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Neutrophil infiltration into tuberculous granulomas is often associated with higher bacteria
loads and severe disease but the basis for this relationship is not well understood. To
better elucidate the connection between neutrophils and pathology in primate systems,
we paired data from experimental studies with our next generation computational model
GranSim to identify neutrophil-related factors, including neutrophil recruitment, lifespan,
and intracellular bacteria numbers, that drive granuloma-level outcomes. We predict
mechanisms underlying spatial organization of neutrophils within granulomas and identify
how neutrophils contribute to granuloma dissemination. We also performed virtual
deletion and depletion of neutrophils within granulomas and found that neutrophils play
a nuanced role in determining granuloma outcome, promoting uncontrolled bacterial
growth in some and working to contain bacterial growth in others. Here, we present three
key results: We show that neutrophils can facilitate local dissemination of granulomas and
thereby enable the spread of infection. We suggest that neutrophils influence CFU burden
during both innate and adaptive immune responses, implying that they may be targets for
therapeutic interventions during later stages of infection. Further, through the use of
uncertainty and sensitivity analyses, we predict which neutrophil processes drive
granuloma severity and structure.

Keywords: tuberculosis (TB), dissemination, nonhuman primate (NHP), sensitivity analysis (SA), agent-based model
(ABM), neutrophil
1 INTRODUCTION

Infection with M. tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), induces immune
responses that culminate in the formation of multicellular lesions called granulomas. This response
is highly effective at restricting bacterial replication and most individuals never experience active
(symptomatic) disease. Approximately one-quarter to one-third of the world’s population is
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infected with Mtb and is susceptible to developing or progressing
to active TB (1). Until the recent COVID-19 pandemic, TB
remained the world’s deadliest infectious disease, with 1.5
million or more people dying per year (1, 2). The global
burden of Mtb infection, coupled with increasing rates of drug
resistance, emphasize the urgent need to identify factors that
contribute to protective and pathologic outcomes in TB.

Neutrophils are innate immune cells whose role in TB remains
poorly understood. Numerous, short-lived, and easily activated,
neutrophils are phagocytic cells that are typically associated with
acute inflammatory responses (3–5). These characteristics make
them difficult to study experimentally, particularly within the
context of a disease that progresses slowly and can remain
undetected for years. In contrast to their role in effectively killing
bacteria and reducing bacterial loads in other infectious diseases (6),
neutrophils appear to have an impaired capacity for killing
phagocytosed Mtb (5). This suggests that neutrophils may
promote TB by providing Mtb with a temporary intracellular
niche for survival and replication (4, 7). Similarly, by engulfing
Mtb but not killing them, highly-motile neutrophils may contribute
to dissemination by providing mycobacteria a means of moving
within the lung environment (5, 8–10).

A search of the literature on the role of neutrophils in TB
reveals a lack of broad scientific consensus on whether they
contribute to protection or drive pathologic outcomes. Some of
the ambiguity may be attributed to different pathologic
presentation and immune function between murine TB models
and human TB (11), stage of disease at which granulomas can be
harvested from non-human primates (NHPs) with TB, and
paucity of studies on human granulomas that represent
different stages of disease. That said, the available data
highlight the potential importance of the stage of infection and
the spatial location of neutrophils within a granuloma for
determining neutrophil-related outcomes (5, 8, 12–15). Recent
experimental work has shown that more neutrophils per
granuloma correlate with higher levels of inflammation and
poorer host outcomes, suggesting a link between neutrophils
and progression to advanced disease (4, 12, 16, 17). However,
other work suggests a more complicated picture (5, 18, 19).
Finally, it is likely that a balance of pro- and anti-inflammatory
molecules works to maintain long term control of infection
during chronic infections (20). It could be that neutrophils,
which can produce both pro- and anti-inflammatory cytokines
(21), may tip the granuloma environment toward a more
bacteria-permissive space.

That primate Mtb infection results in multiple lung
granulomas with their own independent trajectories
complicates issues further (22, 23). At the host level, there can
be substantial heterogeneity among granuloma outcomes where
some granulomas in Mtb-infected NHPs experience
uncontrolled bacteria growth and inflammation while other
granulomas develop sterilizing immunity and kill all the
bacteria they contain (22). There is evidence that the failure of
only one granuloma to contain bacterial growth can be sufficient
to lead to a poor outcome for the host (24). Neutrophils may
contribute to these outcomes but have been difficult to study in
Frontiers in Immunology | www.frontiersin.org 2
this model because neutrophil depletion studies cannot be
performed in NHPs. Moreover, granuloma formation during
the innate immune response may be important for disease
outcome, but it is difficult to identify such granulomas using
positron emission tomography/computed tomography (PET/
CT) or visual inspection at necropsy. Thus, we know little
about neutrophil biology in the earliest stages of NHP or
human TB and our understanding of neutrophil biology in
later stages of TB is likely biased by studies investigating severe
pathology and poorly controlled disease.

Computational models of granuloma formation and function
represent a complementary tool for identifying neutrophil-
regulated processes that differentiate protective and pathologic
granulomas (25). While experimental work is confined to the
biological timescales of TB progression (months to years),
computational modelers can conduct simulated experiments
with runtimes on the order of minutes to hours. Here, we
build on our multiscale and mechanistic computational model
of granulomas, GranSim, to identify the contributions of
neutrophils to immunity at the granuloma scale. GranSim has
been continually curated for 15 years and captures numerous
aspects of granuloma biology including T cell and macrophage
behaviors, Mtb fate, and granuloma-tissue scale outcomes (26–
31). To date, neutrophils have not been extensively modeled in
GranSim, as they have been grouped in with other phagocytic
cells rather than distinguished as their own cell type. In order to
explore the distinct contributions of neutrophils, we follow the
lead of Bru and Cardona (2010), who introduced a
computational model that included explicit simulation of
neutrophils within the broader immune response to infection
with Mtb (32). Among other key findings, they showed that local
chemokine concentrations and especially the adaptive immune
response affect granuloma formation and Mtb levels, and offered
an explanation for why granulomas cannot be visualized in the
first weeks post-infection. In GranSim, we significantly expand
and fine-grain the range of neutrophil behaviors and parameters
presented in (32); through simulating neutrophil behaviors
(e.g., secretion, phagocytosis/transport/killing of Mtb), defining
additional neutrophil parameters (e.g., chemotactic/recruitment
factors), and allowing variation of parameters (e.g., neutrophil
lifespan), we capture a broad picture of neutrophil function in
GranSim and can now address mechanistic questions regarding
the role of neutrophils in granuloma outcome.

In this study, we use a systems biology approach. We present
a comprehensive, neutrophil-inclusive update to GranSim that
significantly advances the integration of neutrophil behaviors
into the granuloma environment. We pair this with studies on
NHP granulomas to calibrate and validate the model. We are
interested in determining the mechanisms that drive granuloma
severity and structure and in predicting the relevance of
neutrophils to the development of new therapeutic strategies
for TB. Using this model, we investigate which processes
influence CFU burden and neutrophil count, whether
neutrophil behavior during the adaptive immune response
affects CFU burden, and whether neutrophil mechanisms drive
phenomena such as bacterial dissemination.
October 2021 | Volume 12 | Article 712457

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hult et al. Neutrophils in TB
2 MATERIALS AND METHODS

2.1 Animal Ethics Statement
The tissue used to generate the flow cytometry dataset and IHC
imaging used in this study originated from cynomolgus
macaques (Macaca fascicularis) that were enrolled in studies at
the University of Pittsburgh. The studies these animals were
involved in were approved by the University of Pittsburgh’s
Institutional Animal Care and Use Committee (IACUC) and
were performed in BSL3 facilities approved by Environmental
Health and Safety at the University of Pittsburgh. Animals were
infected with Mtb (Erdman strain) as previously performed (33)
and the animals were housed under BSL3 conditions and housed
and maintained in accordance with standards established in the
Animal Welfare Act and the Guide for the Care and Use of
Laboratory Animals. The University of Pittsburgh is an
American Association of Laboratory Animal Sciences
(AAALAS) certified program. At the end of the study, animals
were humanely euthanized and necropsied as previously
described (33).

