our study further provides a cutoff 
point of the Ang2 concentration for mortality prediction. We identified that Day 7 Ang2 level of 12.1 ng/mL can 

Figure 3.   Shown are the changes in median pathway expression (gene set) between ARDS survivors and 
non-survivors for specifically identified pathways including HDAC (A), TGFβ (B), IL-6 (C), Chromatin (D), 
sumoylation (E), and TP53 (F). Each line represents the gene expression of a pathway gene. The color of the line 
represented the cluster of the pattern, a line within the same group with the same color means the patterns of 
change for those genes are similar. For example, in the TGF-β signaling pathway, the gene expression change was 
homogeneous in the survivor group (all blue) while two clusters of patterns existed in the non-survivor group 
(blue and red). The adjusted p-value represented the significance of those patterns changes between groups. 
The color reflects the pattern of the gene expression change within that specific pathway and group (not use to 
compare groups or pathways). The red only lines in the HDAC pathway indicate non-survivor and survivor gene 
pattern change have only one pattern whereas in the TGFβ pathway non-survivors have two patterns (red and 
blue) but survivors only one pattern.
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be used as a highly specific tool for the ARDS mortality and may offer potentially clinically useful information 
and promote therapies that target Ang2. IL-1R2 (IL-1 Receptor Type 2), which regulates the proinflammatory 
activities of IL-1β, is an ARDS biomarker35 with IL1R2 gene expression upregulated in ARDS patients compared 
to controls. We found plasma IL1R2 protein levels between Days 7 and 14 higher in ARDS non-survivors com-
pared to survivors, a trend not seen at days 0 to 3. The results support our findings that in addition to Ang2, Day 
7 IL-1R2 levels, but not baseline IL1R2 levels, is a good biomarker for ARDS mortality prediction.

At the pathway level, five of six pathways identified by our multi-omic approaches exhibited similar expression 
patterns over time and significantly distinguished ARDS survivors from non-survivors. The pathway expression 
patterns in survivors were low on Day 0 (baseline), while elevated at Day 7 and returned to baseline values on 
Day 14. In contrast, pathway expression in non-survivors was elevated at Day 0 compared to survivors, continued 
to rise at Day 7, and remained elevated at Day 14, results that suggest that activation these of pathways contrib-
utes to ARDS mortality. The TP53 pathway was the most significant pathway identified (via both Network and 
Overlap approaches) and centers on the functional strong anti-inflammatory role of p53 as a tumor suppressor 
protein. Inflammation involving NFkB activation reduces p53 function and p53 activation is an inflammation-
suppressing response to reduce unchecked vascular leakage36. In contrast, HDAC pathway18 and TGF-β activa-
tion may increase endothelial permeability and play important role in lung fluid balance in ARDS37,38. We also 
found genes in the well-known pro-inflammatory IL-6 pathway39, were highly expressed in ARDS non-survivors 
throughout the whole 14 days, a finding in sync with studies demonstrating persistently elevated plasma or BAL 
IL-6 levels in ARDS non-survivors40 predicting poor ARDS outcomes (e.g., prolonged mechanical ventilation, 
organ dysfunction, and mortality)41–45. Taken together, except for ANGPT2 (the protein name is Ang2), none of 
the candidate genes (IL1R2, ADIPOQ, NAMPT, EGLN1, FER, IL1B, TNF, IL-6, IL-8 (CXCL8), VEGF (VEGFA), 
MIF, S1PR3, or HMGB1) were significant in our multi-omic analysis of ARDS mortality. The findings are not 
surprising since mortality is a complicated biologic process and is not highly unlikely to be driven by a single 
gene. Nevertheless, our pathway analysis implicated several candidate genes in pathways mortality affecting 
ARDS such as HDAC- and IL-6-signal pathways.