2.2 Non-Human Primate Studies
The macrophage and T cell count data used in this study were
derived from a dataset composed of 30 granulomas from 7 Mtb-
infected NHPs presented in Wessler et al. (2020) (34).
Neutrophil cell count data were derived from the same dataset
and are used for the first time in this work. All cell count data
were extracted from granulomas in cynomolgus macaques that
were infected with Mtb for 3, 5, 7, or 9 weeks (34). Briefly, the
individual granulomas were excited from macaques and
enzymatically digested using a gentle MACS tissue dissociator.
The single cell suspension obtained by enzymatic digestion was
processed for bacterial burden and cell numbers enumeration
(35). Single cell suspensions of granuloma cells were stained with
cell surface antibodies to enumerate T cells (CD3) and myeloid
cells (CD11b+). The cells were further stained intracellularly with
calprotectin antibody to define neutrophil (CD11b+calprotectin+)
and macrophage (CD11b+calprotectin-) populations. Flow
cytometry and data acquisition were performed using a BD LSRII
and analysis was performed using Flowjo Software v10 (35). The
CFU dataset used to calibrate this model is composed of 623
granulomas from 38 NHPs (previously published (34) and
ongoing studies). Whereas macrophage and T cell count datasets
were used in model calibration, neutrophil cell count datasets were
primarily used to validate our model predictions.

2.3 Modeling the Immune Response to
Mtb Using a Hybrid Agent-Based
Computational Model, GranSim
We use our 2D hybrid agent-based multi-scale model of the
immune response to Mtb infection. We present a neutrophil-
inclusive computational model that significantly updates our
existing hybrid agent-based computational model, known as
GranSim (granuloma simulator) (26–31). Continuously curated
with experimental datasets since its inception, GranSim
simulates the spatiotemporal dynamic formation of primate
Frontiers in Immunology | www.frontiersin.org 3
lung granulomas during the days, months, and even years
following Mtb infection. It captures immune processes over
molecular, cellular, and tissue scales to simulate the movement
of thousands of cells and bacteria, cytokine and chemokine
dynamics, and intracellular and extracellular processes.
GranSim defines the following as distinct cell types:
macrophages (further distinguished by state as resting,
activated, infected, or chronically infected), T cells (further
distinguished by type as cytotoxic, regulatory, and IFNƔ

producing), and now neutrophils. GranSim simulates
concentration gradients of cytokines and chemokines,
including TNF-a, IL10, CCL2, CCL5, CXCL-9, and TGF-ß.
We also track dead tissue, quantifying caseum levels
throughout the granuloma environment. Finally, each
bacterium is tracked individually [as if uniquely barcoded (22,
36, 37)], and we distinguish among bacteria in different
environments: as extracellular (replicating and non-
replicating), intracellular (macrophages), or intracellular
(neutrophils). We scale our 2D simulated data to 3D (e.g., 3D
CFU) using the scaling factors and methods established in
Renardy et al. (2019) (38).

As an agent-based model (ABM), GranSim consists of four
primary components, or building blocks: a grid, where each grid
compartment is 20 um x 20 um in size, while the entire grid is
4 mm x 4 mm in size; the timescales over which events occur
(e.g., seconds to years); the agents (e.g., macrophages, T cells,
neutrophils, bacteria); and the rules that describe how those
agents behave and interact on the grid (e.g., cell speed, secretion,
chemotaxis properties). Our ABM enables us to capture both the
stochasticity observed in biological systems and the marked
distinctions in behavior among different cell types. Granuloma
formation within this model is an emergent behavior rather than
a prescribed model outcome. A full list of model rules prior to
adding in neutrophils and an executable file are provided at the
GranSim website: http://malthus.micro.med.umich.edu/
GranSim. Describing immune processes over molecular,
cellular, and tissue scales, GranSim is a multi-scale hybrid
model whose model scales are linked to one another through
cytokine concentrations and/or agent behaviors, as has been
described previously (39).

2.4 Incorporating Neutrophils as a Cell
in GranSim
We include neutrophils as a unique agent class in GranSim,
alongside the existing agent classes for macrophages, T cells, and
bacteria. Below we elaborate the biological rules and assumptions
that are included inGranSim (e.g., interactions with other agents or
chemical gradients, requirements for recruitment to the grid). We
also identify neutrophil-specific parameters including neutrophil
lifespan, phagocytosis of extracellular Mtb, and chemotaxis
(described below; Figure 1 and Online Supplement Figure 1).

2.4.1 Model Initialization
Although neutrophils are present in the lung during normal
health conditions (40, 41), they are recruited to the lung from the
blood following infection (6, 42). Due to the short lifespan of
October 2021 | Volume 12 | Article 712457
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neutrophils, the abundance of both blood vessels in the lung
and neutrophils in the blood, and the lack of in vivo systems
where neutrophil recruitment in early disease can be assessed, we
do not initialize the virtual healthy lung tissue with any
neutrophils but instead allow them to be rapidly recruited after
infection. Through effectively allowing neutrophil recruitment
from the blood to dictate neutrophil numbers in the virtual lung,
we achieve biologically-accurate neutrophil numbers in our
simulated granulomas.

2.4.2 Neutrophil Lifespan, Size, and Death
Reported values for neutrophil lifespan vary widely, ranging
from 5 hours to 5.4 days in the circulation (15, 43–46).
Furthermore, various biological factors influence neutrophil
lifespan, including their global location (e.g., in the
bloodstream versus the tissues) and their local location (e.g., in
the highly stimulatory environment of a granuloma) (3, 45).
Therefore, we define neutrophil lifespan using a range rather
than a single value to better capture this variability.

Typically, 12-14 um in size, neutrophils are easily
recognizable by their segmented nuclei, which enables them to
migrate through crowded regions of the lung environment more
effectively than other cells. In GranSim, we simulate neutrophils
as a “squeezing” cell, capable of moving or being recruited into
Frontiers in Immunology | www.frontiersin.org 4
grid compartments that already contain a T cell, macrophage, or
another neutrophil.

The neutrophil lifespan is short, especially in comparison to
those of other cell types in the model. Once a neutrophil dies, it
contributes to caseum in its vicinity, or is cleared via
phagocytosis (efferocytosis) by a macrophage (3, 13, 40); we
capture this behavior through two probability parameters. For
neutrophils that may have phagocytosed Mtb, any intracellular
Mtb are released into the local environment upon the
neutrophil’s death.

2.4.3 Neutrophil Movement, Recruitment, and
Cytokine and Chemokine Production
In the model, neutrophils move at the same speed as T cells, at a
rate of 2 um/minute (47, 48) and once every agent time step.
Directional movement is driven by chemotactic factors in the
lung environment. The local environment translates to the
Moore neighborhood (MN) of a given cell, and the composite,
weighted concentration of neutrophilic chemotactic factors in
the MN dictates the grid compartment to which a neutrophil will
move. Neutrophil chemotactic factors in GranSim include local
levels of extracellular Mtb, caseum, and CCL5 (8, 9, 49, 50).