Clearly, our study has several limitations, the foremost limitation being that despite an excellent number 
of ARDS subjects, few subjects had available data from more than three omic types and limited time points 

Figure 4.   (A) AUC plots of the prediction model using Day 7 Ang2 and IL1R2 (alone and combined). 
Day 7 Ang2 alone has significant discrimination between ARDS survivor/non-survivor groups. (B) Mean 
concentration of Ang2 in Day 0 (baseline) and Day 7 between ARDS survivor/non-survivor groups showed 
the mean concentration of Ang2 decrease with time in the survivor group. * Mean concentration for death; 
** Mean concentration for survivors. (C) Independent variable optimized cutoff and distribution by class 
(0 = alive, 1 = death); cutoff concentration of 12.1 ng/mL. (D) ROC curve, sensitivity and specificity using Day 
7 Ang2 protein level to predict ARDS mortality which showed with the cutoff concentration of 12.1 ng/mL, the 
specificity for ARDS mortality is high at 0.89.
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availability, thereby straining the ability to expand the longitudinal analysis. As few subjects had multiple omics 
measured at the same time, this limited the robustness of our analytical methodologies. For example, a more 
complete and integrative predictive model using all omics data simultaneously cannot be applied in our dataset. 
In addition, our mortality outcome is a categorical outcome because we did not collect the day of the death which 
may reduce our power and the information derived from the analysis. An inherent limitation is that each “omic” 
data approach has advantages and disadvantages depending on study aims. For example, GWAS genotypes are 
easily measured and offer disease susceptibility information but cannot reflect the influence of environmental 
factors and therefore are limited in ARDS mortality associations. Gene expression and DNA methylation together 
reflect both genetic and environmental factors and are good ‘omic’ types for mechanism investigation, however, 
these require more sophisticated sample processing to obtain the data and due to high cost, have much smaller 
datasets. Protein biomarkers analytics is a good omic platform, however, as protein levels are affected by genet-
ics, transcriptomics, methylation, and post-translational modification, it is difficult to explore the underlying 
biological mechanism for ARDS mortality with this platform alone. Additional limitations of our work were 
the diversity in platforms utilized for our genetic, genomic, and methylation studies including the varying time 
horizons with limited overlapping specimens, decreasing our statistical power to identify predictive biomark-
ers. Clearly, future well-designed prospective validation cohorts and timely sampling and analysis will obviate 
a number of these limitations.

In summary, a well-characterized, diverse ARDS cohort was utilized to assess the potential for a unique 
multi-omics approach to address the unmet need for tools that allow the stratification of ARDS subjects for clini-
cal trials. This “multi-omics” approach, integrating several ‘omics’ data types from individually underpowered 
ARDS GWAS, RNA transcription, and DNA methylation datasets, identified a 9-gene set and specific signaling 
pathways that differentiated ARDS survivors from non-survivors, results validated utilizing a longitudinal tran-
scription dataset. The prioritized list of genes and p53-, HDAC-, TGF-β-, and IL-6-signaling pathways exhibit 
high biological plausibility to serve as early and intermediate predictive biomarkers and pathways for ARDS 
mortality. Although further studies are needed, these results suggest that the additional application of a multi-
omics integrated prediction model for ARDS mortality may be of utility in future ARDS clinical trial design.

Methods
Study population.  A total of 749 subjects, 18  years and older, have a diagnosis of ARDS established 
according to the diagnostic criteria per the American-European Consensus Conference (AECC)46 or the Berlin 
definition47. All the experimental protocols were performed in accordance with guidelines and regulations and 
approved by institutional review boards (IRB) at the following institutions: the University of Arizona Health 
Sciences (IRB#1312168664R001), the University of Illinois at Chicago (IRB# 20120192), and the University of 
Chicago (IRB#15194A), patient enrollment occurred from 2007–2018. Specimens from patients enrolled in the 
NIH-funded Fluid and Catheter Treatment Trial (FACTT) study were also included48. Enrollment included sub-
jects admitted to the intensive care units with confirmed ARDS. Written consent was obtained for all the par-
ticipants. Among the 749 subjects, a total of 568 ARDS subjects with mortality information (mortality at day 28) 
and with at least one type of ‘omics’ data available were included in the final analysis (Fig. 1).

Genome‑wide genotyping.  Genome-wide genotyping was performed using two platforms for two dis-
tinct populations based on race: Affymetrix SNP 6.0 (Thermo Fisher Scientific, Santa Clara, CA) for the Euro-
pean-origin populations and Affymetrix Pan-African array (Thermo Fisher Scientific, Santa Clara, CA) for the 
African descent individuals. Subjects with a call rate of less than 98% were removed from the analysis. SNPs were 
removed if failing the Hardy–Weinberg equilibrium test (p-value < 10–6) or a call rate of less than 98%. After the 
quality control steps, a total of 297 ARDS subjects: 80 European-origin subjects with 905,043 SNPs, and 217 
African Americans with 146,595 SNPs, were included in the analysis.

Genome‑wide transcription profiling.  Genome-wide transcription data were obtained using two gene 
expression platforms, RNA microarrays, and sequencing. RNA was available for a total of 93 participants with 
a total of 136 samples at different time points. Among the 93 participants, 7 participants had two baseline RNA 
samples (sent for both RNA-sequencing and RNA-microarray), 8 participants had RNA samples on Day 7 after 
enrollment and 28 participants had RNA samples on Day 14 after enrollment. Peripheral blood mononuclear cell 
(PBMC) isolation was performed using the Ficoll-Paque™ (Sigma-Aldrich) method49. Total RNA was isolated 
from PBMCs using RNAeasy MiniKit Qiagen™ following the manufacturer’s protocol. RNA concentration and 
quality (RIN > 7) were assayed by Nanodrop™ (Thermo Fisher) and 2100 Bioanalyzer RNA™ (Agilent). A total of 
52 baseline samples, 8 Day 7 samples, and 28 Day 14 samples were sent for transcription profiling using RNA 
microarray Affymetrix GeneChip Human Gene 2.0 ST Array (Thermo Fisher). A detailed protocol and qual-
ity control procedure for RNA microarray profiling has been previously reported50. The gene expression levels 
were normalized with a log transformation. After quality control, a total of 17,641 probes were included in the 
downstream analysis.

Samples of 1–2 μg total RNA from a cohort of 48 ARDS patients were sent for transcription profiling via 
RNA sequencing with the RNA concentration and quality (RIN > 7) assessed by Nanodrop™ (Thermo Fisher) 
and corroborated by Bioanalyzer™ (Agilent). To prepare the sequencing library, total RNA was enriched by oligo 
(dT) magnetic beads (rRNA removed). The RNA-seq library preparation was performed using KAPA Stranded 
RNA-Seq Library Prep Kit (Illumina). The completed libraries were qualified with Agilent 2100 Bioanalyzer and 
quantified by the absolute quantification qPCR method. To sequence the libraries on the Illumina HiSeq 4000 
instrument, the barcoded libraries were captured on the Illumina flow cell, amplified in situ, and subsequently 
sequenced for 150 cycles for both ends on the Illumina HiSeq instrument. R package Tximport was used to 
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transform the raw counts from the transcripts into gene counts. Genes with low expression defined by low count 
(< 6) were removed, a total of 18,652 genes were included in the final analysis.

Genome‑wide DNA methylation profiling.  High-quality DNA from PBMCs was available from 61 
ARDS subjects for DNA methylation analysis as previously described51,52. Additional protocol details are avail-
able on the manufacture’s website (Bisulfite conversion Qiagen, hybridization, and Infinium Methylation Assay 
Illumina). CpG sites were quantitatively assessed utilizing two Methylation array platforms. The initial 18 sub-
jects were assessed by HumanMethylation 450 K BeadChip (Illumina). Subsequently, DNA from a cohort of 
43 ARDS subjects was assessed utilizing the MethylationEPIC 850 K BeadChip array (Illumina). Poor quality 
samples were excluded using a detection p-value cutoff greater than 0.05 using the R package minifi. After quality 
controls, data from the two assays involving 61 subjects were pooled for analysis. Methylation levels were rep-
resented as M-values which were calculated as log 2 (methylated/unmethylated) and were used in downstream 
analyses.