Neutrophils secrete an array of cytokines and chemokines
during Mtb infection (8, 21, 51–54). In GranSim, neutrophils
FIGURE 1 | Overview of rules governing neutrophil agent behavior in GranSim.
October 2021 | Volume 12 | Article 712457
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contribute to the pro-inflammatory environment through
secretion of TNF-a (8, 21, 55, 56), and to the anti-
inflammatory environment through secretion of IL-10 (8, 14,
21, 57) and TGF-b (58, 59). Neutrophils express significant
amounts of IL-8 and thus likely help drive their own
recruitment; we account for the effects of neutrophil secretion
of IL-8 through the inclusion of infected neutrophil presence
as a recruitment factor for neutrophils. The ability and
impact of neutrophil cytokine secretion remains an area of
active investigation.

We assume that recruitment of neutrophils to the lung is
determined by the cumulative, weighted concentrations of
extracellular Mtb, intracellular Mtb within macrophages,
infected neutrophils, and CCL5 near a given vascular source
(3, 14, 40, 50, 60). The inclusion of infected neutrophils as a
recruitment factor is a proxy for neutrophil secreted factors that
increase neutrophil recruitment. (Future models might include
additional molecular factors.) A caseum-occluded vascular
source cannot admit neutrophils and is considered a “blocked”
compartment for all cell recruitment.

2.4.4 Neutrophil Interactions With Mtb and Caseum
Neutrophils phagocytose Mtb during the course of infection (13,
61). Researchers have investigated the proportion of Mtb-
infected cells that are neutrophils and how that proportion
changes over time (5, 7, 62). In GranSim, we allow neutrophils
to phagocytose extracellular Mtb using parameters defining the
number of bacteria that a neutrophil can take up at a given time
point and the maximum number of intracellular bacteria allowed
in a neutrophil. Intracellular bacteria can replicate rapidly in
neutrophils (7). Although Eum et al. (2010) present airway-level
rather than granuloma-level data, this work is an important
example of native Mtb in human neutrophils and thus provides a
starting point for neutrophil Mtb growth kinetics in our model.
Neutrophil anti-mycobacterial activity is thought to be largely
ineffective (4, 9), and variable (5); thus, we define the probability
that a neutrophil kills its intracellular bacteria as a parameter that
varies across a range of values, in order to capture these observed
biological variations and uncertainty.

Although neutrophils can enter caseous regions (21, 53, 63),
this microenvironment is hypoxic (64) and accelerates cell death.
We do not prevent neutrophils from moving into fully-caseasted
compartments; however, we reduce their remaining lifespans for
each timestep that they are in a caseated compartment.

2.5 Model Calibration of GranSim
We calibrated the model to experimental datasets that are
different from those used to validate the model. This was a
multistep process that involved comparison to both temporal
and spatial data, as well as phenomenological behavior. We used
two primary types of data: i) temporal CFU data, ii) temporal T
cell/macrophage ratio data. We also required formation of a
spatial structure characteristic of a necrotic granuloma at specific
points in time. Additionally, as further controls, we performed
simulated virtual TNF and T cell deletions to ensure that model
behavior recapitulates the known in vivo behavior, as we have
done previously (results not shown). We assigned values (specific
Frontiers in Immunology | www.frontiersin.org 5
or ranges) to new model parameters based on the following:
experimental datasets from our collaborators, data from the
literature, and, in the case of “proxy’’ parameters, values
derived from past work with GranSim. The parameter Online
Supplement Table 1 indicates how values were determined.

2.5.1 Uncertainty and Sensitivity Analyses
In order to identify neutrophil mechanistic parameters and not
bias the model toward limited datasets, we assigned broad ranges
to parameter values. This uncertainty analysis allows us to
explore a full range of behaviors around starting values
provided in literature. We then narrow the parameter ranges
as we validate to both spatial and temporal neutrophil datasets.
Specifically, we perform uncertainty and sensitivity of the model
to determine the biologically relevant parameter space and
identify parameters that are significantly correlated with
granuloma outcomes. We used Latin Hypercube Sampling
(LHS) to efficiently sample the entire parameter space, using
previously developed methodology (65, 66). In order to perform
simulations with a range of parameters, it becomes necessary to
capture both aleatory and epistemic uncertainty (67). Epistemic
uncertainty is captured by the variation in parameters (ranges);
however, aleatory uncertainty is captured by the stochastic
nature of the simulations. Thus 3-5 repetitions are performed
on each run to observe how changes in both probabilities and
parameter values affect model outputs.

To correlate which parameters induced variability in
outcomes, we perform sensitivity analysis. To do this, we rank
the correlations (and therefore, contributions) of parameters to
important outcome statistics like CFU. We use Partial Rank
Correlation Coefficients by identifying coefficients of ranked
correlations (PRCC), which are designed to study non-linear
system correlations. PRCC is a tool for analyzing which model
parameters drive different model outputs, and we use it here
according to how we have previously (65). PRCC values are
significant if they satisfy a p-value; here we use p < 0.001. PRCC
values range from -1 to 1, with negative values indicating a
negative correlation between a given parameter and output
statistic and positive values indicating a positive correlation
between that parameter and statistic. Values of higher
magnitudes indicate stronger relationships between parameters
and statistics, but a Fishers Z Test must be performed in order
to directly compare parameters and determine if they are
statistically different from each other (65, 68, 69).

When significance is tested for multiple parameters, then p-value
corrections are needed to reduce type I error (70). Corrections are
needed when performing multiple significance tests because more
tests lead to more false positives. For example, a significance level of
a=0.05 indicates that there is a 5% probability of a false positive for a
single significance test. For multiple tests, the probability of a false
positive for at least one test is 1-0.95n, where n is the number of tests
performed. Thus, if one is performing 10 tests, there is a 40% chance
that at least one test will result in a false positive. To address this
issue, there are several correctionmethods available (71). Bonferroni
correction controls the family-wise error rate, where raw p-values
are multiplied by the number of tests (or, equivalently, the
significance level is divided by the number of tests). This ensures
October 2021 | Volume 12 | Article 712457
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that the family-wise error rate, i.e., the probability of at least one
false positive, is no more than a; equivalently, this tests the
composite null hypothesis that all correlations are zero. In the
FDRmethod, p-values are ranked in ascending order andmultiplied
by n/k where k is the rank of a p-value and n is the number of
tests. This ensures that if a relationship is deemed significant, the
probability that it is a false positive is nomore thana. Here whenwe
applied it to our sensitivity analysis (see Results) we reduced the
number of significant parameters by seven.

2.5.2 Steps in the Calibration Pipeline
We calibrated the model to datasets derived from Mtb-infected
NHPs. We use LHS to efficiently sample the parameter space, as
described above. Through varying 77 total parameters, 17 of
which directly describe neutrophil behavior, we explored a large
section of parameter space and diverse model outcomes. We
iteratively reduced this parameter space through calibration to
experimental data; namely, we discarded those simulated
granulomas that did not sufficiently capture experimental
temporal trends in total CFU and T cell to macrophage cell
count ratio, before reapplying this sampling method to the newly
reduced parameter space. In Online Supplement Table 1, we
present the final full parameter set, in which we simulated 600
granulomas 3 times each. Using this parameter set, we show that
our model produces a range of biologically-realistic granulomas.
This is a positive qualitative feature of the model. As the model
should capture a range of experimental outcomes on both
temporal and spatial scales, we note that our parameter space
remains relatively large and includes a wide range of outcomes
including resolving granulomas that develop sterilizing
Frontiers in Immunology | www.frontiersin.org 6
immunity and progressing granulomas with uncontrolled
bacterial replication and dissemination.

To ensure that the predictions are robust, we narrowed our
parameter space by focusing on only parameters that influence
the total number of neutrophils within granulomas for at least 35
consecutive days (5 weeks) and/or parameters that specifically
describe neutrophil behavior. Thus, we varied 17 neutrophil-
specific parameters and 7 non-neutrophil-specific parameters, as
shown in Table 1. To determine the values for the 53 remaining
previously-varied parameters, we chose a representative
parameter set from our full parameter set that corresponds to a
subset of granulomas we observe experimentally, i.e., a necrotic
granuloma with spatial structure similar to that seen in
Figure 2A, in which a lymphocyte cuff surrounds an
epithelioid macrophage layer, an inner neutrophil ring, and a
caseous center. We note that doing so merely shifts our region of
interest into a more necrotic space, and it does not preclude the
formation of other types of granulomas. For this narrow
parameter set, we generated 500 granulomas, 5 times each, to
produce a set of 2500 total granulomas. From this set, we
removed granulomas that did not pass two additional criteria.
First, we required that the granuloma diameter remain less than
or equal to 3mm throughout the course of the 200-day
simulation, as this would ensure that we removed granulomas
that grew too large for our computational platform to
accommodate. Granuloma size is therefore a limitation of the
model; the grid size can be changed to explore larger granulomas,
but that was not our focus here. As our second criteria, we
required that the total scaled 3D CFU in a granuloma not exceed
106 during the simulation. This is due to the observation that
TABLE 1 | Parameters that were varied in the neutrophil-specific parameter set.

Parameter definition Range Units

Time required for caseation healing 610 —1535 # timesteps
TNF threshold for TNF-induced apoptosis 926 —1366 # internalized TNF bound TNFR1
TNF threshold for NFkB activation 50.8 — 85.6 # molecules
Resiliency of neutrophil to caseum 0.018 — 0.92 n/a
Caseum concentration required to reduce neutrophil lifespan 11 — 50 # caseum-contributing cell deaths
Neutrophil secretion rate of IL10 0.00022 — 0.23 * # molecules/sec
Neutrophil secretion rate of inactive TGFb 0.00012 — 0.75 * # molecules/sec
Neutrophil secretion rate of TNF 0.017 — 3 * # molecules/sec
Neutrophil chemotaxis due to extracellular Mtb 0.066 — 0.96 n/a
Maximum neutrophil lifespan 150 — 780 # timesteps
Maximum number of phagocytosed intracellular Mtb within a neutrophil 5 — 15 # bacteria
Probability that neutrophil death contributes to caseation 0.075 — 0.998 n/a
Probability that neutrophil kills Mtb 0.0023 — 0.20 n/a
Fraction of active TGFb that is bound by a neutrophil 0.0011 — 0.51 * n/a
Maximum probability to recruit macrophage 0.0010 — 0.028 * n/a
Chemokine threshold for macrophage and neutrophil recruitment 0.702 — 0.997 # molecules
Minimum probability to recruit a neutrophil 0.0011 — 0.038 * n/a
Maximum probability to recruit a neutrophil 0.011 — 0.69 * n/a
Minimum chemokine concentration neutrophils sense during recruitment 0.27 — 9.5 # molecules
Maximum chemokine concentration neutrophils sense during recruitment 128 — 999 # molecules
Neutrophil recruitment due to extracellular Mtb 0.0012 — 0.75 n/a
Neutrophil recruitment due to self-recruitment 0.0011 — 0.24 n/a
Maximum probability to recruit IFN-gamma producing T cell 0.021 — 0.2 n/a
Probability to recruit cognate IFN-gamma producing T cell 0.021 — 0.85 * n/a
October 20
Asterisks denote parameters that were sampled using a log uniform distribution rather than the default uniform distribution. n/a, not applicable.
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primate granulomas containing CFU greater than 106 are rarely
seen in granulomas in experimentally-infected macaques (22,
72), likely due to dissemination or structural changes occurring
within granulomas when CFU becomes too high, and our model
does not enforce dissemination or account for structural changes
in the local lung tissue that may occur in high-burden
granulomas. We use this reduced set of 958 granulomas (i.e.,
202 granulomas, generated 3-5 times each) for our uncertainty
and sensitivity analyses, and will refer to it hereafter as the
neutrophil-specific parameter set. In Table 2, we provide an
overview of the primary granuloma sets generated during the
calibration process.
Frontiers in Immunology | www.frontiersin.org 7
2.6 Defining a Spatial Statistic
A better understanding of the spatiotemporal organization of
cells in granulomas may shed insight on disease progression,
factors contributing to CFU burden, or parameters that can be
tuned to make the lung environment more conducive to
antibiotic treatment. However, qualitative observation of IHC
or simulated images is not a rigorous, user-agnostic method of
analysis, nor do such images easily translate to quantitative data
that can be used in parameter sensitivity studies. Thus, we define
a spatial statistic that enables us to quantitatively evaluate spatial
structure by determining the most prevalent type of cell in and
around the caseum; namely, the percentage of cells located near
FIGURE 2 | Neutrophils are present in phenotypically-diverse macaque granulomas. Representative granulomas showing (A) a necrotic granuloma with a large
central region of caseum, (B) a granuloma with two necrotic foci on the left and right sides of the granuloma, (C) a suppurative granuloma with large numbers of
neutrophils infiltrating into the central region, and (D) a non-necrotic granuloma. Calprotectin- (S100A9) positive neutrophils are indicated in yellow and DAPI-stained
nuclei are indicated in blue. Scale bar represents 250 um.
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the caseum that are neutrophils, macrophages, or T cells. In this
work, we use the neutrophil-specific version of the statistic,
defined as the number of neutrophils that have at least one
fully caseated compartment in their Moore neighborhood
divided by the total number of cells that have a least one fully
caseated compartment in their Moore neighborhood. This
statistic enables us to investigate the parameters that promote
the formation of an inner neutrophil ring near the caseous center
over time and to thereby hypothesize how the cellular spatial
structure of granulomas may relate to different host outcomes.

2.7 Virtual Neutrophil Deletion and
Depletion Experiments
Virtual neutrophil depletion, i.e., depleting neutrophils at a time t
post-infection (PI), allows us to understand how the system is
affected by the presence or absence of neutrophils. We simulate
neutrophil depletion by permanently turning off neutrophil
recruitment at time t. Neutrophils that are already on the grid
at time t remain on the grid until they die and are removed from
the grid within a few days. We generated four sets of 25
granulomas for depletion at days 25, 50, 75, and 100 PI,
respectively, using the same 25 random seeds in each set.
Lastly, we set this parameter to the range [day 0, day 200 PI]
and used LHS to sample 100 different values at five repetitions
each to generate a final dataset. To simulate neutrophil deletion,
we turned off neutrophil recruitment for the entirety of the
simulation (i.e., no neutrophils ever appear in the simulation).

2.8 Quantifying Dissemination
When an infected neutrophil dies, it releases its intracellular
bacteria to the local lung environment, where that bacterium
remains until it is phagocytosed by another neutrophil or
macrophage. An infected neutrophil that breaks away from and
dies outside the granuloma could therefore be considered a
dissemination event. We define a dissemination statistic as the
total number of infected neutrophils that die outside the granuloma
boundary. The granuloma boundary is reset at each time step and is
defined as in (38), namely, as a circle with center (center of mass x,
center of mass y) and radius dictated by the largest distance from
the granuloma center to any compartment in the granuloma.
3 RESULTS

3.1 IHC Staining in Cynomolgus
Macaques Illustrates Granuloma
Spatial Configurations
Granulomas can manifest in a variety of cellular spatial
configurations (73). Experimentally-observed outcomes of
Frontiers in Immunology | www.frontiersin.org 8
infection include clearance with no granuloma formation after
infection, clearance of bacteria after granulomas form, and
formation of different granuloma types (e.g., necrotic
(Figures 2A, B), suppurative (Figure 2C), non-necrotic
(Figure 2D) with varying bacteria loads (73, 74). Broadly,
necrotic granulomas are granulomas with necrotic (caseous)
centers, suppurative granulomas are neutrophil-rich
granulomas, particularly in the granuloma center, and non-
necrotic granulomas are granulomas that do not contain much
necrosis and typically have a cellular center. In this work, we are
interested in studying the evolution of granulomas that do not
sterilize before the start of the adaptive immune response, as
these likely better approximate the responses of individuals who
develop active disease and ultimately seek treatment, as well as
those that do sterilize before the start of the adaptive response, as
doing so may help elucidate mechanisms of successful control.