Plasma protein levels.  Plasma biomarker studies were focused on 11 selected proteins: eNAMPT, IL-1β, 
IL-1R2, IL-6, IL-8, VEGF, Ang2, MIF, S1PR3, RAGE, and HMGB1 with plasma levels measured using Bio-Rad 
(Hercules, CA), detailed in prior reports53,54. In brief, whole blood was collected in EDTA-treated tubes, cen-
trifuged within 1 h from sample collection (2000 × g for 20 min, RCF), and stored at − 80 °C. Plasma concentra-
tions of three biomarkers (IL-6, IL-8, IL-1β) were measured in duplicate using a custom Bio-Plex Pro Human 
Cytokine 5-plex immunoassay (Bio-Rad, Hercules, CA) and Bio-Plex MAGPIX instrument following the manu-
facturer’s guidelines. Enzyme-linked immunosorbent assay (ELISA) techniques were utilized to quantify plasma 
levels of eNAMPT (an internally developed ELISA)54, MIF (R&D System®, Minneapolis, MN), and Ang-2 (R&D 
System®, Minneapolis, MN) using commercially-available ELISAs according to the manufacturer’s instructions 
as previously described53. Undetectable protein levels were assigned as zero. A total of 240 subjects with at least 
one protein level measured were included in our analysis.

Analytical approach and strategies.  We first performed the analysis to identify the biomarkers that can 
differentiate ARDS non-survivor vs. survivor in each single omics platform independently. Second, we inte-
grated multiple omics types to identify important candidate biomarkers and performed a pathway analysis. 
Finally, we developed a prediction model of ARDS mortality. An overview of the analysis flow is shown in Sup-
plemental Figure S2.

Genome‑wide association analysis.  SNP level analysis was performed using PLINK55 with a separate 
analysis of the African-Descent and European-Descent cohorts. First, the principal components (PCs) for popu-
lation stratification were calculated and included in the first two PCs in the additive regression model. After 
obtaining individual p-values for each SNP, a gene-based analysis was performed using the method of versa-
tile gene-based association study-2 (VEGAS2) to incorporate genes and accounts for linkage disequilibrium 
between markers by using simulations from the multivariate normal distribution56. To map identified SNPs to 
their related gene, the 1000 K Genome with African and European datasets were used as reference panels and the 
gene region was defined as + /− 50 k base pairs. Due to the distinct ethnicity and different platforms, gene-based 
analyses were conducted in each ethnicity independently and a meta-analysis was then performed to combine 
the p-values using Fisher’s method.

Differential expression gene analysis.  Differential expression gene (DEG) analysis was performed 
using the RNA sequencing data and the R package limma57. We normalized the raw RNA sequencing count data 
using variance stabilization transformation (VST)58. The significant DEG level was defined as the false-discovery 
rate (FDR) adjusted p < 0.05.

Differential methylation analysis.  Combining data from the 450  K BeadChip and MethylationEPIC 
BeadChip (Illumina) was used to stratify quantiles for data normalization. Probes were filtered for removal if 
failing in one or more samples or on the sex chromosome. The methylation data were normalized using the 
subset quantile normalization59. M values were obtained for the probe-wised differential analysis. The analysis 
was conducted using the R package minifi60. The threshold for the significance was the FDR adjusted P < 0.05.

Plasma protein analysis.  Logistic regression analysis was used to assess the association between protein 
levels and ARDS mortality. Age and gender were included in the model as covariates. Associations were tested 
using the selected 11 protein levels6 measured on baseline and Day 7 respectively instead of including both 
baseline and Day 7 protein levels to avoid the correlation between these two measures in the same individual.