We use immunohistochemistry (IHC) to study patterns of
neutrophil localization in NHPs. In Figure 2, we show images of
granulomas from different NHPs with active TB. Images A-D
serve as sample granulomas in the model calibration and
validation process, in which we required GranSim to produce a
range of experimentally-observed outcomes. In images A and B,
neutrophils (stained yellow) form an inner ring next to the
caseum and sparsely populate the lymphocyte cuff. Both of
these images are examples of typical necrotic granulomas. In
image B, there appears to be a second concentrated region of
neutrophils to the lower right of the caseous center. This suggests
that there are two necrotic foci in the granuloma and that a
second caseous center is forming, perhaps because the cells in
that location that are controlling the infection poorly. Image C
represents a suppurative granuloma where neutrophils (yellow)
are present throughout the granuloma but are enriched in the
granuloma’s center. Image D shows a non-necrotic granuloma
characterized by lack of caseum where neutrophils are not
concentrated into distinct foci. This image highlights the
complexity of granuloma structure and response to infection,
as well as some inherent challenges in IHC image analysis.

3.2 Computational Model, GranSim,
Captures Neutrophil Spatiotemporal
Organization and Dynamics Within
TB Granulomas
As described in Methods, we use GranSim to create a repository
of 958 simulated granulomas. In Figure 3, we present six
different simulated granulomas from this repository, showing
that our model produces spatial organizations that qualitatively
match NHP IHC images, such as those in Figure 2. These
granulomas are achieved through parameter variation that we
discuss further below. In particular, these simulated granulomas
TABLE 2 | Overview of granuloma sets generated in the calibration process.

Name of Granuloma Set Number of Varied
Parameters

Number of Distinct Parameter
Sets (i.e., number of different

types of granulomas)

Number of Simulation
Repetitions Per Parameter Set
(i.e., per type of granuloma)

N = Total Number
of Granulomas in Set

Full parameter set 77 600 3 1800
Neutrophil-specific parameter set 24 202 3-5 958
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are all necrotic granulomas and have a distinct caseous center,
and in panels 3B, C, and D neutrophils are primarily found either
in an inner ring closest to the caseum or in the lymphocyte cuff.
In time-lapse videos for Figure 3 (Videos 3A–F), we visualize the
full-color scheme for the six granulomas from Figure 3 (at http://
malthus.micro.med.umich.edu/lab/movies/neutrophil/). In
Figure 4, we show that the temporal CFU, neutrophil cell
count, and T cell to macrophage cell count ratio qualitatively
and quantitatively match the trends observed in the NHP studies
[e.g., see (34)]. Beyond matching to experimental CFU levels, cell
ratios, and spatial structures, our model recapitulates several
additional key outcomes that have been observed experimentally
regarding within-host heterogeneity (22).

3.3 Parameters Associated With
Neutrophil Behavior Drive CFU, Neutrophil
Counts, T Cell to Macrophage Ratios, and
Granuloma Spatial Organization
To test whether neutrophils play an important role in the
progression of TB, we performed sensitivity analyses to
Frontiers in Immunology | www.frontiersin.org 9
determine the primary mechanisms driving granuloma
outcomes. A major advantage of GranSim is the ability to
simulate and analyze granuloma formation over time, and thus
we calculated PRCC values across each of the 200 days PI. Using
our neutrophil-specific parameter set (as defined in Methods),
we sought to identify which parameters have persistent,
significant effects on these outcomes over time.

In Table 3, we list parameters that we predicted to have
significant PRCC values for an extended period of time during
the first 200 days PI (p <0.001). We identify model parameters
that significantly influence total CFU, neutrophil cell count, T cell
to macrophage ratio, and granuloma spatial structure (Table 3).
For example, reducing neutrophil lifespan or increasing the rate of
secretion of TNF by neutrophils each correspond to a reduction in
total CFU/granuloma. Interestingly, many parameters that
significantly affect both CFU and neutrophil counts share the
same correlation sign. This suggests that bacterial growth and
neutrophil accumulation may be driven by some of the same
biological mechanisms. Therefore, at least when considered over
time periods of several weeks to months, this finding supports the
FIGURE 3 | GranSim produces simulated granulomas that reflect granulomas in experimentally-infected macaques. Panels (A–F) show six sample simulated granulomas
drawn from the full parameter set (see Table 2 and Online Supplement Table 1), shown at 200 days post-infection. Neutrophils are indicated in yellow and all other cell
types are indicated in blue, in order to correlate with the color scheme used for the IHC images in Figure 2. Extracellular Mtb visualized as pale yellow patches. Caseum
not shown.
October 2021 | Volume 12 | Article 712457

http://malthus.micro.med.umich.edu/lab/movies/neutrophil/
http://malthus.micro.med.umich.edu/lab/movies/neutrophil/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hult et al. Neutrophils in TB
A B

C D

FIGURE 4 | Model produces simulated data that matches NHP data. We compare simulated data from the neutrophil-specific parameter set with experimental
datasets obtained from (34) (see Methods). Red = experimental data, black = simulated data. (A, C, D) Number of bacteria (CFU) and T cell to macrophage cell
count ratio were the primary temporal experimental data used in model calibration; granuloma diameter (in mm) served as an additional screening tool. (B) Neutrophil
cell count data was used for model validation.
TABLE 3 | PRCC analysis of the neutrophil-specific parameter set, with respect to CFU, neutrophil count, T cell to macrophage ratio, and spatial structure.

Parameter definition CFU Neutrophil count Tcell/Mac count ratio Spatial structure

TNF threshold for TNF-induced apoptosis Positive Positive
TNF threshold for NFkB activation Positive Positive
Resiliency of neutrophil to caseum Positive
Caseum concentration required to reduce neutrophil lifespan Positive Positive Positive
Neutrophil secretion rate of inactive TGFb Negative
Neutrophil secretion rate of TNF Negative Negative Negative
Neutrophil chemotaxis due to extracellular Mtb Negative Negative Negative
Maximum neutrophil lifespan Positive Positive Negative Positive
Probability that neutrophil death contributes to caseation Negative Positive Negative Negative
Probability that neutrophil kills Mtb Negative Negative Negative
Fraction of active TGFb that is bound by a neutrophil Negative Positive
Maximum probability to recruit macrophage Positive Positive Negative Positive
Neutrophil recruitment due to extracellular Mtb Negative
Maximum probability to recruit a neutrophil Positive Negative Positive
Maximum chemokine concentration neutrophils sense during recruitment Positive Negative
Minimum probability to recruit a neutrophil Negative Positive Negative Positive
Minimum chemokine concentration neutrophils sense during recruitment Negative
Maximum probability to recruit IFN-gamma producing T cell Negative Negative Positive Negative
Probability to recruit cognate IFN-gamma producing T cell Negative Negative Negative
Frontiers in Immunology | www.frontiersin.org
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Shown are parameters that are significant for at least 35 consecutive days during the 200-day span (p<0.001). If the correlation sign was both positive and negative during the 200 days,
then each sign was considered separately for the 35-day requirement. See Methods for a description of the spatial structure statistic.
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observation that higher neutrophil numbers are associated with
poorer granuloma outcomes.

However, not all parameters that drive CFU also drive
neutrophil count, and vice versa. This suggests that lung
micro-environments that permit a higher rate of neutrophil
recruitment could support granulomas with high neutrophil
counts and low CFU. In contrast, other lung micro-
environments could support granulomas with relatively few
neutrophils but higher bacterial loads, such as those where the
TNF threshold for NFkB activation is higher, the caseum levels
required to shorten local neutrophil lifespan are greater,
extracellular Mtb plays a smaller role in determining
neutrophil directional movement, or neutrophils have reduced
capacity to kill Mtb. We also note the significance of the
parameter “probability that neutrophil death contributes to
caseation”, which defines the likelihood that a neutrophil death
will contribute to caseum rather than be phagocytosed by a
macrophage. Our analysis suggests that increased caseum levels
due to neutrophil death also correlate with lower CFU. This
suggests that caseum may have a beneficial purpose, perhaps
through trapping and physically constraining Mtb. Much work
by Dannenberg in the last century supports the idea that caseum
has an overall beneficial effect on control (75).

The spatial statistic shown in the final column of Table 3
enables us to better understand the arrangement of cells within
simulated granulomas. Greater values of this statistic correspond
to granulomas with higher percentages of neutrophils (as opposed
Frontiers in Immunology | www.frontiersin.org 11
to other cell types) composing the population of cells located in or
near caseum. These are likely granulomas with more defined inner
neutrophil rings. Interestingly, we see that parameters that are
positively or negatively correlated with CFU are often also
positively or negatively correlated with this spatial statistic as
well, perhaps suggesting that the presence of neutrophils in or
near caseum is a hallmark of high CFU granulomas.

3.4 Neutrophils Influence Mtb Levels
During Both Innate and Adaptive Immunity
Although neutrophils are typically associated with innate
immunity and acute inflammation, recent work suggests that
they also play roles in chronic inflammatory conditions and
adaptive immune responses (3, 40). Neutrophil dynamics within
granulomas during early stages of Mtb infection can have long-
lasting ramifications on disease progression (4). Using the
neutrophil-specific parameter set and corresponding uncertainty
and sensitivity analyses, we investigated which neutrophil-
associated parameters directly or indirectly influenced CFU
levels during either the innate or adaptive immune responses.
Importantly, we found that the biological mechanisms driving
CFU levels differ in relative importance and contribution
over time.

We identified neutrophil-specific parameters that are
significantly correlated with CFU at six different time points
PI (Table 4) and noted if this significance occurs during the
innate (days 7, 14, 21 PI) or adaptive (days 28, 70, 105 PI)
TABLE 4 | Innate versus adaptive factors driving infection.

Varied Parameters (Innate Response) Day 7 PI Day 14 PI Day 21 PI

Neutrophil secretion rate of TNF -0.491* -0.578* -0.489*
Maximum neutrophil lifespan 0.474* 0.485*
Probability that neutrophil kills Mtb -0.234* -0.358* -0.205
Probability that neutrophil death contributes to caseation -0.289 -0.396*
Minimum probability to recruit a neutrophil -0.288 -0.221
Maximum probability to recruit macrophage 0.200* 0.240 0.283
Neutrophil chemotaxis due to extracellular Mtb -0.182 -0.161
Caseum concentration required to reduce neutrophil lifespan 0.152 0.329
Maximum number of phagocytosed intracellular Mtb within a neutrophil 0.168
TNF threshold for TNF-induced apoptosis 0.148
TNF threshold for NFkB activation 0.134

Varied Parameters (Adaptive Response) Day 28 PI Day 70 PI Day 105 PI

Maximum probability to recruit macrophage 0.336 0.4426* 0.497*
Neutrophil secretion rate of TNF -0.529* -0.4425* -0.452*
Probability to recruit cognate IFN-gamma producing T cell -0.387* -0.441*
Maximum neutrophil lifespan 0.427*
Probability that neutrophil death contributes to caseation -0.396*
TNF threshold for NFkB activation 0.151 0.199 0.198
Maximum probability to recruit IFN-gamma producing T cell -0.162 -0.191
Probability that neutrophil kills Mtb -0.228 -0.158 -0.185
Caseum concentration required to reduce neutrophil lifespan 0.351 0.153
Neutrophil chemotaxis due to extracellular Mtb -0.184 -0.149 -0.144
Minimum probability to recruit a neutrophil -0.300
TNF threshold for TNF-induced apoptosis 0.136
Maximum number of phagocytosed intracellular Mtb within a neutrophil 0.135
O
ctober 2021 | Volume 12 | Ar
Here we show three selected time points chosen during the innate immune response time frame, and three selected time points chosen during the adaptive immune response time frame.
Only significant correlations are shown (p <0.001), and varied parameters that do not significantly influence CFU for at least one of these six time points are not listed here. We identify the
three parameters with the highest PRCC value magnitude for each day with asterisks. We then used Fishers Z test to directly compare PRCCs between these parameters.
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immunity-driven stages of TB, respectively (p <0.001). We report
the correlation (PRCC) values for each significant parameter,
and we consider significant parameters at each time point in
order of descending PRCC value magnitude (as they are likely
to be the strongest correlated). We found that neutrophilic
effects on CFU are not solely limited to the innate immunity-
dominated stage of disease but are also evident during adaptive
immunity (Table 4). In order to directly compare PRCCs, we use
a Fishers Z test (65). For each of the three time points within the
innate immune response, neutrophil secretion of TNF has the
strongest correlation with CFU (Table 4). This suggests that
promoting neutrophil secretion of TNF early in infection may
help control CFU growth; that neutrophil secretion of TNF
remains a significant (although less influential) parameter
during the adaptive response suggests that this benefit persists
during the adaptive response. The tables corresponding to days
28, 70, and 105 PI (during adaptive response) identify the eight,
four, and three parameters, respectively, that directly represent
neutrophil behavior and significantly affect total CFU. At day 28
PI, the maximum lifespan of a neutrophil and the likelihood
that a dead neutrophil contributes to caseum levels have the
strongest influence on CFU, after neutrophil secretion of TNF.
This suggests that neutrophil longevity and interactions with
caseum are more influential in governing total CFU than
parameters that tune neutrophil chemotaxis or bactericidal
effects. As the time point at 28 days PI is just after both the
onset of the adaptive response in the simulations and the typical
experimentally-observed peak in CFU (see Figure 4A), we
further note that these parameters (and by association,
neutrophils) likely play a key role in determining the severity/
magnitude of that CFU peak (Table 4). By days 70 and 105 PI,
the Fishers Z test identifies the most influential parameter on
CFU to be a macrophage recruitment parameter, suggesting that,
although neutrophilic effects on CFU persist into the adaptive
response stage, neutrophils may no longer be the primary driver
of CFU.