Candidate gene analysis.  In addition to the genome-wide approach mentioned above, individual candi-
date genes, selected from previous publications6, were tested via a multi-omics approach. The candidate genes 
included were ANGPT2 (the protein name is Ang2), IL1R2, ADIPOQ, NAMPT, EGLN1, FER, IL1B, TNF, IL-6, 
IL-8 (CXCL8), VEGF (VEGFA), MIF, S1PR3, and HMGB154,61,62.

Multi‑omic integration and pathway analysis.  Two approaches were selected to achieve multi-omic 
integration and subsequent pathway analysis: the Network approach and the Overlap gene approach. Results from 
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each approach were then compared and overlapping genes/pathways were identified that were associated with 
the ARDS mortality.

Network approach.  The method of edge-weighted dense module search was first used to identify potential 
genes associated with ARDS mortality10. The R package, dmGWAS_3.0, was used to build the network by com-
bining GWAS, protein–protein interactions (PPIs), and gene expression results. Network nodal weights were 
derived based on the p-value of each gene calculated through VEGAS2 (see genome-wide association analysis 
section). Edge weights (change of gene co-expression between death and alive) were obtained using the RNA-
sequencing gene expression data. Genes within the top modules (0.1%) and also differentially methylated were 
selected (raw p < 0.05) and used for downstream pathway analysis using ConsensusPathDB63. Significant path-
ways were defined as q-value < 0.05.

Overlap gene approach.  A loosened significance threshold (raw p < 0.05) was used to generate gene lists from 
each ‘omic’ including GWAS, RNA sequencing, and DNA methylation. Overlapping genes among these gener-
ated gene lists were used for downstream pathway analysis using ConsensusPathDB63. Significant pathways were 
defined as q-value < 0.05.

Validation using longitudinal transcription analysis.  Longitudinal transcription analysis of all genes 
within the specific pathway was performed to validate identified overlapping pathways through the Network and 
Overlap pathway approaches. The top significant pathways identified through the network approach were vali-
dated using the longitudinal transcription cohort (microarrays gene expression-derived data at baseline, Day 7, 
and Day 14). The longitudinal gene expression change over the 14 days was tested using the variance component 
score test64 using the R package TcGSA. This method is a linear mixed-effect model to account for repeat meas-
urements from the same participants and a time variable is included. The pattern of gene expression changes 
in pathways differentially between ARDS non-survivors vs. survivors was tested with the null hypothesis that 
the patterns are the same between groups. Due to the small sample size (88 measurements), 1000 permutations 
were performed to calculate the p-value. The threshold for a significant difference in the patterns was set as an 
adjusted p-value < 0.05.

Prediction model development.  The transcription prediction model was developed using a logistic 
regression model with the genes identified (Table 2) through the network approach as biomarkers. We divided 
the baseline RNA microarray cohort into training and testing sets at a 7:3 ratio. The model was tested using the 
testing set and area under the receiver-operating characteristic curve (AUC). Each AUC with a 90% confidence 
interval was calculated. A good prediction model was defined as a model with AUC > 0.70 with a lower limit of 
confidence interval > 0.50.

For the protein prediction model, to have sufficient samples for the training, testing, and validation cohort, 
proteins were excluded if measured in less than 150 subjects. The remaining seven proteins including eNAMPT, 
IL-1β, IL-1R2, IL-8, Ang2, MIF, and S1PR3 were included as candidate biomarkers for the prediction model. 
We used a logistic regression model with the stepwise method. The chosen significance level for entry (SLE) 
and the chosen significance level for stay (SLS) was set at 0.25. We divided the randomly selected 190 subjects 
into training and testing sets at a 7:3 ratio respectively. The remaining 100 subjects were reserved as a validation 
cohort. We developed the models using baseline protein levels and Day 7 protein levels independently and then 
validated them. Each AUC with a 90% confidence interval was calculated. A good prediction model was defined 
as a model with AUC > 0.70 with a lower limit of confidence interval > 0.50. After the model development, we 
used the R package cutpointr to find the optimized threshold of the protein level to predict ARDS mortality.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request and will also be deposited in the Gene Expression Omnibus (GEO176529).
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