That neutrophils can influence CFU levels later in infection
(e.g., days 70, 105 PI) suggests that they may play an important
role outside of the innate immune response, and thus may prove
a useful target for drug therapy. Here, we suggest that the positive
or negative nature of neutrophilic influence is not clear-cut, as
heterogeneity in the neutrophil population – represented here
via parameter ranges – may modulate the severity of host
responses. This result is not contradictory to evidence showing
that neutrophils can be harmful later in TB; rather, it suggests
that although neutrophil behaviors can tune CFU levels,
neutrophils may fail to accumulate in large enough numbers to
have observable beneficial effects, exhibit antagonistic positive
and negative behaviors, or contribute to a spectrum of poor
granuloma outcomes.
3.5 Virtual Neutrophil Depletion in
Granulomas with High Bacterial Burdens
Reduces CFU
High neutrophil levels within TB lung granulomas are associated
with poor host outcomes (60, 76–80). One benefit to using
Frontiers in Immunology | www.frontiersin.org 12
GranSim is that we can repeatedly simulate the same
granuloma under different conditions. Here, we investigate the
effect of virtually depleting or deleting neutrophils from
granulomas that have poor outcomes, defined here as high
CFU. From our neutrophil-specific parameter set (as defined in
Methods), we chose a parameter set that consistently produced
granulomas with high CFU (greater than 105) and high
neutrophil cell counts (greater than 104) at day 200 PI (see
Figure 5 panel A for the control case). We used this parameter
set to perform a virtual deletion and depletion of neutrophils at
various days PI. Using the same 25 random seeds for each
simulation, we generated six sets of 25 granulomas: control
granulomas, neutrophil deletion granulomas (i.e., granulomas
in which no neutrophils are present at the start of or during the
simulation), and neutrophil depletion granulomas, for which
neutrophil depletions were imposed at day 25, 50, 75, or 100 PI.
In Figure 6, we show that deleting or depleting neutrophils from
this subtype of granuloma results in a lower CFU by day 200 PI
than that of the control. Qualitatively, we observe that the earlier
post-infection neutrophils are eliminated, the lower the total
CFU at day 200 PI and the smaller in diameter the granuloma.
Neutrophil deletion produces the lowest total CFU at day 200 PI
and a lower early CFU peak. Similarly, virtual depletion of
neutrophils at day 25 PI reduces the early CFU peak and
produces the next lowest total CFU at day 200 PI. The size and
structure of these granulomas shown in Figure 5, where we show
a sample granuloma for each of the six virtual experiments at day
200 PI, further reflect these qualitative trends.

We performed these same six virtual experiments on two
additional granuloma parameter sets whose control granulomas
produced high CFU and high neutrophil count late in infection,
and saw similar qualitative behavior in which neutrophil deletion
and early depletion led to reduced CFU and granuloma size (data
not shown). We hypothesize that, in the case of granulomas with
high CFU burdens and high neutrophil count, neutrophils are a
key driver of, and serve to amplify, uncontrolled bacterial growth
and poor outcomes.

Interestingly, when we performed virtual neutrophil knockout
and depletion experiments using a parameter set that
corresponded to granulomas that effectively control CFU
growth, we did not observe the same results; most notably, a
neutrophil deletion or depletion at day 25 PI resulted in CFU
levels at day 200 that were∼2-2.5 orders of magnitude higher than
those of the control granulomas, as shown inOnline Supplement
Figure 2 and Online Supplement Figure 3. Furthermore, when
we performed neutrophil knockout and depletion experiments
using a parameter set that corresponded to granulomas with low,
controlled CFU at day 200 PI (e.g., 0 ≤ CFU < ∼103), we observed
an even stronger relationship between neutrophil deletion/
depletion and uncontrolled CFU growth. As shown in Online
Supplement Figure 4 and Online Supplement Figure 5,
the earlier that neutrophils are removed from the local lung
environment, the worse the outcome, as both CFU and
granuloma size increase. This suggests that neutrophils may
play an important role in controlling bacterial growth in some
granulomas. This may also account for some of the variability
reported in the literature (5).
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3.6 Neutrophils Can Facilitate Local
Dissemination and Granuloma Budding
Dissemination is associated with the development of active TB and
accelerated disease progression (81). It occurs when a granuloma
fails to control and physically contain bacterial growth, resulting in
infected cells escaping the physical boundaries of the granuloma and
Mtb spreading beyond the local lung environment. Recent work by
Wessler et al. (2020) investigates how dissemination appears, as well
as the potential role of multifunctional CD8+ T cells and
macrophage dynamics (34). The literature also suggests a
potential link between neutrophils and dissemination (5, 8, 10,
82); thus, here we investigate the mechanisms driving
dissemination, focusing on the role of neutrophils.

In Figures 7A, B, we show that infected neutrophils can facilitate
local dissemination and budding, respectively. Notably, these events
occur as emergent phenomena in our model, arising in a subset of
the replications generated for each granuloma due to the
stochasticity present in the system. In Figure 7A, we show an
example of dissemination. Of the five replications generated for this
Frontiers in Immunology | www.frontiersin.org 13
granuloma and tracked for 200 days PI, a single granuloma formed
in three of the replications, a disseminating granuloma formed in
one of the replications (shown here), and no granuloma formed in
one of the replications due to the host clearing the bacteria early
after infection. In Videos 7A–C (at http://malthus.micro.med.
umich.edu/lab/movies/neutrophil/), we provide time-lapse videos
for the granuloma shown in Figure 7A. We show that following the
formation of a single granuloma, an infected neutrophil breaks away
from the original granuloma within the first week post-infection.
After traveling to a distal part of the lungmicro-environment, where
it dies and releases its bacteria around day 7 PI, a resting
macrophage phagocytoses the extracellular Mtb by day 20 PI,
instigating the formation of a second granuloma. We distinguish
this from budding, where a granuloma pinches off a new
granuloma (Figure 7B).

To quantify the frequency of neutrophil-facilitated
dissemination events and determine the mechanisms driving
them, we create a new dissemination statistic. Described in
Methods, this statistic measures the frequency with which an
FIGURE 5 | Spatial outcomes for virtual neutrophil deletion and depletion studies. Simulated granulomas at day 200 PI. Macrophages (green– resting, orange–
infected, red– chronically infected, blue– activated), Neutrophils (purple), T cells (Tgam– pink, Tcyt– maroon, Treg– cyan), extracellular Mtb (brown), and caseum
(beige) are shown. (A) As a wild-type control, we use a simulated granuloma that has high levels of CFU and abundant levels of neutrophils at 200 days PI. (B–F) are
the virtual deletion and depletions using this same granuloma set. (B) Neutrophil deletion. Neutrophils are not present on the grid at any point during the simulation.
(C–F) Virtual neutrophil depletion at days 25, 50, 75, and 100 PI, respectively.
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FIGURE 6 | Temporal outcomes for virtual neutrophil deletion and depletion studies. (A–C) show temporal simulated data for the six virtual experiments (control,
neutrophil deletion, and four temporally-distinct neutrophil depletions). Each simulated data set contains 25 granulomas, one of which is shown in Figure 5. The
color key is shown in (B). (A) CFU versus days PI. Red = experimental data from NHPs. We observe that deleting or depleting neutrophils reduces total CFU at day
200. (B) Neutrophil cell counts versus days PI are shown. Neutrophil count quickly goes to zero following neutrophil depletion. (C) We observe that deleting or
depleting neutrophils reduces granuloma diameters at day 200. (D) Using the control parameter set, we varied the time PI of neutrophil depletion. At day 200,
reduced CFU correlates with earlier neutrophil depletion PI.
FIGURE 7 | GranSim predicts that neutrophils contribute to mycobacterial dissemination and granuloma budding. (A) A granuloma that has disseminated, resulting
in two granulomas by day 200 PI. (B) A granuloma with budding, also shown at day 200 PI. We identified granulomas in panels (A, B) from the full parameter set
(see Table 2). Macrophages (green– resting, orange– infected, red– chronically infected, blue– activated), Neutrophils (purple), T cells (Tgam–pink, Tcyt– maroon,
Treg– cyan), extracellular Mtb (brown). Caseum is not shown in order to better visualize spatial locations of different cell types. (C) Frequency of neutrophil-facilitated
dissemination events over time. We visualize data for all runs in the neutrophil-specific parameter set. The purple vertical lines denote the start of the adaptive
response (solid = T cell recruitment begins, dotted = T cell recruitment is fully ramped up).
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infected neutrophil “escapes” and dies outside the granuloma. In
Figure 7C, we show that these events almost exclusively occur
during the innate immune response timeframe. This suggests
that neutrophils contribute to local dissemination during the
innate immunity-driven response, and perhaps are able to “seed”
new disseminating granulomas before the adaptive immunity-
driven response kicks in. The sharp decline in frequency of these
events following the start of the adaptive response suggests that T
cells play an important role in limiting neutrophil-facilitated
dissemination. We used PRCC analyses to identify factors driving
dissemination. We can decrease total numbers of infected
neutrophils that die outside a granuloma, and thereby decrease
potential neutrophil-facilitated dissemination events, by
modulating several parameters. We can affect these changes by:
increasing the lifespan of neutrophils, decreasing the proportion
of neutrophils that contribute to local caseum at death, increasing
the likelihood of macrophage recruitment (p < 0.001). From this,
we hypothesize that micro-environmental conditions that
contribute to early neutrophil death could increase the
frequency of dissemination events, whereas efferocytosis or
perhaps just higher macrophage numbers may decrease the
frequency of dissemination events.
4 DISCUSSION

Gaining a better understanding of the immune response to
Mtb is crucial to addressing increased prevalence of multi-drug
resistant strains, the current complexity and length of treatment,
and the inherent difficulties of experimental work. In this work,
we extended our hybrid agent-based computational model,
GranSim, to include neutrophils as an explicit cell type. We
were particularly interested in investigating mechanistic bases
for how and why neutrophils play dual roles in immunity to Mtb,
where in some settings they have beneficial roles and in others
appear to have detrimental effects (5, 13, 14, 83).

Several of our results address this dichotomous perspective of
neutrophil contribution to pathology. In our depletion studies, we
observed that neutrophils contribute to bacterial growth in some
granulomas but help control bacterial growth in others.
Interestingly, neutrophils seemed to amplify granuloma outcomes,
as depleting neutrophils from granulomas with high CFU burdens
reduced the bacterial burden in those granulomas (suggesting they
are making a bad situation worse), while depleting neutrophils from
granulomas with low bacterial burdens increased the number of
bacteria per granuloma (suggesting that they are a stabilizing factor
in these granulomas). The results of these studies suggest that the
degree to which neutrophils contribute to pathology may vary along
a spectrum at the individual granuloma level. Potential neutrophil-
directed therapies will therefore likely require a nuanced approach,
as simply eliminating all neutrophils in the lung environment could
impair immunity in some granulomas while promoting anti-
mycobacterial responses in others. This also highlights an
advantage of computational modeling over in vivo experiments:
we can generate a large set of heterogeneous granulomas to analyze
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at a single-granuloma level. Through consideration of different
parameter sets, this enables us to identify local niches of the lung
conducive to CFU growth that might be missed when averaging
across the whole lung environment (62).

Similarly, our uncertainty and sensitivity analyses suggest that
neutrophils can both promote and reduce CFU growth. We predict
that neutrophil behavior influences CFU levels in granulomas and
that some of the same biological mechanisms may underlie both
bacterial growth and neutrophil accumulation. By identifying
neutrophil-specific biological mechanisms that drive CFU, such as
reduced neutrophil TNF secretion, we link neutrophils with poor
outcomes. However, as in the case of the neutrophil depletion
studies, high neutrophil count is not exclusively associated with high
CFU, nor is low neutrophil cell count necessarily correlated with
low CFU.

GranSim captures apoptosis and necrosis, but other forms of cell
death are increasingly being viewed as important modulators of
immunity, such as death through neutrophil NETosis and
macrophage phagocytosis of an apoptotic neutrophil (efferocytosis)
(84). For the purposes of this study, we do not simulate neutrophil
extracellular traps (NETs) but there is data suggesting that NETs
cannot eliminate Mtb (85). As more data on NETs in human and
NHP TB become available, particularly with regard to the role of
NETs in innate immunity (86), it will become worthwhile to model
them in a future study. Similarly, a neutrophil’s ability engage in
tissue-remodeling activities through MMPs has implications for
granuloma function, but at the present time, we lack a sufficient
amount of data on temporal MMP expression and the relationship
between MMP expression, bacterial burden, and granuloma
phenotypes to accurately model these enzymes in GranSim.
Efferocytosis has been observed in NHP granulomas (21) and we
indirectly account for this behavior through a probability parameter
associated with caseum levels. By linking this parameter to the
proximity of a dying neutrophil and a macrophage, we could more
directly investigate this relationship. There are many future avenues
of interest we can pursue: the relationship between CFU and
neutrophil proximity to caseum, identification of parameters
associated with specific granuloma spatial structures, the potential
role of neutrophils in creating a growth-permissive environment, etc.
Mishra et al. showed in mice that PMNsmay be a nutrient reservoir
for Mtb (78); if Mtb in NHP granulomas are primarily located in or
near caseous environments, perhaps neutrophils are the reason why.
We are also interested in the relationship between neutrophils and T
cells over the course of infection. For example, Gideon et al. (2019)
showed that peripheral blood neutrophils can suppress Mtb-specific
T cell responses in vitro but did not conclusively identify a
relationship between neutrophils and T cell cytokine expression in
vitro (21). When we have stronger data on this interaction in NHP
granulomas, we can update GranSim to include these cell-cell
interactions. Pairing of wet lab studies together with modeling will
further elucidate the role of neutrophils in TB.

In NHPs, Mtb infection is often not detectable during the innate
immunity-dominated phase of TB, as visible granulomas are not
detected by PET/CT imaging or histopathologic examination until
3–4 weeks post-infection (23, 87). This suggests that the adaptive
response will already be underway by the time treatment
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commences. Thus, therapies need to target cell behavior specific to
cells in the adaptive response, or, in the case of granulomas that
newly form during the adaptive immunity-dominated stage of
disease, cell behavior specific to both the innate and adaptive
immunity-driven responses. Our study also highlights the value of
GranSim as a tool for studying neutrophil dynamics and neutrophil-
regulated immunity through the full course of TB from the point of
initial infection to established or resolved disease.

Past work has identified multiple neutrophil waves during the
immune response to Mtb (8, 14, 18, 88) and suggested that early
and late neutrophil recruitment may play distinct roles in
infection (18). In particular, recent work has begun to consider
the role of neutrophils beyond the innate response and as
modulators of adaptive immunity (3, 40, 83, 89). We
investigated the distinct role of neutrophils during both innate
and adaptive immunity, with a particular focus on the adaptive
response. Through uncertainty and sensitivity analyses, we found
that neutrophils directly modulate bacterial levels during the
adaptive response, and that mechanisms such as neutrophil
longevity and interactions with caseum may be useful targets
for therapies. Consideration of neutrophil heterogeneity, both
phenotypically and functionally, in future work with GranSim
could further elucidate this process (43, 76, 90).

We identified some of these same mechanisms as drivers of
neutrophil-facilitated local dissemination. Notably, we showed
that these types of dissemination events primarily occur during
the innate immunity-driven stage of infection. That the
frequency of these events abruptly drops off at the onset of the
adaptive immune response highlights the importance of T cells
to effective physical containment of bacterial growth as well as
the potential of neutrophils to influence granuloma shape and
severity. This suggests neutrophils as a potential mechanism
through which Mtb can exploit its granuloma environment
during innate immunity for dissemination (91).
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